本书全部参考文献
全文下载

梁德生,邬玲仟,李生斌. 2016. 中华民族基因组多态现象研究:基因组拷贝数变异与基因组病[M]. 西 安: 西安交通大学出版社.

泰兹, 蔡格尔. 2015. 植物生理学(第五版)[M]. 宋纯鹏, 王学路, 周云等, 译. 北京: 科学出版社. 汪亮, 张宇, 等. 2020. 单细胞行研报告[R]. 基因慧.

王金发. 2020. 细胞生物学(第二版)[M]. 北京: 科学出版社.

肖宇彬, 张子旭, 王玉珠, 等. 2023. 时空转录组研究进展[J]. 植物学报, 58: 214–232.

Ahn J, Heo S, Lee J, et al. 2021. Introduction to Single-Cell DNA Methylation Profiling Methods[J]. Biomolecules. 11(7):1013.

Aibar S, González-Blas CB, Moerman T, et al. 2017. SCENIC: single-cell regulatory network inference and clustering[J]. Nature Methods, 14(11):1083-1086.

Allis CD, Jenuwein T. 2016. The molecular hallmarks of epigenetic control[J]. Nature Reviews Genetics, 17(8):487-500. doi:10.1038/nrg.2016.59.

Almet AA, Cang Z, Jin S, et al. 2021. The landscape of cell-cell communication through single-cell transcriptomics[J]. Current Opinion in Systems Biology, 26:12-23.

Aran D, Looney AP, Liu L, et al. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nature Immunology, 20(2):163-172.

Argelaguet R, Arnol D, Bredikhin D, et al. 2020. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data[J]. Genome Biology,21(1):111.doi:10.1186/s13059-020-02015-1.

Arikawa K, Ide K, Kogawa M, et al. 2021. Recovery of strain-resolved genomes from human microbiome through an integration framework of single-cell genomics and metagenomics[J]. Microbiome, 9(1):202.

Armingol E, Ghaddar A, Joshi CJ, et al. 2022. Inferring a spatial code of cell-cell interactions across a whole animal body[J]. PLOS Computational Biology, 18(11):e1010715.

Armingol E, Officer A, Harismendy O, et al. 2021. Deciphering cell-cell interactions and communication from gene expression[J]. Nature Reviews Genetics, 22(2):71-88.

Arunkumar M, Zielinski CE. 2021. T-cell receptor repertoire analysis with computational tools-an immunologist's perspective[J].Cells,10(12):3582.doi:10.3390/cells10123582.

Asp M, Bergenstråhle J, Lundeberg J. 2020.Spatially resolved transcriptomes—next generation tools for tissue exploration[J]. BioEssays, 42(10):e1900221.doi:10.1002/bies.201900221.

Aubin-Frankowski PC, Vert JP. 2020. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference[J]. Bioinformatics, 36(18):4774-4780.

Auton A, Brooks LD, et al. 2015. A global reference for human genetic variation[J]. Nature, 526(7571):68-74. doi:10.1038/nature15393.

Avital G, Avraham R, Fan A, et al. 2017. scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing[J]. Genome Biology, 18(1):200. doi:10.1186/s13059 -017-1340-x.

Baker SM, Rogerson C, Hayes A, et al. 2019. Classifying cells with Scasat, a single-cell ATAC-seq analysis tool[J]. Nucleic Acids Research, 47(2):e10. doi:10.1093/nar/gky950.

Baran Y, Bercovich A, Sebe-Pedros A, et al. 2019. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions[J]. Genome Biology, 20(1):206. doi:10.1186/s13059-019-1812-2.

Barbie DA, Tamayo P, Boehm JS, et al. 2009. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1[J]. Nature, 462(7269):108-112. doi:10.1038/nature08460

Bard J, Rhee SY, Ashburner M. 2005. An ontology for cell types[J]. Genome Biology, 6(2):R21.

Bařinka J, Hu Z, Wang L, et al. 2022. RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data[J]. Leukemia, 36(6):1492-1498. doi:10.1038/s41375-022-01547-8.

Beagrie RA, Scialdone A, Schueler M, et al. 2017. Complex multi-enhancer contacts captured by genome architecture mapping[J]. Nature, 543(7646):519-524. doi:10.1038/nature21411.

Beliveau BJ, Joyce EF, Apostolopoulos N, et al. 2012. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes[J]. Proceedings of the National Academy of Sciences, 109(52):21301 -21306. doi:10.1073/pnas.1213818110.

Bennett HM, Stephenson W, Rose CM, et al. 2023. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry[J]. Nature Methods, 20(3):363-374.doi:10.1038/s41592-023-01791-5.

Bergen V, Lange M, Peidli S, et al. 2020. Generalizing RNA velocity to transient cell states through dynamical modeling[J]. Nature Biotechnology, 38(12):1408-1414.

Bergenstråhle J, Larsson L, Lundeberg J. 2020. Seamless integration of image and molecular analysis for spatial transcriptomics workflows[J]. BMC Genomics,21(1):482.doi:10.1186/s12864-020-06832-3.

Berisha A, Dold S, Guenther S, et al. 2014. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods[J]. Rapid Communications in Mass Spectrometry,28(16):1779-1791.doi:10.1002/rcm.6960.

Bianchi A, Scherer M, Zaurin R, et al. 2022. scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells[J]. Genome Biology,23(1):229. doi:10.1186/s13059- 022-02796-7.

Bienko M, Crosetto N, Teytelman L, et al. 2013. A versatile genome-scale PCR-based pipeline for high-definition DNA FISH[J]. Nature Methods, 10(2):122-124. doi: 10.1038/nmeth.2306.

Blattman SB, Jiang W, Oikonomou P, et al. 2020. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing[J]. Nature Microbiology, 5(10):1192-1201.doi:10.1038/s41564-020-0729-6.

Bock C, Datlinger P, Chardon F, et al. 2022. High-content CRISPR screening[J]. Nature Reviews Methods PrimersNature Reviews Methods Primers, 2(1):9. doi:10.1038/s43586-022-00098-7.

Bock C. 2012. Analysing and interpreting DNA methylation data[J]. Nature Reviews Genetics, 13(10): 705-719. doi:10.1038/nrg3273.

Booeshaghi A, Hallgrímsdóttir I, Gálvez-Merchán Á, et al. 2022. Depth normalization for single-cell genomics count data[J].bioRxiv,doi:10.1101/2022.05.06.490859.

Bouwman BAM, Crosetto N, Bienko M. 2022. The era of 3D and spatial genomics[J]. Trends in Genetics, 38(10):1062-1075. doi:10.1016/j.tig.2022.05.010.

Boyle S, Rodesch MJ, Halvensleben HA, et al. 2011. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis[J]. Chromosome Research, 19(7):901-909.doi:10.1007/s10577-011-9245-0.

Bravo González-Blas C, De Winter S, Hulselmans G, et al. 2023. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks[J]. Nature Methods, 20(9):1355-1367. doi:10.1038/s41592-023 -01389-x.

Bravo González-Blas C, Minnoye L, Papasokrati D, et al. 2019. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data[J]. Nature Methods, 16(4):397-400.doi:10.1038/s41592-019-0356-7.

Brunner AD, et al. 2022. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation[J]. Molecular Systems Biology, 18(3):e10798.doi:10.15252/msb.202110798.

Budnik B, Levy E, Harmange G, et al. 2018. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation[J]. Genome Biology, 19(1):161. doi:10.1186/ s13059-018-1547-5.

Buenrostro JD, Giresi PG, Zaba LC, et al. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 10(12):1213-1218. doi:10.1038/nmeth.2688.

Buenrostro JD, Wu B, Litzenburger UM, et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 523(7561):486-490. doi:10.1038/nature14590.

Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, et al. 2020. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics[J]. Nucleic Acids Research, 48(10):e55.

Cai L, Shah S, Tekei Y, et al. 2019. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH[J]. The FASEB Journal, 33(S1):221.2-221.2. doi:10.1096/fasebj.2019.33.1_supplement.221.2.

Calis JJ, Rosenberg BR. 2014. Characterizing immune repertoires by high throughput sequencing: strategies and applications[J]. Trends in Immunology, 35(12):581-590.doi:10.1016/j.it.2014.09.004

Cao J, Spielmann M, Qiu X, et al. 2019. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 566(7745):496-502.doi:10.1038/s41586-019-0969-x.

Cao ZJ, Gao G. 2022. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding[J]. Nature Biotechnology, 40(12):1458-1466. doi:10.1038/s41587-022-01054-z.

Cardozo GAM, Cattoni DI, Fiche JB, et al. 2019. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms[J]. Molecular Cell, 74(1):212-222.e5.doi:10.1016/j.molcel.2019.01.011.

Cardozo GAM. 2021. A shift in paradigms: spatial genomics approaches to reveal single-cell principles of genome organization[J]. Frontiers in Genetics, 12:780822. doi:10.3389/fgene.2021.780822.

Carter B, Zhao K. 2021. The epigenetic basis of cellular heterogeneity[J]. Nature Reviews Genetics, 22(4):235-250. doi:10.1038/s41576-020-00300-0.

Casasent AK, Schalck A, Gao R, et al. 2018. Multiclonal invasion in breast tumors identified by topographic single cell sequencing[J]. Cell, 172(1-2):205-217.e12. doi:10.1016/j.cell.2017.12.007.

Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, et al. 2022. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles[J]. Nucleic Acids Research, 50(D1):165-173. doi:10.1093/nar/gkaa968.

Chan TE, Stumpf MPH, Babtie AC. 2017. Gene regulatory network inference from single-cell data using multivariate information measures[J]. Cell Systems, 5(3):251-267.e3.

Chandradoss KR, Guthikonda PK, Kethavath S, et al. 2020. Biased visibility in Hi-C datasets marks dynamically regulated condensed and decondensed chromatin states genome-wide[J]. BMC Genomics, 21(1):175. doi:10.1186/S12864-020-6580-6.

Chen A, Liao S, Cheng M, et al. 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays[J]. Cell, 185(10):1777-1792.e21.doi:10.1016/j.cell.2022.04.003.

Chen C, Hou J, Tanner JJ, et al. 2020. Bioinformatics methods for mass spectrometry-based proteomics data analysis[J]. International Journal of Molecular Sciences, 21(8):2873. doi:10.3390/ijms21082873.

Chen C, Xing D, Tan L, et al. 2017. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI)[J]. Science, 356(6334):189-194.doi:10.1126/science.aak9787.

Chen H, Lareau C, Andreani T, et al. 2019. Assessment of computational methods for the analysis of single-cell ATAC-seq data[J]. Genome Biology, 20(1):241. doi:10.1186/s13059-019-1849-6.

Chen H, Li X, Cheng Q, et al. 2024. Single-cell landscape of long and short glandular trichomes in Nicotiana tabacum leaves [J]. iScience, 27(9):110650. doi: 10.1016/j.isci.2024.110650.

Chen H, Yin X, Guo L, et al. 2021. PlantscRNAdb: a database for plant single-cell RNA analysis[J]. Molecular Plant, 14(6):855-857.

Chen J, Suo S, Tam PP, et al. 2017. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nature Protocols, 12(3):566-580. doi:10.1038/nprot.2017.003.

Chen KH, Boettiger AN, Moffitt JR, et al. 2015. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 348(6233):aaa6090.doi:10.1126/science.aaa6090.

Chen PY, Cokus SJ, Pellegrini M. 2010. BS Seeker: precise mapping for bisulfite sequencing[J]. BMC Bioinformatics, 11:203. doi:10.1186/1471-2105-11-203.

Chen X, et al. 2016. ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing[J]. Nature Methods,13(12):1013-1020.doi:10.1038/nmeth.4031.

Cheng J, Lin G, Wang T, et al. 2023. Massively parallel CRISPR-based genetic perturbation screening at single-cell resolution[J]. Advanced Science. 10(4):e2204484.doi:10.1002/advs.202204484.

Cheng J, Zhang J, Wu Z, et al. 2021. Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19[J]. Briefings in Bioinformatics, 22(2):988-1005.

Cheng M, Jiang Y, Xu J, et al. 2023. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges[J]. Journal of Genetics and Genomics, 50(9):625-640. doi:10.1016/j.jgg.2023.03.011.

Chung M, Bruno VM, Rasko DA, et al. 2021. Best practices on the differential expression analysis of multi-species RNA-seq[J]. Genome Biology, 22(1):121. doi:10.1186/s13059-021-02337-8

Clarke ZA, Andrews TS, Atif J, et al. 2021. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods[J]. Nature Protocols, 16(6):2749-2764.

Cohen YC, Zada M, Wang SY, et al. 2021. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing[J]. Nature Medicine, 27(3):491-503. doi:10.1038/s41591-021-01232-w

Cong Y, Liang Y, Motamedchaboki K, et al. 2020. Improved single-cell proteome coverage using narrow-bore packed nanolc columns and ultrasensitive mass spectrometry[J]. Analytical Chemistry, 92(3):2665-2671. doi:10.1021/acs.analchem.9b04631.

Cremer T, Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells[J]. Nature Reviews Genetics, 2(4):292-301. doi:10.1038/35066075.

Cremer T, Cremer M, Dietzel S, et al. 2006. Chromosome territories – a functional nuclear landscape[J]. Current Opinion in Cell Biology. 18(3):307-316. doi:10.1016/j.ceb.2006.04.007.

Crosetto N, Bienko M, van Oudenaarden A. 2015. Spatially resolved transcriptomics and beyond[J]. Nature Reviews Genetics, 16(1):57-66. doi:10.1038/nrg3832.

Cusanovich DA, Daza R, Adey A, et al. 2015. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing[J]. Science, 348(6237):910-914.

Cusanovich DA, Hill AJ, Aghamirzaie D, et al. 2018. A single-cell atlas of in vivo mammalian chromatin accessibility[J]. Cell, 174(5):1309-1324.e18.

Danese A, Richter ML, Chaichoompu K, et al. 2021. EpiScanpy: integrated single-cell epigenomic analysis[J]. Nature Communications, 12(1):5228. doi:10.1038/s41467-021- 25131-3.

Dar D, Dar N, Cai L, et al. 2021. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution[J]. Science, 373(6556):eabi4882. doi:10.1126/science.abi4882.

Davie K, Janssens J, Koldere D, et al. 2018. A single-cell transcriptome atlas of the aging drosophila brain[J]. Cell, 174(4):982-998.e20. doi:10.1016/j.cell.2018.05.057

Dean FB, Nelson JR, Giesler TL, et al. 2001. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome Research, 11:1095-1099. doi:10.1101/gr.180501.

Deconinck L, Cannoodt R, Saelens W, et al. 2021. Recent advances in trajectory inference from single-cell omics data[J]. Current Opinion in Systems Biology, 27:100344. doi:10.1016/j.coisb.2021.05.005.

Dekker J, Rippe K, Dekker M, et al. 2002. Capturing chromosome conformation[J]. Science, 295(5558):1306-1311. doi:10.1126/science.1067799.

Deng Y, Bartosovic M, Kukanja P, et al. 2022. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level[J]. Science, 375(6581):681-686. doi:10.1126/science.abg7216.

Deng Y, Bartosovic M, Ma S, et al. 2022. Spatial profiling of chromatin accessibility in mouse and human tissues[J]. Nature, 609(7926):375-383. doi:10.1038/s41586-022-05094-1.

DePasquale EAK, Schnell DJ, Van Camp PJ, et al. 2019. DoubletDecon: deconvoluting doublets from single-cell rna-sequencing data[J]. Cell Reports, 29(6):1718-1727.e8.

Deshpande A, Chu LF, Stewart R, et al. 2022. Network inference with Granger causality ensembles on single-cell transcriptomics[J]. Cell Rep. 38(6):110333. doi:10.1016/j.celrep.2022.110333.

Diehl AD, Meehan TF, Bradford YM, et al. 2016. The cell ontology 2016: enhanced content, modularization, and ontology interoperability[J]. J Biomed Semantics. 7(1):44. doi:10.1186/s13326-016-0088-7

Dixon JR, Selvaraj S, Yue F, et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions[J]. Nature, 485(7398):376-380. doi:10.1038/nature11082.

Dobin A, Davis CA, Schlesinger F, et al. 2013. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 29 (1): 15-21.

Domcke S, Shendure J. 2023. A reference cell tree will serve science better than a reference cell atlas[J]. Cell, 186(6):1103-1114.

Domínguez CC, Xu C, Jarvis LB, et al. 2022. Cross-tissue immune cell analysis reveals tissue-specific features in humans[J]. Science, 376(6594):eabl5197. doi:10.1126/science.abl5197

Dong K, Zhang S. 2022. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder[J]. Nature Communications, 13:1739. doi: 10.1038/s41467-022-29439-6.

Dostie J, Richmond TA, Arnaout RA, et al. 2006. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements[J]. Genome Research, 16(10):1299-1309. doi:10.1101/gr.5571506.

Dou J, Tan Y, Kock KH, et al. 2024. Single-nucleotide variant calling in single-cell sequencing data with Monopogen[J]. Nature Biotechnology, 42(5):803-812.

Dries R, Zhu Q, Dong R, et al. 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data[J]. Genome Biology, 22(1):78. doi: 10.1186/s13059-021-02286-2.

Durante MA, Rodriguez DA, Kurtenbach S, et al. 2020. Single-cell analysis reveals new evolutionary complexity in uveal melanoma[J]. Nature Communications, 11(1):496. doi:10.1038/s41467-019-14256-1.

Eberwine J, et al. 1992. Analysis of gene expression in single live neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 89(7):3010-3014.

Efremova M, Vento-Tormo M, Teichmann SA, et al. 2020. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes[J]. Nature Protocols,15(4):1484-1506. doi:10.1038/s41596-020-0292-x.

Eisenstein M. 2022. Seven technologies to watch in 2022[J]. Nature, 601(7894):658-661. doi:10.1038/ d41586-022-00163-x.

Elosua-Bayes M, Nieto P, Mereu E, et al. 2021. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes[J]. Nucleic Acids Research, 49(9):e50. doi: 10.1093/nar/ gkab043.

Emmert-Buck MR, Bonner RF, Smith PD, et al. 1996. Laser Capture Microdissection[J]. Science, 274(5289):998-1001. doi:10.1126/science.274.5289.998.

Erfanian N, et al. 2022. Deep learning applications in single-cell omics data analysis[J]. bioRxiv, doi: 10.1101/2021.11.26.470166.

Erhard F, Baptista MAP, Krammer T, et al. 2019. scSLAM-seq reveals core features of transcription dynamics in single cells[J]. Nature, 571(7765):419-423.

Esumi S, et al. 2008. Method for single-cell microarray analysis and application to gene-expression profiling of GABAergic neuron progenitors[J]. Neuroscience Research, 60(4):439-451.

Fan J, Lee HO, Lee S, et al. 2018. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data[J]. Genome Research, 28(8):1217-1227. doi:10.1101/gr.228080.117.

Fan R, Liu Y, DiStasio M, et al. 2022. Spatial-CITE-seq: spatially resolved high-plex protein and whole transcriptome co-mapping[J]. Research Square, doi:10.21203/rs.3.rs-1499315/v1.

Fan X, Yang C, Li W, et al. 2021. SMOOTH-seq: single-cell genome sequencing of human cells on a third-generation sequencing platform[J]. Genome Biology, 22:195.

Fang R, Preissl S, Li Y, et al. 2021. Comprehensive analysis of single cell ATAC-seq data with SnapATAC[J]. Nature Communications, 12(1):1337. doi:10.1038/s41467-021-21583-9.

Fang R, Yu M, Li G, et al. 2016. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq[J]. Cell Res. 26(12):1345-1348. doi:10.1038/cr.2016.137.

Ferrari C, Manosalva Pérez N, Vandepoele K. 2022. MINI-EX: integrative inference of single-cell gene regulatory networks in plants[J]. Molecular Plant, 15(11):1807-1824.

Feuk L, Carson AR, Scherer SW. 2006. Structural variation in the human genome[J]. Nature Reviews Genetics, 7(2):85-97. doi:10.1038/nrg1767.

Fiehn O, Kopka J, Dörmann P, et al. 2000. Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 18(11):1157-1161. doi:10.1038/81137.

Fiehn O. 2002. Metabolomics - the link between genotypes and phenotypes[J]. Plant Mol Biol. 48(1-2): 155-171. doi:10.1023/a:1013713905833/METRICS.

Franzén O, Gan LM, Björkegren JLM. 2019. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford)[J]. 2019:baz046. doi:10.1093/database/baz046.

Fullwood MJ, et al. 2009. An oestrogen-receptor-α-bound human chromatin interactome[J]. Nature, 462(7269):58-64. doi:10.1038/nature08497.

Gao R, Bai S, Henderson YC, et al. 2021. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes[J]. Nature Biotechnology, 39(5):599-608. doi:10.1038/s41587-020-00795-2.

Gao T, Soldatov R, Sarkar H, et al. 2023. Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes[J]. Nature Biotechnology, 41(3):417-426. doi:10.1038/s41587-022-01468-y.

Garcia-Alonso L, Handfield LF, Roberts K, et al. 2021. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro[J]. Nature Genetics, 53(12):1698-1711.

Garcia-Alonso L, Lorenzi V, Mazzeo CI, et al. 2022. Single-cell roadmap of human gonadal development[J]. Nature, 607(7919):540-547. doi:10.1038/s41586-022-04918-4.

Gavrilov AA, Gushchanskaya ES, Strelkova O, et al. 2013. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub[J]. Nucleic Acids Research, 41(6):3563-3575. doi:10.1093/nar/gkt067.

Gawad C, Koh W, Quake SR. 2016. Single-cell genome sequencing: current state of the science[J]. Nature Reviews Genetics, 17(3):175-188.

Gebreyesus ST, Siyal AA, Kitata RB, et al. 2020. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry[J]. Nature Communications, 13(1):37.doi:10.1038/s41467-021-27778-4.

Gerlinger M, Rowan AJ, Horswell S, et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med. 366(10):883-892. doi:10.1056/NEJMOA1113205.

Gong B, Zhou Y, Purdom E. 2021. Cobolt: integrative analysis of multimodal single-cell sequencing data[J]. Genome Biology, 22(1):351. doi:10.1186/s13059-021-02556-z.

Gong W, Pan X, Xu D, et al. 2022. Benchmarking DNA methylation analysis of 14 alignment algorithms for whole genome bisulfite sequencing in mammals[J]. Computational and Structural Biotechnology Journal, 20:4704-4716. doi:10.1016/j.csbj.2022.09.012.

Granja JM, Corces MR, Pierce SE, et al. 2021. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis[J]. Nature Genetics, 53(3):403-411. doi:10.1038/s41588-020-00726-w.

Guo H, Zhu P, Wu X, et al. 2013. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing[J]. Genome Research, 23:2126-2135.

Guo W, Fiziev P, Yan W, et al. 2013. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data[J]. BMC Genomics, 14:774.

Gyllborg D, Langseth CM, Qian X, et al. 2020. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue[J]. Nucleic Acids Research, 48(19):e112-e112. doi:10.1093/nar/gkaa792.

Hafemeister C, Satija R. 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biology, 20(1):296. doi:10.1186/s13059-019-1874-1.

Han X, Wang R, Zhou Y, et al. 2018. Mapping the mouse cell atlas by Microwell-seq[J]. Cell, 172(5):1091-1107.e17. doi:10.1016/j.cell.2018.02.001.

Han X, Zhou Z, Fei L, et al. 2020. Construction of a human cell landscape at single-cell level[J]. Nature, 581(7808):303-309. doi:10.1038/s41586-020-2157-4

Hao Y, Hao S, Andersen-Nissen E, et al. 2021. Integrated analysis of multimodal single-cell data[J]. Cell, 184(13):3573-3587.e29. doi:10.1016/j.cell.2021.04.048.

Hashimshony T, Wagner F, Sher N, et al. 2012. CEL-Seq: single-cell rna-seq by multiplexed linear amplification[J]. Cell Rep. 2(3):666-673. doi:10.1016/j.celrep.2012.08.003.

Hatton IA, Galbraith ED, Merleau NSC, et al. 2023. The human cell count and size distribution[J]. Proceedings of the National Academy of Sciences of the United States of America, 120(39):e2303077120.

He S, Bhatt R, Brown C, et al. 2022. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging[J]. Nature Biotechnology, 40(12):1794-1806. doi:10.1038/s41587- 022-01483-z.

Heumos L, Schaar AC, Lance C, et al. 2023. Best practices for single-cell analysis across modalities[J]. Nature Reviews Genetics, 24(8):550-572. doi:10.1038/s41576-023-00586-w.

Ho SS, Urban AE, Mills RE. 2020. Structural variation in the sequencing era[J]. Nature Reviews Genetics, 21(3):171-189. doi:10.1038/s41576-019-0180-9.

Holloway EM, Czerwinski M, Tsai YH, et al. 2021. Mapping development of the human intestinal niche at single-cell resolution[J]. Cell Stem Cell, 28(3):568-580.e4. doi:10.1016/j.stem.2020.11.008.

Hollox EJ, Zuccherato LW, Tucci S. 2022. Genome structural variation in human evolution[J]. Trends in Genetics, 38(1):45-58. doi:10.1016/j.tig.2021.06.015.

Hsieh T-HS, Weiner A, Lajoie B, et al. 2015. Mapping nucleosome resolution chromosome folding in yeast by micro-c[J]. Cell, 162(1):108-119. doi:10.1016/j.cell.2015.05.048.

Hu C, Li T, Xu Y, et al. 2023. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data[J]. Nucleic Acids Research, 51(D1):870-876.doi:10.1093/nar/gkac947

Hu J, Li X, Coleman K, et al. 2021. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network[J]. Nature Methods, 18(11):1342-1351. doi: 10.1038/s41592-021-01255-8.

Hu M, Wang S. 2021. Chromatin tracing: imaging 3D genome and nucleome[J]. Trends Cell Biol. 31(1):5-8. doi:10.1016/j.tcb.2020.10.006.

Hu Y, Peng T, Gao L, et al. 2021. CytoTalk: de novo construction of signal transduction networks using single-cell transcriptomic data[J]. Sci Adv. 7(16):eabf1356.

Huang KYY, Huang YJ, Chen PY. 2018. BS-Seeker3: ultrafast pipeline for bisulfite sequencing[J]. BMC Bioinformatics, 19(1):111.

Huang L, Ma F, Chapman A, et al. 2015. Single-cell whole-genome amplification and sequencing: methodology and applications[J]. Annu Rev Genomics Hum Genet. 16:79-102. doi:10.1146/annurev-genom -090413-025352.

Huang M, Wang J, Torre E, et al. 2018. SAVER: gene expression recovery for single-cell RNA sequencing[J]. Nature Methods, 15(7):539-542. doi:10.1038/s41592-018-0033-z.

Hughes CS, Foehr S, Garfield DA, et al. 2014. Ultrasensitive proteome analysis using paramagnetic bead technology[J]. Molecular Systems Biology, 10(10):757. doi:10.15252/msb. 20145625.

Hughes JR, Roberts N, McGowan S, et al. 2014. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment[J]. Nature Genetics, 46(2):205-212. doi:10.1038/ng.2871.

Ibrahim MM, Kramann R. 2019. genesorteR: feature ranking in clustered single cell data[J]. bioRxiv, doi: 10.1101/676379.

Imdahl F, Vafadarnejad E, Homberger C, et al. 2020. Single-cell RNA-sequencing reports growth- condition-specific global transcriptomes of individual bacteria[J]. Nature Microbiology, 5(10):1202-1206. doi:10. 1038/s41564-020-0774-1.

Islam S, Kjallquist U, Moliner A, et al. 2011. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Research, 21:1160-1167.

Jaitin DA, et al. 2014. Massively parallel single-cell rna-seq for marker-free decomposition of tissues into cell types[J]. Science, 343(6172):776-779. doi:10.1126/science.1247651.

Janesick A, Shelansky R, Gottscho AD, et al. 2022. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue[J]. bioRxiv, doi:10.1101/2022.09.24.561060.

Jew B, Alvarez M, Rahmani E, et al. 2020. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information[J]. Nature Communications, 11(1):1971. doi:10.1038/s41467- 020-15816-6.

Ji Z, Zhou W, Ji H. 2017. Single-cell regulome data analysis by SCRAT[J]. Bioinformatics, 33(18):2930- 2932.

Jiang S, Qian Q, Zhu T, et al. 2023. Cell Taxonomy: a curated repository of cell types with multifaceted characterization[J]. Nucleic Acids Research, 51(D1):853-860. doi:10.1093/nar/gkac816.

Jin J, Lu P, Xu Y, et al. 2022. PCMDB: a curated and comprehensive resource of plant cell markers[J]. Nucleic Acids Research, 50(D1):1448-1455. doi:10.1093/nar/gkab949.

Jin S, Guerrero-Juarez CF, Zhang L, et al. 2021. Inference and analysis of cell-cell communication using CellChat[J]. Nature Communications, 12(1):1088. doi:10.1038/s41467-021-21246-9.

Kang B, Camps J, Fan B, et al. 2022. Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment[J]. Genome Biology, 23:265. doi:10.1186/s13059-022-02828-2.

Ke R, Mignardi M, Pacureanu A, et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells[J]. Nature Methods, 10(9):857-860. doi:10.1038/nmeth.2563.

Kechin A, Boyarskikh U, Kel A, et al. 2017. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing[J]. J Comput Biol. 24(11):1138-1143. doi:10.1089/cmb.2017. 0096.

Kheradpour P, Kellis M. 2014. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments[J]. Nucleic Acids Research, 42(5):2976-2987. doi:10.1093/nar/gkt1249.

Khozyainova AA, Valyaeva AA, Arbatsky MS, et al. 2023. Complex analysis of single-cell rna sequencing data[J]. Biochemistry (Mosc). 88(2):231-252. doi:10.1134/S0006297923020074.

Kim C, Gao R, Sei E, et al. 2018. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing[J]. Cell, 173(4):879-893.e13.

Kim JT, Jakobsen S, Natarajan KN, et al. 2021. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data[J]. Nucleic Acids Research, 49(1):e1. doi:10.1093/nar/gkaa806.

Klein AM, Mazutis L, Akartuna I, et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 161(5):1187-1201. doi:10.1016/j.cell.2015.04.044.

Kleshchevnikov V, Shmatko A, Dann E, et al. 2022. Cell2location maps fine-grained cell types in spatial transcriptomics[J]. Nature Biotechnology, 40:661-671. doi: 10.1038/s41587-021-01139-4.

Kolovos P, Van De Werken HJ, Kepper N, et al. 2014. Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements[J]. Epigenetics Chromatin. 7(1):10. doi:10.1186/1756-8935-7-10.

Korsunsky I, Millard N, Fan J, et al. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony[J]. Nature Methods, 16(12):1289-1296. doi:10.1038/s41592-019-0619-0.

Krueger F, Andrews SR. 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-seq applications[J]. Bioinformatics, 27(11):1571-1572.

Kuchina A, Brettner LM, Paleologu L, et al. 2021. Microbial single-cell RNA sequencing by split-pool barcoding[J]. Science, 371(6531):eaba5257. doi:10.1126/science.aba5257.

Kulakovskiy IV, Vorontsov IE, Yevshin IS, et al. 2018. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis[J]. Nucleic Acids Research, 46(D1):D252-D259. doi:10. 1093/nar/gkx1106.

Kurimoto K, et al. 2006. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis[J]. Nucleic Acids Res, 34(5):e42.

Kurimoto K, Yabuta Y, Ohinata Y, et al. 2007. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis[J]. Nature Protocols, 2(4):739-752.

Kwon SH, Parthiban S, Tippani M, et al. 2023. Influence of alzheimer’s disease related neuropathology on local microenvironment gene expression in the human inferior temporal cortex[J]. GEN Biotechnol. 2(5):399-417. doi:10.1089/genbio.2023.0019.

La Manno G, Soldatov R, ZeiselA, et al. 2018. RNA velocity of single cells[J]. Nature, 560(7719):494-498. Lähnemann D, et al. 2020. Eleven grand challenges in single-cell data science[J]. Genome Biology, 21(1):31.

Laks E, et al. 2019. Clonal Decomposition and DNA replication states defined by scaled single-cell genome sequencing[J]. Cell, 179(5):1207-1221.e22. doi:10.1016/j.cell.2019.10.026.

Lambolez B, Audinat E, Bochet P, et al. 1992. AMPA receptor subunits expressed by single Purkinje cells[J]. Neuron, 9(2):247-258.

Lamond AI, Earnshaw WC. 1998. Structure and function in the nucleus[J]. Science, 280(5363):547-553. doi:10.1126/science.280.5363.547.

Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on Drosophila polytene chromosomes[J]. Proceedings of the National Academy of Sciences, 1982;79(14):4381-4385. doi:10.1073/ pnas.79.14.4381.

Lareau CA, et al. 2019. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility[J]. Nature Biotechnology, 37(8):916-924. doi:10.1038/s41587-019-0147-6.

Lee J, Hyeon DY, Hwang D. 2020. Single-cell multiomics: technologies and data analysis methods[J]. Exp Mol Med. 52(9):1428-1442.

Li B, Tang J, Yang Q, et al. 2017. NOREVA: normalization and evaluation of MS-based metabolomics data[J]. Nucleic Acids Research, 45(W1):W162-W170.

Li H, Handsaker B, Wysoker A, et al. 2009. The sequence alignment/map format and samtools[J]. Bioinformatics,25(16):2078-2079. doi:10.1093/bioinformatics/btp352.

Li K, Yan C, Li C, et al. 2021. Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data[J]. Molecular Therapy Nucleic Acids. 27:404-411. doi: 10.1016/j.omtn.2021.12.009.

Li S, et al. 2022. A simple, rapid, and practical method for single-cell proteomics based on mass-adaptive coating of synthetic peptides[J]. Science Bulletin. 67(6):581-584. doi:10.1016/j.scib.2021.12.022.

Li WV, Li JJ. 2018. An accurate and robust imputation method scImpute for single-cell RNA-seq data[J]. Nature Communications, 9(1):997. doi:10.1038/s41467-018-03405-7.

Li X, Li L, Yan J. 2015. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize[J]. Nature Communications, 6: 6648.

Li X, Meng D, Chen S, et al. 2017. Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction[J]. Nature Communications, 8(1): 991.

Li ZY, et al. 2018. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis[J]. Analytical Chemistry, 90(8):5430-5438. doi:10.1021/acs.analchem.8b00661.

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 30(7):923-930. doi:10.1093/bioinformatics/btt656.

Lieberman-Aiden E, van Berkum NL, Williams L, et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome[J]. Science, 326(5950):289-293. doi:10.1126/ science.1181369.

Linderman GC, Zhao J, Roulis M, et al. 2022. Zero-preserving imputation of single-cell RNA-seq data[J]. Nature Communications, 13(1):192. doi:10.1038/s41467-021-27729-z.

Liu F, Wang Y, Gu H, et al. 2023. Technologies and applications of single-cell DNA methylation sequencing[J]. Theranostics, 13(8):2439-2454.

Liu J, Tran V, Vemuri VNP, et al. 2023. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing[J]. Life Science Alliance, 6(1):e202201701. doi:10.26508/lsa.202201701.

Liu L, Chen A, Li Y, et al. 2024. Spatiotemporal omics for biology and medicine[J]. Cell, 187(17):4488-4519. doi:10.1016/j.cell.2024.07.040.

Liu M, Lu Y, Yang B, et al. 2020. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue[J]. Nature Communications, 11(1):2907. doi:10.1038/s41467-020-16732-5.

Liu M, Yang B, Hu M, et al. 2021. Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue[J]. Nature Protocols, 16(5):2667-2697. doi:10.1038/ s41596-021-00518-0.

Liu R, Yang Z. 2021. Single cell metabolomics using mass spectrometry: techniques and data analysis[J]. Analytica Chimica Acta, 1143:124-134.

Liu Y, Liang S, Wang B, et al. 2022. Advances in single-cell sequencing technology and its application in poultry science[J]. Genes, 13(12), 2211.

Liu Y, Yang M, Deng Y, et al. 2020. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue[J]. Cell, 183(6):1665-1681.e18. doi:10.1016/j.cell.2020.10.026.

Liu Z, Roberts R, Mercer TR, et al. 2022. Towards accurate and reliable resolution of structural variants for clinical diagnosis[J]. Genome Biology, 23(1):68. doi:10.1186/s13059-022-02636-8.

Lommen A, Kools HJ. 2012. MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware[J]. Metabolomics, 8(4):719-726.

Lotfollahi M, WolfFA, Theis FJ. 2019. scGen predicts single-cell perturbation responses[J]. Nature Methods, 16(8):715-721. doi:10.1038/s41592-019-0494-8

Lubeck E, Coskun AF, Zhiyentayev T, et al. 2014. Single-cell in situ RNA profiling by sequential hybridization[J]. Nature Methods, 11:360-361.

Luecken MD, Theis FJ. 2019. Current best practices in single-cell RNA-seq analysis: a tutorial[J]. Molecular Systems Biology, 15(6):e8746.

Lun ATL, Riesenfeld S, Andrews T, et al. 2019. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data[J]. Genome Biology, 20(1):63. doi:10.1186/s13059-019-1662-y.

Lye ZN, Purugganan MD. 2019. Copy number variation in domestication[J]. Trends in Plant Science, 24(4):352-365. doi:10.1016/j.tplants.2019.01.003.

Ma P, Amemiya HM, He LL, et al. 2023. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states[J]. Cell, 186(4):877-891.e14. doi:10.1016/j.cell.2023.01.002.

Ma W, et al. 2015. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes[J]. Nature Methods, 12(1):71-78. doi:10.1038/nmeth.3205.

Macosko EZ, et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 161(5):1202-1214.

Mader SS. 2004. Understanding human anatomy and physiology (Fifth Edition)[M]. New York: The McGraw-Hill Companies.

Mahdipour-Shirayeh A, Erdmann N, Leung-Hagesteijn C, et al. 2022. sciCNV: high-throughput paired profiling of transcriptomes and DNA copy number variations at single-cell resolution[J]. Briefings in Bioinformatics, 23(1):bbab413. doi:10.1093/bib/bbab413.

Mallory XF, Edrisi M, Navin N, et al. 2020. Methods for copy number aberration detection from single-cell DNA-sequencing data[J]. Genome Biology, 21(1):208.

Maroso M. 2023.A quest into the human brain[J]. Science, 382(6667):166-167.

Martin BK, et al. 2023. Optimized single-nucleus transcriptional profiling by combinatorial indexing[J]. Nature Protocols, 18(1):188-207. doi:10.1038/s41596-022-00752-0.

Masuda T, et al. 2022. Water droplet-in-oil digestion method for single-cell proteomics[J]. Analytical Chemistry, 94(29):10329-10336. doi:10.1021/acs.analchem.1c05487.

Masujima T. 2009. Single-cell mass spectrometry[J]. Analytical Science. 25(8):953-960. doi:10.2116/ analsci.25.953/metrics.

Mateo LJ, Murphy SE, Hafner A, et al. 2019. Visualizing DNA folding and RNA in embryos at single-cell resolution[J]. Nature, 568(7750):49-54. doi:10.1038/s41586-019-1035-4.

Matsumoto H, Kiryu H, Furusawa C, et al. 2017. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation[J]. Bioinformatics, 33(15):2314-2321.

Matys V, Kel-Margoulis OV, Fricke E, et al. 2006. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes[J]. Nucleic Acids Research, 34:108-110. doi:10.1093/nar/gkj143.

McCord RP, Kaplan N, Giorgetti L. 2020. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function[J]. Molecular Cell, 77(4):688-708. doi:10.1016/j.molcel. 2019.12.021.

McGinnis CS, Murrow LM, Gartner ZJ. 2019. DoubletFinder: doublet detection in single-cell rna sequencing data using artificial nearest neighbors[J]. Cell Systems, 8(4):329-337.e4. doi:10.1016/j.cels. 2019.03.003.

McInnes L, Healy J, Melville J. 2018. UMAP: uniform manifold approximation and projection for dimension reduction[J]. Journal of Open Source Software, 3(29) :861. doi: 10.21105/joss.00861.

McKenna A, Hanna M, Banks E, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 20(9):1297-1303. doi:10.1101/gr. 107524. 110.

Menyailo ME, Zainullina VR, Khozyainova AA, et al. 2023. Heterogeneity of circulating epithelial cells in breast cancer at single-cell resolution: identifying tumor and hybrid cells[J]. Advanced Biology, 7(2):e2200206. doi:10.1002/adbi.202200206.

Mereu E, et al. 2020. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects[J]. Nature Biotechnology, 38(6):747-755.

Mieczkowski J, et al. 2016. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility[J]. Nature Communications, 7(1):11485. doi:10.1038/ncomms11485.

Mifsud B, et al. 2015. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C[J]. Nature Genetics, 47(6):598-606. doi:10.1038/ng.3286.

Minussi DC, et al. 2021. Breast tumours maintain a reservoir of subclonal diversity during expansion[J]. Nature, 592(7853):302-308. doi:10.1038/s41586-021-03357-x.

Mizuno H, Tsuyama N, Harada T, et al. 2008. Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification[J]. Journal Of Mass Spectrometry, 43(12):1692-1700. doi:10.1002/JMS.1460.

Moerman T, Aibar Santos S, Bravo González-Blas C, et al. 2019. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks[J]. Bioinformatics, 35(12):2159-2161.

Moncada R, Barkley D, Wagner F, et al. 2020. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J]. Nature Biotechnology, 38(3):333-342. doi:10.1038/s41587-019-0392-8.

Moran PA. 1950. Notes on continuous stochastic phenomena[J]. Biometrika, 37(1-2):17-23.

Morris SA. 2019. The evolving concept of cell identity in the single-cell era[J]. Development, 146(12): dev169748.

Müller S, Liu SJ, Di Lullo E, et al. 2016. Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- and EGF-driven gliomas[J]. Molecular Systems Biology, 12(11):889. doi:10.15252/msb. 20166969.

Mumbach MR, et al. 2016. HiChIP: efficient and sensitive analysis of protein-directed genome architecture[J]. Nature Methods, 13(11):919-922. doi:10.1038/nmeth.3999.

Nagano T, Lubling Y, Stevens TJ, et al. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502(7469):59-64. doi:10.1038/nature12593.

Nanita SC, Takats Z, Cooks RG, et al. 2004. Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions[J]. Journal of the American Society for Mass Spectrometry, 15(9):1360-1365. doi:10.1016/J.JASMS.2004.06.010.

Navin N, Kendall J, Troge J, et al. 2011. Tumour evolution inferred by single-cell sequencing[J]. Nature, 472(7341):90-94. doi:10.1038/nature09807.

Nemes P, Vertes A. 2007. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry[J]. Analytical Chemistry, 79(21):8098-8106. doi:10.1021/AC071181R.

Newburger DE, Bulyk ML. 2009. UniPROBE: an online database of protein binding microarray data on protein-DNA interactions[J]. Nucleic Acids Research, 37:D77-D82. doi:10.1093/nar/gkn660.

Newman AM, et al. 2019. Determining cell type abundance and expression from bulk tissues with digital cytometry[J]. Nature Biotechnology, 37:773-782. doi:10.1038/s41587-019-0114-2.

Nguyen HQ, Chattoraj S, Castillo D, et al. 2020. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing[J]. Nature Methods, 17(8):822-832. doi:10.1038/s41592-020-0890-0.

Nicholson JK, Lindon JC, Holmes E. 1999. "Metabonomics": understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 29(11):1181-1189. doi:10.1080/004982599238047.

Nichterwitz S, Chen G, Aguila BJ, et al. 2016. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling[J]. Nature Communications, 7:12139. doi:10.1038/ncomms12139.

Noël F, Massenet-Regad L, Carmi-Levy I, et al. 2021. Dissection of intercellular communication using the transcriptome-based framework ICELLNET[J]. Nature Communications, 12(1):1089. doi:10.1038/s41467-021- 21244-x.

Nowogrodzki A. 2017. The cell seeker[J]. Nature, 547:24-26.

Palla G, Spitzer H, Klein M, et al. 2022. Squidpy: a scalable framework for spatial omics analysis[J]. Nature Methods, 19(2):171-178. doi: 10.1038/s41592-021-01358-2.

Pang Z, Chong J, Zhou G, et al. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights[J]. Nucleic Acids Research, 49(W1):388-396.

Papili GN, Ud-Dean SMM, Gandrillon O, et al. 2018. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles[J]. Bioinformatics, 34(2):258-266.

Patel AP, Tirosh I, Trombetta JJ, et al. 2014. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[J]. Science, 344(6190):1396-1401. doi:10.1126/science.1254257.

Peixoto A, Monteiro M, Rocha B, et al. 2004. Quantification of multiple gene expression in individual cells[J]. Genome Research, 14(10b):1938-1947.

Persad S, Choo ZN, Dien C, et al. 2023. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data[J]. Nature Biotechnology, 41(12):1746-1757. doi:10.1038/s41587-023-01716-9.

Pham D, Tan X, Balderson B, et al. 2023. Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues[J]. Nature Communications, 14(1):7739. doi: 10.1038/ s41467-023- 43120-6.

Picelli S, et al. 2013. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nature Methods, 10(11):1096-1098. doi:10.1038/nmeth.2639.

Pliner HA, Packer JS, McFaline-Figueroa JL, et al. 2018. Cicero predicts cis-regulatory dna interactions from single-cell chromatin accessibility data[J]. Molecular Cell, 71(5):858-871.

Polański K, Young MD, Miao Z, et al. 2020. BBKNN: fast batch alignment of single cell transcriptomes[J]. Bioinformatics, 36(3):964-965. doi:10.1093/bioinformatics/btz625.

Polychronidou M, Hou J, Babu MM, et al. 2023. Single-cell biology: what does the future hold?[J]. Molecular Systems Biology, 19(7):e11799. doi:10.15252/msb.202311799.

Qi J, Sun H, Zhang Y, et al. 2022. Single-cell and spatial analysis reveal interaction ofFAP+ fibroblasts and SPP1+ macrophages in colorectal cancer[J]. Nature Communications, 13(1):1742. doi:10.1038/s41467-022- 29366-6.

Qiu Q, Hu P, Qiu X, et al. 2020. Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq[J]. Nature Methods, 17(10):991-1001.

Qiu X, Mao Q, Tang Y, et al. 2017. Reversed graph embedding resolves complex single-cell trajectories[J]. Nature Methods, 14(10):979-982. doi:10.1038/nmeth.4402.

Qiu X, Rahimzamani A, Wang L, et al. 2020. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe[J]. Cell Systems, 10(3):265-274.e11. doi:10.1016/j.cels.2020. 02.009.

Qiu X, Zhu D, Yao J, et al. 2022. Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics[J]. bioRxiv, doi: 10.1101/2022.12.07.519417.

Quinodoz SA, Ollikainen N, Tabak B, et al. 2018. Higher-order inter-chromosomal hubs shape 3d genome organization in the nucleus[J]. Cell, 174(3):744-757.e24. doi:10.1016/j.cell.2018.05.024.

Raj A, van den Bogaard P, Rifkin SA, et al. 2008. Imaging individual mRNA molecules using multiple singly labeled probes[J]. Nature Methods, 5(10):877-879. doi:10. 1038/nmeth.1253.

Rao SSP, et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J]. Cell, 159(7):1665-1680. doi:10.1016/j.cell.2014.11.021.

Redolfi J, Zhan Y, Valdes-Quezada C, et al. 2019. DamC reveals principles of chromatin folding in vivo without crosslinking and ligation[J]. Nature Structural & Molecular Biology, 26(6) et al.471-480. doi:10.1038/ s41594-019-0231-0.

Ren X, Wen W, Fan X, et al. 2021. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas[J]. Cell, 184: 1895-1913.

Robins HS, Campregher PV, Srivastava SK, et al. 2009. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells[J]. Blood, 114(19):4099-4107. doi:10.1182/blood-2009-04-217604.

Romano P, Profumo A, Rocco M, et al. 2016. Geena 2, improved automated analysis of MALDI/TOF mass spectra[J]. BMC Bioinformatics, 17 Suppl 4:413.

Rosenberg AB, Roco CM, Muscat RA, et al. 2018. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 360(6385):176-182. doi:10.1126/science.aam8999.

Rotem A, et al. 2015. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state[J]. Nature Biotechnology, 33(11):1165-1172. doi:10.1038/nbt.3383.

Russell CL, et al. 2017. Combined tissue and fluid proteomics with Tandem Mass Tags to identify low-abundance protein biomarkers of disease in peripheral body fluid: an alzheimer's disease case study[J]. Rapid Communications in Mass Spectrometry, 31(2):153-159. doi:10.1002/rcm.7777.

Saelens W, Cannoodt R, Todorov H, et al. 2019. A comparison of single-cell trajectory inference methods[J]. Nature Biotechnology, 37(5):547-554.

Sanchez-Castillo M, Blanco D, Tienda-Luna IM, et al. 2018. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data[J]. Bioinformatics, 34(6):964-970.

Schep AN, Wu B, Buenrostro JD, et al. 2017. ChromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data[J]. Nature Methods, 14(10):975-978.

Schmid R, et al. 2023. Integrative analysis of multimodal mass spectrometry data in MZmine 3[J]. Nature Biotechnology, 41(4):447-449.

Serin HA, Harmanci AO, Zhou X. 2020. CaSpER identifies and visualizes CNV events by integrative analysis of single-cell or bulk RNA-sequencing data[J]. Nature Communications, 11(1):89. doi:10.1038/s41467 -019-13779-x.

Shah S, Lubeck E, Zhou W, et al. 2016. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus[J]. Neuron, 92(2):342-357. doi:10.1016/j.neuron.2016.10.001.

Shah S, Lubeck E, Zhou W, et al. 2017. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus[J]. Neuron, 94(4):752-758.e1. doi:10.1016/j.neuron.2017.05.008.

Shao X, Lv N, Liao J, et al. 2019. Copy number variation is highly correlated with differential gene expression: a pan-cancer study[J]. BMC Medical Genetics, 20(1):175. doi:10.1186/s12881-019-0909-5.

Shen WK, Chen SY, Gan ZQ, et al. 2023. AnimalTFDB 4.0: a comprehensive animal transcription factor database updated with variation and expression annotations[J]. Nucleic Acids Research, 51(D1):39-45. doi:10. 1093/nar/gkac1128.

Sheng HZ, Lin PX, Nelson PG. 1994. Analysis of multiple heterogeneous mRNAs in single cells[J]. Analytical Biochemistry, 222(1):123-130.

Sheng K, Cao W, Niu Y, et al. 2017. Effective detection of variation in single-cell transcriptomes using MATQ-seq[J]. Nature Methods, 14(3):267-270. doi:10.1038/nmeth.4145.

Shi Q, Chen X, Zhang Z. 2023. Decoding human biology and disease using single-cell omics technologies[J]. Genomics, Proteomics & Bioinformatics, 21(5):926-949. doi:10.1016/j.gpb.2023.06.003.

Shipony Z, Marinov GK, Swaffer MP, et al. 2020. Long-range single-molecule mapping of chromatin accessibility in eukaryotes[J]. Nature Methods, 17(3), 319-327.

Simone NL, Bonner RF, Gillespie JW, et al. 1998. Laser-capture microdissection: opening the microscopic frontier to molecular analysis[J]. Trends in Genetics, 14(7):272-276. doi:10.1016/ S0168-9525(98)01489-9.

Singhal V, Chou N, Lee J, et al. 2024. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis[J]. Nature Genetics, doi: 10.1038/s41588-024-01664-3.

Slavov N. 2021. Single-cell protein analysis by mass spectrometry[J]. Current Opinion in Chemical Biology, 60:1-9.

Smith T, Heger A, Sudbery I. 2017. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy[J]. Genome Research, 27(3):491-499. doi:10.1101/gr.209601.116.

Song L, Crawford GE. 2010. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells[J]. Cold Spring Harbor Protocols, 2010(2):pdb.prot5384. doi:10.1101/pdb.prot5384.

Soumillon M, Cacchiarelli D, Semrau S, et al. 2014. Characterization of directed differentiation by high- throughput single-cell RNA-Seq[J]. bioRxiv, doi:10.1101/003236.

Specht AT, Li J. 2017. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering[J]. Bioinformatics, 33(5):764-766.

Ståhl PL, Salmén F, Vickovic S, et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 353(6294):78-82. doi:10.1126/science.aaf2403.

Stuart T, Butler A, Hoffman P, et al. 2019. Comprehensive Integration of Single-Cell Data[J]. Cell, 177(7): 1888-1902.e21. doi:10.1016/j.cell.2019.05.031.

Su JH, Zheng P, Kinrot SS, et al. 2020. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin[J]. Cell, 182(6):1641-1659.e26. doi:10.1016/J.CELL.2020.07.032.

Sun C, Li T, Song X, et al. 2019. Spatially resolved metabolomics to discover tumor-associated metabolic alterations[J]. Proceedings of the National Academy of Sciences, 116(1):52-57. doi:10.1073/PNAS.1808950116.

Svensson V, Teichmann SA, Stegle O. 2018. SpatialDE: identification of spatially variable genes[J]. Nature Methods, 15(5):343-346. doi: 10.1038/nmeth.4636.

Svensson V, Vento-Tormo R, Teichmann SA. 2018. Exponential scaling of single-cell RNA-seq in the past decade[J]. Nature Protocols, 13(4):599-604.

Takei Y, Yun J, Zheng S, et al. 2021. Integrated spatial genomics reveals global architecture of single nuclei[J]. Nature, 590(7845):344-350. doi:10.1038/s41586-020-03126-2.

Tang F, Barbacioru C, Wang Y, et al. 2009. mRNA-Seq whole transcriptome analysis of a single cell[J]. Nature Methods, 6(5):377-382.

Taylor AM, Shih J, Ha G, et al. 2018. Genomic and functional approaches to understanding cancer aneuploidy[J]. Cancer Cell, 33(4):676-689.e3. doi:10.1016/j.ccell.2018.03.007.

Telenius H, Carter NP, Bebb CE, et al. 1992. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer[J]. Genomics, 13:718-725. doi:10.1016/0888-7543.92.90147-K.

Tian F, Yang DC, Meng YQ, et al. 2020. PlantRegMap: charting functional regulatory maps in plants[J]. Nucleic Acids Research, 48(D1):1104-1113. doi:10.1093/nar/gkz969.

Tietjen I, et al. 2003. Single-cell transcriptional analysis of neuronal progenitors[J]. Neuron, 38(1):161-175.

Traag VA, Waltman L, van Eck NJ. 2019. From Louvain to Leiden: guaranteeing well-connected communities[J]. Scientific Reports, 9(1):5233. doi:10.1038/s41598-019-41695-z.

Tran HTN, Ang KS, Chevrier M, et al. 2020. A benchmark of batch-effect correction methods for single-cell RNA sequencing data[J]. Genome Biology, 21:1-32.

Trapnell C, Cacchiarelli D, Grimsby J, et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nature Biotechnology, 32(4):381-386. doi:10.1038/ nbt.2859.

Troulé K, Petryszak R, Prete M, et al. 2023. CellPhoneDB v5: inferring cell-cell communication from single-cell multiomics data[J]. arXiv, doi: arxiv.org/abs/2311.04567.

Tsai C-F, et al. 2021. Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics[J]. Communications Biology, 4(1):265. doi:10.1038/s42003-021-01797-9.

Tsuyuzaki K, Ishii M, Nikaido I. 2019. Uncovering hypergraphs of cell-cell interaction from single cell RNA-sequencing data[J]. bioRxiv, doi:10.1101/566182.

Tyanova S, et al. 2016. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics[J]. Nature Protocols, 11:2301-2319.

Urrutia E, et al. 2019. Destin: toolkit for single-cell analysis of chromatin accessibility[J]. Bioinformatics, 35:3818-3820.

Valet G, Leary JF, Tarnok A. 2004. Cytomics – new technologies: towards a human cytome project[J]. Cytometry A, 59(1):167.

van Dijk D, Sharma R, Nainys J, et al. 2018. Recovering gene interactions from single-cell data using data diffusion[J]. Cell, 174(3):716-729.e27. doi:10.1016/j.cell.2018.05.061

Vandereyken K, Sifrim A, Thienpont B, et al. 2023. Methods and applications for single-cell and spatial multi-omics[J]. Nature Reviews Genetics, 24(8):494-515. doi:10.1038/s41576-023-00580-2.

Vento-Tormo R, Efremova M, Botting RA, et al. 2018. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 563(7731):347-353. doi:10.1038/s41586-018-0698-6.

Wang D, Hu X, Ye H, et al. 2023. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton[J]. Genome Biology, 24(1):49. doi:10.1186/s13059-023-02886-0

Wang G, Zhao J, Yan Y, et al. 2023. Construction of a 3D whole organism spatial atlas by joint modelling of multiple slices with deep neural networks[J]. Nature Machine Intelligence, 5:1200-1213. doi: 10.1038/s42256- 023-00734-1.

Wang J, et al. 2012. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm[J]. Cell, 150(2):402-412. doi:10.1016/j.cell.2012.06.030.

Wang K, Kumar T, Wang J, et al. 2023. Archival single-cell genomics reveals persistent subclones during DCIS progression[J]. Cell, 186(18):3968-3982.e15. doi:10.1016/j.cell.2023.07.024.

Wang L, Liu Y, Dai Y, et al. 2023. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment[J]. Gut, 72(5):958-971. doi:10.1136/gutjnl-2021-326070.

Wang M, Hu Q, Lv T, et al. 2022. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae[J]. Developmental Cell, 57(10):1271-1283.e4. doi: 10.1016/j.devcel.2022.04.006.

Wang R, Dang M, Harada K, et al. 2021. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma[J]. Nature Medicine, 27(1):141-151. doi:10.1038/s41591 -020-1125-8.

Wang X, Allen WE, Wright MA, et al. 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states[J]. Science, 361(6400):eaat5691. doi:10.1126/science.aat5691.

Wang X, Wu X, Hong N, Jin W. 2023. Progress in single-cell multimodal sequencing and multi-omics data integration[J]. Biophysical Reviews, 16(1):13-28. doi:10.1007/s12551-023-01092-3.

Wang Y, Navin NE, Li Y. 2019. iTALK: an R Package to Characterize and Illustrate Intercellular Communication[J]. bioRxiv, doi:10.1101/507871.

Wang Z, He B, Liu Y, et al. 2019. In situ metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging[J]. Acta Pharmaceutica Sinica B, 10(6):1083-1093. doi:10.1016/J.APSB.2019.12.004.

Wei R, He S, Bai S, et al. 2022. Spatial charting of single-cell transcriptomes in tissues[J]. Nature Biotechnology, 40:1190-1199. doi: 10.1038/s41587-022-01233-1.

Welch JD, Kozareva V, Ferreira A, et al. 2019. Single-cell multi-omic integration compares and contrasts features of brain cell identity[J]. Cell, 177(7):1873-1887.e17. doi:10.1016/ j.cell.2019.05.006

Wen L, Li G, Huang T, et al. 2022. Single-cell technologies: from research to application[J]. The Innovation, 3(6):100342. doi:10.1016/j.xinn.2022.100342.

Wen L, Tang F. 2022. Recent advances in single-cell sequencing technologies[J]. Precision Clinical Medicine, 5(1):pbac002.

Williamson I, Berlivet S, Eskeland R, et al. 2014. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization[J]. Genes & Development, 28(24):2778-2791. doi:10.1101/gad.251694.114.

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis[J]. Genome Biology, 19(1):15. doi:10.1186/s13059-017-1382-0.

Wolock SL, Lopez R, Klein AM. 2019. Scrublet: computational identification of cell doublets in single-cell transcriptomic data[J]. Cell Systems, 8:281-291.

Woo J, et al. 2021. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip[J]. Nature Communications, 12(1):6246. doi:10.1038/s41467-021-26514-2.

Woodhouse S, Piterman N, Wintersteiger CM, et al. 2018. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data[J]. BMC Systems Biology, 12(1):59.

Wu R, et al. 2019. Step-wise assessment and optimization of sample handling recovery yield for nanoproteomic analysis of 1000 mammalian cells[J]. Analytical Chemistry, 91(16):10395-10400. doi:10.1021/ acs.analchem.9b02092.

Wu TD, Reeder J, Lawrence M, et al. 2016. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality[J]. Methods in Molecular Biology, 1418:283-334. doi:10.1007/978-1-4939-3578-9_ 15.

Würschum T, Boeven PH, Langer SM, et al. 2015. Multiply to conquer: copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat[J]. BMC Medical Genetics, 16:96. doi:10.1186/s12863 -015-0258-0.

Xi NM, Li JJ. 2021. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data[J]. Cell Systems, 12:176-194.

Xi Y, et al. 2009. BSMAP: whole genome bisulfite sequence MAPping program[J]. BMC Bioinformatics, 10:232. doi:10.1186/1471-2105-10-232.

Xia C, Fan J, Emanuel G, et al. 2019. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression[J]. Proceedings of the National Academy of Sciences, 116(39):19490-19499. doi:10.1073/pnas.1912459116.

Xie H, Li W, Hu Y, et al. 2022. De novo assembly of human genome at single-cell levels[J]. Nucleic Acids Research, 50(13):7479-7492.

Xing D, Tan L, Chang CH, et al. 2021. Accurate SNV detection in single cells by transposon-based whole-genome amplification of complementary strands[J]. Proceedings of the National Academy of Sciences, 118(8):e2013106118. doi:10.1073/pnas.2013106118.

Xiong A, Zhang J, Chen Y, et al. 2022. Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T cell activation in GBM[J]. EBioMedicine, 83:104239. doi:10.1016/j.ebiom.2022.104239.

Xiong L, et al. 2019. SCALE method for single-cell ATAC-seq analysis via latent feature extraction[J]. Nature Communications, 10(1):4576. doi:10.1038/s41467-019-12630-7.

Xu C, Ma D, Ding Q, et al. 2022. PlantPhoneDB: a manually curated pan-plant database of ligand-receptor pairs infers cell-cell communication[J]. Plant Biotechnology Journal, 20(11):2123-2134. doi:10.1111/pbi.13893.

Xu C, Prete M, Webb S, et al. 2023. Automatic cell-type harmonization and integration across Human Cell Atlas datasets[J]. Cell, 186(26):5876-5891.e20. doi:10.1016/j.cell.2023.11.026

Xu C. 2018. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data[J]. Computational and Structural Biotechnology Journal, 16:15-24. doi:10.1016/j.csbj.2018.01.003.

Xu K, Zhang W, Wang C, et al. 2021. Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer[J]. Human Molecular Genetics, 30(5):370-380. doi:10.1093/hmg/ddab042.

Xu Z, Wang Q, Zhu X, et al. 2022. Plant Single Cell Transcriptome Hub (PsctH): an integrated online tool to explore the plant single-cell transcriptome landscape[J]. Plant Biotechnology Journal, 20(1):10-12. doi:10.1111/ pbi.13725.

Xu Z, Wang Y, et al. 2023. Droplet-based high-throughput single microbe RNA sequencing by smRandom- seq[J]. Nature Communications, 14(1):5130. doi:10.1038/s41467-023-40137-9.

Xu Z, Zhang T, Chen H, et al. 2023. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq[J]. Nature Communications, 14(1):2734.

Yaffe E, Tanay A. 2011. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture[J]. Nature Genetics, 43(11):1059-1065. doi:10.1038/ng.947.

Yamada NA, Rector LS, Tsang P, et al. 2010. Visualization of fine-scale genomic structure by oligonucleotide-based high-resolution FISH[J]. Cytogenet Genome Research, 132(4):248-254. doi:10.1159/ 000322717.

Yan F, et al. 2020. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis[J]. Genome Biology, 21(1):211.

Yao J, Chu Q, Guo X, et al. 2024. Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination[J]. Developmental Cell, S1534-5807(24)00334-4. doi:10.1016/j.devcel.2024.05.016.

Yim SH, Jung SH, Chung B, et al. 2015. Clinical implications of copy number variations in autoimmune disorders[J]. The Korean Journal of Internal Medicine, 30(3):294-304. doi:10.3904/kjim.2015. 30.3.294.

Yoshihara K, Shahmoradgoli M, Martínez E, et al. 2013. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nature Communications, 4:2612. doi:10.1038/ncomms3612.

You Q, Cheng AY, Gu X, et al. 2021. Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution[J]. Nature Biotechnology, 39(2):225-235. doi:10.1038/s41587-020- 0643-8.

Yu M, Abnousi A, Zhang Y, et al. 2021. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data[J]. Nature Methods, 18(9):1056-1059.

Yu W, et al. 2020. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data[J]. Genome Biology, 21(1):94. doi:10.1186/s13059-020-02008-0.

Yu X, et al. 2023. Digital microfluidics-based digital counting of single-cell copy number variation dd-scCNV Seq[J]. Proceedings of the National Academy of Sciences, 120(20):e2221934120. doi:10.1073/pnas.2221934120.

Yu Y, Zhang H, Long Y, et al. 2022. Plant Public RNA-seq Database: a comprehensive online database for expression analysis of ~45 000 plant public RNA-Seq libraries[J]. Plant Biotechnology Journal, 20(5):806-808. doi:10.1111/pbi.13798.

Yue L, Liu F, Hu J, et al. 2023. A guidebook of spatial transcriptomic technologies, data resources and analysis approaches[J]. Computational and Structural Biotechnology Journal, 21:940-955. doi: 10.1016/j.csbj. 2023.01.016.

Zamanighomi M, et al. 2018. Unsupervised clustering and epigenetic classification of single cells[J]. Nature Communications, 9(1):2410. doi:10.1038/s41467-018-04629-3.

Zeira R, Land M, Strzalkowski A, et al. 2022. Alignment and integration of spatial transcriptomics data[J]. Nature Methods, 19(5):567-575. doi: 10.1038/s41592-022-01459-6.

Zhang C, Le Dévédec SE, Ali A, et al. 2023. Single-cell metabolomics by mass spectrometry: ready for primetime?[J]. Current Opinion in Biotechnology, 82:102963. doi:10.1016/j.copbio.2023.102963.

Zhang D, Deng Y, Kukanja P, et al. 2023. Spatial epigenome-transcriptome co-profiling of mammalian tissues[J]. Nature, 616(7955):113-122. doi:10.1038/s41586-023-05795-1.

Zhang H, Zhang F, Yu Y, et al. 2020. A comprehensive online database for exploring 20,000 public arabidopsis RNA-seq libraries[J]. Molecular Plant, 13(9):1231-1233. doi:10.1016/j.molp.2020.08.001.

Zhang L, Li Z, Skrzypczynska KM, et al. 2020. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 181(2):442-459.e29. doi:10.1016/j.cell.2020.03.048.

Zhang M, Eichhorn SW, Zingg B, et al. 2021. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH[J]. Nature, 598(7879):137-143. doi: 10.1038/s41586-021-03705-x.

Zhang R, Zhou T, Ma J. 2022. Multiscale and integrative single-cell Hi-C analysis with Higashi[J]. Nature Biotechnology, 40(2):254-261.

Zhang Y, Liu T, Hu X, et al. 2021. CellCall: integrating paired ligand-receptor and transcription factor activities for cell-cell communication[J]. Nucleic Acids Research, 49(15):8520-8534. doi:10.1093/nar/gkab638.

Zhang Y, Yang H, Yu Y, et al. 2022. Application of nanomaterials in proteomics-driven precision medicine[J]. Theranostics, 12(6):2674-2686. doi:10.7150/thno.64325.

Zhao E, Stone MR, Ren X, et al. 2021. Spatial transcriptomics at subspot resolution with BayesSpace[J]. Nature Biotechnology, 39(11):1375-1384. doi: 10.1038/s41587-021-00935-2.

Zhao F, Wang Y, Zheng J, et al. 2020. A genome-wide survey of copy number variations reveals an asymmetric evolution of duplicated genes in rice[J]. BMC Biology, 18(1):73. doi:10.1186/s12915-020-00798-0.

Zhao Y, Lu T, Song Y, et al. 2023. Cancer cells enter an adaptive persistence to survive radiotherapy and repopulate tumor[J]. Advanced Science, 10(8):e2204177. doi:10.1002/advs.202204177.

Zhao Z, et al. 2006. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions[J]. Nature Genetics, 38(11):1341-1347. doi:10.1038/ng1891.

Zheng GX, et al. 2017. Massively parallel digital transcriptional profiling of single cells[J]. Nature Communications, 8(1):14049. doi:10.1038/ncomms14049.

Zheng L, Qin S, Si W, et al. 2021. Pan-cancer single-cell landscape of tumor-infiltrating T cells[J]. Science, 374(6574):abe6474. doi:10.1126/science.abe6474.

Zheng M, Tian SZ, Capurso D, et al. 2019. Multiplex chromatin interactions with single-molecule precision[J]. Nature, 566(7745):558-562. doi:10.1038/s41586-019-0949-1.

Zhu Z, Wang W, Lin F, et al. 2021. Genome profiles of pathologist-defined cell clusters by multiregional LCM and G&T-seq in one triple-negative breast cancer patient[J]. Cell Rep Med, 2(10):100404. doi:10.1016/ j.xcrm.2021.100404.

Zhuang X. 2021. Spatially resolved single-cell genomics and transcriptomics by imaging[J]. Nature Methods, 18(1) :18-22. doi:10.1038/s41592-020-01037-8.

Zheng W, Zhao S, Yin Y, et al. 2022. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome[J]. Science, 376(6597):eabm1483.

Zhou T, Zhang R, Ma J. 2021. The 3D genome structure of single cells[J]. Annual Review of Biomedical Data Science, 4:21-41. doi:10.1146/annurev-biodatasci-020121-084709.

Zhou Y, Bian S, Zhou X, et al. 2020. Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer[J]. Cancer Cell, 2020;38(6):818-828.e5. doi:10. 1016/j.ccell. 2020.09.015

Zhu J, Sun S, Zhou X. 2021. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies[J]. Genome Biology, 22(1):184. doi:10.1186/ s13059-021-02404-0.

Zhu P, et al. 2017. Single-cell DNA methylome sequencing of human preimplantation embryos[J]. Nature Genetics, 50(1):12-19.

Zhu Y, et al. 2018. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells[J]. Nature Communications, 9(1):882. doi:10.1038/s41467-018-03367-w.

Ziegenhain C, et al. 2017. Comparative analysis of single-cell rna sequencing methods[J]. Molecular Cell, 65(4):631-643.e4. doi:10.1016/j.molcel.2017.01.023.

Zong C, Lu S, Chapman AR, et al. 2012. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 338(6114):1622-1626. doi:10.1126/science.1229164.

Zong W, et al. 2022. scMethBank: a database for single-cell whole genome DNA methylation maps[J]. Nucleic Acids Research, 50(D1):380-386. doi:10.1093/nar/gkab833.