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Abstract; The usefulness of stepwise regression in identifying interaction markers that represent QTL epis-
tasis was examined in detail by Monte Carlo simulations. It was indicated that stepwise regression method
was powerful in identifying correct interaction markers, and better than two-way ANOVA that is current-
ly used for the same purpose. Close linkage tended to reduce the resolution of identifying interaction mark-
ers and distort detection power. Large sample size and/or higher heritability could generally increase the
chance of correct interaction markers being identified. The chance of identifying a specific marker interac-
tion relied heavily on the relative _contribution of the QTL epistasis that the marker interaction represented.
Significance level was also an important factor affecting the power of identifying correct marker interac-
tions. Several rounds of analyses under different significance levels were suggested with additional consider-

ation of heritability and sample size used.
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1 Introduction

Since the advent of DNA markers in the
1980s, complete molecular linkage maps ‘have
been constructed in many organisms™. One of
the most important applications of DNA markers
and molecular linkage maps is to dissect genetic
variation of quantitative traits into individual
Mendelian factors or quantitative trait loci
(QTLs). The dissection of unobserved QTLs
(or QTL mapping) with DNA markers is based
on marker-trait associations resulting from link-
age disequilibrium. Statistical analysis is neces-
sary for identifying such associations and further
mapping QTLs.

There have been some powerful complex
statistical methods™~* proposed for mapping
QTLs. These methods are important for under-
standing the exact position and genetic effects of
QTLs. In practice, however, simple statistical
methods are still useful for rough understanding
of distributions and effects of QTLs on the
genome by detecting marker-trait associations,
instead of accurate mapping of QTLs. For in-
stance, only the knowledge of markers that are
important for the traits studied is usually enough
for marker-assisted selection in genetic improve-
ment of plants and animals. Besides, identifica-
tion of important markers may also be helpful
for accurately mapping QTLs as cofactors in sta-
tistical models™.

Of many statistical methods, single QTL
models (one-way ANOVA, simple regression,
or t tests) are most commonly used for identify-
ing associations between markers and
QTLs"*, These methods work well only
when QTLs affecting the same traits in a map-
ping population are independent from one anoth-
er. In other words, there is no linkage and/or
epistasis between QTLs. Violation of this as-

sumption could result in two serious related

problems. The first one is the failure to detect
epistasis, which may be an important genetic
basis for many complex phenotypes®~1%J, The
second is the reduced power, accuracy and reso-
lution in marker detection, which results from
background genetic variation (BGV), or noises
arising from the influences on the same traits of
multiple segregating QTLs[®" 43,

In many previous QTL mapping studies,
two-way ANOVA has been regularly used to
detect epistasis between QTLs!*~], In these
cases, BGV control and efficient identification of
pairwise interaction markers related to digenic
epistasis remain as challenging problems. Hack-
ett et al. compared several statistical methods in
identification of markers by computer simula-
tions, and found that multiple regression had
the highest power and resolution in identifying
correct markers related to single QTLs due to its
effective control of BGV?), Nevertheless, the
rationality and power of multiple regression in i-
dentifying interaction markers has not yet been
examined theoretically.

In the present paper, we studied the prop-
erties of stepwise regression in the identification
of interaction markers under different conditions
(sample size, trait heritabilities, significance lev-
els and linkage relationships, etc.) by Monte
Carlo simulations, with the objective of learning
the usefulness of stepwise regression in identifi-
cation of epistasis-related interaction markers.
Some related issues are also discussed.

2 Method Description

Assume there is a complete linkage map
with a total of @ markers covering the whole
genome of a diploid species. Of the & markers,
there are p(¢p<KP) markers most closely linked
with segregating QTLs affecting a quantitative
trait in a mapping population. Then, a multiple
regression model for the quantitative trait can be
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written as
Y=bo+ ‘S‘JbM,,?CM,,JE + E ZbMM,-jXMMUk e
s i<j

€))
where 1y, is the phenotypic value of individual %
(k=1,+*, n); by is the intercept of the regres-
sion model, by, is the partial regression coeffi-
cient for the A main-effect marker (b = 1, -+,
@) bum, is the partial regression coefficient for
marker interaction between marker M; and
marker M;(G = 1,¢+,0—1; j=i+1,°,9);
indicator variable XM,.; depends on the observed
genotype and the population type (Table 1);
Xoa, = Xoa, X5 €&~N (0,0%); is the random
residual composed of random error and a small
portion of genetic effects that are not absorbed

by the main-effect markers and interaction

markers.
Table 1 Indicator variable (Xu,) for main-effect
markers in multiple-regression model
Marker Population type?
Genotype Fy? BC® DH/RI¥
MMy 1 0.5 1
Mima 0 —0.5 -
mpum —1 — —1

Note: 1) Populations are derived from a cross between two in-
bred lines; ‘

2) Fz is derived by selfing or sib-mating F;;

3) BC is derived by backcrossing F with one of the par-
ents;

4) DH is doubled haploid lines from F;; RI is recombinant
inbred lines obtained by selfing and random selecting for several
consecutive generations starting from F2.

Under a given significance threshold, small
main effects or epistatic effects of QTLs are not
expected to be detected, and thus their corre-
sponding main-effect and interaction markers
will be unidéntifiable and missed from model
(1). Therefore, in the process of stepwise re-

gression analysis, the regression equation would

become
n=>bo+ ZthXMM + EbMM,.XMMI.,, )
3 ;
(h=1,"'9¢; i=19"', 5’) i (2)

where ¢ is the number of identified main-effect
markers with (¢ <<¢); & is the number of iden-

tified marker interactions with (&' <<¢ (¢-1)/

S 2.

The formulas for estimation and signifi-
cance tests of the partial regression coefficients
could be found in many books on statistics. But
for easy comparisons, partial determination coef-
ficient for each of the selected main-effect mark-
ers or interaction marker pairs can be calculated
in a slightly different way .

RJZttA_x=R£—R2_x €))
where Rfjs_ is the relative contribution for the
X* main-effect marker or marker interaction
conditional on Ay, which represents all selected
main-effect and interaction markers except the
X" main-effect marker or marker interaction; R%
is the general determination coefficient for all the
selected main-effect markers and marker interac-
tions (A); Ri_z is the general determination co-
efficient for A_,.

3 Simulation Studies

Monte Carlo simulations were conducted in
order to understand the accuracy, power and
resolution of multiple regression in identifying
interaction markers that represent epistatic
QTLs, and impacts of factors such as trait heri-
tability , sample size, significance level, etc. on
the identification.

3.1 Methods for simulations

A doubled haploid (DH) population was
used in the simulation studies. In all simula-
tions, we employed three genomes sharing the
same marker linkage map with four chromo-
somes and a total of 64 evenly distributed (10
cM between two adjacent markers) markers.
Each of the genomes had four QTLs with a dif-
ferent linkage relationship among the QTLs
(Fig. 1). The digenic additive ( additive
epistatic effects ranged from -1. 71 to 1. 31 units
(Table 2). For easy description, epistasis of Q;
vs. sz Q, vs. Qay Q; vs. Q) Q; vs. Qs Q;
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where y is the phenotypic value of individual %
(k=1,+, n); by is the intercept of the regres-
sion model, by, is the partial regression coeffi-
cient for the A* main-effect marker (A = 1, *+,
®);5 buu, is the partial regression coefficient for
marker interaction. between marker M; and
marker M;(i = 1,++,¢—1; j=i+1,,9);
indicator variable Xu,, depends on the observed
genotype and the population type (Table 1);
Yo, = Xnay Xt 5 €~N (0,02); is the random
residual composed of random error and a small
portion of genetic effects that are not absorbed

by the main-effect markers and interaction

markers.
Table 1 Indicator variable (X, ) for main-effect
markers in multiple-regression model
Marker Population type?
Genotype Fp» BCY DH/RI¥
MM 1 0.5 1
Muma 0o —0.5 -
AT —1 - —1

Note: 1) Populations are derived from a cross between two in-
bred lines;

2) F; is derived by selfing or sib-mating Fi;

3) BC is derived by backcrossing Fi with one of the par-
ents;

4) DH is doubled haploid lines from F;; RI is recombinant
inbred lines obtained by selfing and random selecting for several
consecutive generations starting from Fj.

Under a given significance threshold, small
main effects or epistatic effects of QTLs are not
expected to be detected, and thus their corre-
sponding main-effect and interaction markers
will be unidentifiable and missed from model
(1). Therefore, in the process of stepwise re-
gression analysis, the regression equation would
become

&k=é0+ zh)thXMM + ZbMM,.XMMa ,
(h=1,+,@; i=1,, &) )]
where ¢ is the number of identified main-effect
markers with (¢ <¢); & is the number of iden-

tified marker interactions with (&'<<¢ (¢-1)/

- 2).

The formulas for estimation and signifi-
cance tests of the partial regression coefficients
could be found in many books on statistics. But
for easy comparisons, partial determination coef-
ficient for each of the selected main-effect mark-
ers or interaction marker pairs can be calculated
in a slightly different way:

Ryo_=Ra—Rh (3
where R%;A_x is the relative contribution for the
X* main-effect marker or marker interaction
conditional on A_y, ‘which represents all selected
main-effect and interaction markers except the
X" main-effect marker or marker interaction; R%
is the general determination coefficient for all the
selected main-effect markers and: marker interac-
tions (A); Rﬁ_; is the general determination co-
efficient for A_,. ‘

3 Simulation Studies

Monte Carlo simulations were conducted in
order to understand the accuracy, power and
resolution of multiple regression in identifying
interaction markers that represent epistatic
QTLs, and impacts of factors such as trait heri-
tability , sample size, significance level, etc. on
the identification.

3.1 Methods for simulations

A doubled haploid (DH) population was
used in the simulation studies. In all simula-
tions, we employed three genomes sharing the
same marker linkage map with four chromo-
somes and a total of 64 evenly distributed (10
cM between two adjacent markers) markers.
Each of the genomes had four QTLs with a dif-
ferent linkage relationship among the QTLs
(Fig. 1). The digenic additive ( additive
epistatic effects ranged from -1. 71 to 1. 31 units
(Table 2). For easy description, epistasis of Q,
vs. Qpy Qi vs. Qsy Qi vs. Quy Qo vs. Qs Q;
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ance is then calculated as

Ve=Vs(1—h?) /R?

The genotypic value G, of %-th. individual
was obtained by summing additive and epistatic
effects of all the QTLs according to the QTL
genotypes of individuals generated in genotyping
step. The phenotypic value of the £-th individu-
al was calculated as G;+¢&:, where & was ob-
tained by generating a pseudo-random normal
deviate with zero mean and variance V..

Various combinations of sample size (200,
400, and 600), trait heritability (0. 20, 0. 50,
and 0. 80), and significance level (0. 05, 0. 01,
0. 005, and 0. 001) were used to examine the

properties of stepwise regression in identifying
interaction markers under three QTL linkage re-
lationships (genome A, B, C). For each case,
simulations were replicated 200 times, and aver-
age results were presented. ‘
3.2 Rationality of stepwise regression method
in identifying interaction markers

Fig. 2 shows frequency distributions of i-
dentified interaction markers associated with the
preset QTLs for a specific set of simulation con-
ditions Cheritability =0. 50, sample size =200,
and significance level = 0. 005). Results from
other combinations of simulation conditions
showed the similar tendency (data not shown).

Genome A Genome B ‘ Genome C
g .
g " i | .
% 20 20 20
s i
0 o’

1' 21 41 s 21 4161 1 2i
Marker A Marker B Marker A

-
41 gy 248 1

Marker B

Fig. 2 Frequency distribution of interaction markers identified by stepwise regression along the

whole genomes. For simplification, we did not separate the four chromosomes (markers 1-18 on chro-
. mosome I ; 19-33 on chromosome I ; 34-48 on chromosome II ; 49-64 on chromosome IV). Simula-
tion conditions were: sample size=200, heritability=0. 50, and significance level =(. 005.

Interaction markers associated with QTLs
of large main and/or epistatic effects (relative
contribution Rbg to phenotypic variation >>3%)
were correctly identified by stepwise regression
at reasonably high frequencies. In all the three
genomes, the identified marker interactions
were most often among four interactions be-
tween two pairs of markers flanking the inter-
vals where the QTLs are located, and the mark-
er pairs more closely linked to the QTLs were i-
dentified at higher frequencies. For example, in
genome A, the interaction between Ms; and Mg,
was detected 62. 5% of the time by the four in-
teractions between (Msz, Mss) and (Ms;, Msg)

that defined the two target intervals for QTLs
#2 and #4. The power of detecting individual
interacting QTL pairs depended on the distances
between the markers and their linked QTLs in
the relevant intervals.

Marker interactions representing small or
zero epistatic effects (Rjo<<3%) were almost
unidentifiable by stepwise regression under the
selected significance thresholds, and nor for the
markers loosely linked to the epistatic QTLs.
Close linkage between QTLs had negative im-
pacts on identification of interaction markers.
For example, interaction markers representing
epistasis #1 and #2, could not be well resolved
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in genome C. Therefore, it is not expected that
stepwise regression can resolve tightly linked
epistatic QTLs.
3. 3 Comparison between two-way ANOVA
and stepwise regression method

Table 2 shows the results of using stepwise
regression and two-way ANOVA in identifying
interaction markers. In two-way ANOVA, a
wide range of marker pairs representing a single
case of epistasis could be detected. Although the
pair with the largest F' value was the best repre-
sentative for a specific epistasis, this largely re-
duced the resolution of identifying correct inter-
action markers. In every case, stepwise regres-
sion method was much more powerful than two-

Genome A

1007 = r 001"

Genome B

way ANOVA. On average, the frequency of
detection by stepwise regression was nearly three
times as that by two-way ANOVA in the simu-
lations. This implies that using stepwise regres-
sion would possibly identify much more epistasis
than using two-way ANOVA.
3. 4 [Factors affecting identification of inter-
action markers by stepwise regression

We also studied the impacts of heritabili-
ties, sample sizes, and significance levels for F
tests, as well as contribution of individual epista-
sis and linkage relations between QTLs, on
power (or frequency) of identifying correct in-
teraction markers using stepwise regression
method (Fig. 3).

Genome C

75

50

25

Lo
1 2 3 4 5 8

Epistasis #
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B 050

2 3 4 5 6

wil

2 3 4 5 6

Epistasis # Epistasis #
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U Q0 e
8 75
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g 25
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Epistasis # Epistasis # Epistasis #
(Il) Sample size: 200 B 400 O so00
1. 2 3 4 5 6 6 1 2 3 4 5 6
Epistasis # Epistasis # Epistasis #
() Significance level: 8 0.05 W o001 0O 0.005 0.001

Fig. 3 Impacts of heritabilities (row 1), sample sizes (row I ), and significance levels (row H ),
as well as linkages between QTLs and contributions of individual epistasis, on identification of inter-
action markers, Epistasis # is used here to indicate the marker interaction for each epistasis. The fre-

quency for each case was obtained as a summation for four interactions between two pairs of markers
constructing the intervals where the two TQLs involved in an epistasis were located.
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Larger heritabilities and sample sizes invari-
ably increased powers of identified interaction
markers. The averaged frequencies across all the
three genomes were 7. 3%, 24. 6%, and
43. 7% for heritabilities of 0. 20, 0. 50, and
0. 80, respectively, under a sample size of 200
and a significance level of 0. 005. The averaged
frequencies were 24. 6%, 39.8%, and 46.5 %
for sample. sizes 200, 400, and 600, respective-
ly, under a heritability of 0. 50 and significance
level of 0. 005.

The impacts of heritabilities and sample
sizes on detection power were mostly associated
with relative contribution of individual QTL
Table 3
showed that larger epistatic effects (epistasis H#

epistasis to phenotypic variation.

1, #2, and #5 in all the three genomes) con-
tributed more to phenotypic variation and so
their corresponding marker interactions were i-
dentified at higher power, whereas small or zero

Table 3 Partial regression coefficients and relative
contributions of interaction markers identi-
fied by stepwise regression”

. QTL Epist. Marker int. 3

Genome "B e Raa e R oy

% §79)
1 1.31 3.50 1.43 4.15 47.5
2 1.08 2. 38 1.40 3.98 26.0
A 3 —0.38 0.29 —1.19 2.74 2.5
4 0.00 0.00 —1.08 - 2.21 0.0
5 —-171 5.97 —1.64 5.60- 64.0
6 —0.41 0.34 —1.45 4.12 1.0
1 1.31 3.72  1.51 4.82 38.5
2 1.08 2.53 1.48 4.60 38.0
B 3 —0.38 0.31 —1.26 3.31 2.0
4 0. 00 0. 00 1.08 2.46 .5
5 —1L71 6.34 —1.68 6.01 66.0
6 —0.41 0.36 —1.19 2. 95 5.0
1 1.31 4.19 1.70 5.73 49.5
2 1.08 2.85 1.61 5.64 20.5
3 —0.38 0.35 —1.43 3.92 1.0
¢ 4 0. 00 0. 00 0. 00 0. 00 0.0
5 —-1.7 7.14 —1.74 7.00 71.0
6 —0.41 0.41 —1.59 4.64 10.0

Note:1), 2) and 3) are the same as notes 1), 2) and 3) in
Table 2, respectively; 4) and for each epistasis were weighted
averages of four pairs of marker interactions that best represent
the epistasis. Simulation conditions are heritability = 0. 50,
sample size = 200, and significance level = 0. 005.

epistatic effects (epistasis # 3, #4 and #6)
were almost unidentified.

Close linkages (here genome C) between
epistatic QTLs could distort the power. of identi-
fying correct interaction markers (Fig. 3 and
Table 3). Compared with independent inheri-
tance case (genome A), some interaction mark-
ers (e. g. epistasis t#5) were identified at higher
frequency, some (e.g. epistasis #2) were de-
tected at lower power, and others (e.g. epista-
sis #3) were identified at power similar to that
for independent inheritance case. These were
largely due to the mutual cancellation or en-
hancement of relevant epistatic effects resulting
from close linkages between epistatic QTLs.

Larger values of significance levels could
lead to higher frequencies of identified interac-
tion markers. On average across the three
genomes, the powers were 32.4%, 26.4%,
24.6%, and 21.2% for significance levels
0. 05, 0.01, 0.005, and 0.001, respectively,
under sample size = 200 and heritability =
0. 50. However, higher power from larger value
was always associated with lower correctness of
identified interaction markers. For example, the
averaged power of identification was increased
by only 11. 2% with significance levels changed
from 0. 001 to 0. 05, but the correctness was de-
creased by 41.4%, according to the proportion
of corrected marker interactions in all identified
interactions in 200 simulations. Sample sizes and
heritabilities had certain influences on such loss
of correctness. The smaller the samples size
and/or heritability was, the greater the loss
would be for a given significance level, and vice
versa. This implied that larger significance level
could be taken for certain correctness under larg-
er sample size and/or higher heritability.

3.5 [Partial regression coefficients and rela-
tive contributions
Although npartial regression coefficients

(bum, ) are generally considered as underesti-
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mates of QTL epistatic effects, it would also be
helpful to explore relationships between &MM}‘ of
interaction markers and the parameters of QTL
epistatic effects, as well as associations between
relative contributions ( Rim ) of interaction
markers and contributions (R%) of QTL epista-
sis. Simulation results were summarized in
Table 3 for simulation condition with heritability
= 0.50, sample size = 200, and significance
level = 0. 005.

It was indicated that the estimates (&) of
partial regression coefficients could partly reflect
the magnitudes and directions of QTL epistatic
effects, particularly for epistasis with relatively
large Réq to phenotypic variation (such as epista-
sis #1, #2, and #5). But it was not true for
small or zero epistasis (epistasis #3, #4 and #
6). This was also the case for partial determina-
tion coefficient (Riy). However, bay and R
for identified marker interactions were not al-
ways underestimates of corresponding parame-
ters of QTL epistasis as we usually expect, and
on the contrary, they could be frequently over-
estimates, particularly for small-effect epistasis.
This was because &y and Riy were obtained
based on a small portion of larger estimates that
remained after the F tests among all possible es-
timates.

Linkages between epistatic QTLs also had
influences on the relation between estimates
(bwy and Réng) of marker interactions and pa-
rameters of QTL epistasis, as shown in Table 3.

4 Discussion

With increased researches in QTL map-
ping, QTL epistasis is attracting more and more
attentions of geneticistst™!. However, how to
effectively analyze epistasis remains a problem to
be solved. In this study, stepwise regression has
been proven to be a powerful statistical method

for identifying correct interaction markers that

represent epistatic QTLs.

The results indicated that stepwise regres-
sion method was much better than two-way
ANOVA, as was the case for identifying main-
effect markers (data not shown). This higher
power of stepwise regression originated from its
effective control of background genetic variation
caused by segregating QTLs other than the
QTLs studied. If it were not controlled, this
portion of variation would be pooled into random
residuals, and would largely reduce the power
and resolution in identifying correct interaction
markers. Stepwise regression maximized the ab-
sorption of the effects of background QTLs by
keeping all significant main-effect markers and
interaction markers in the model, and thus real-
ized effective control of background genetic vari-
ation when selecting new interaction markers.

Many factors affected the power of identi-
fying correct marker interactions, as shown in
the study. To increase the power, we could take
a larger sample size and/or better control of en-
vironmental errors, but we can do nothing about
the factors (linkage between QTLs, contribu-
tions of individual epistasis, etc. ) related to ge-
netic properties of epistasis. Significance level
would be a difficult matter to be decided during
implementation of stepwise regression. Larger
values of significance level could result in more
correct marker interactions identified, but also
caused high chance of false positives. Smaller
values could increase the reliability of identified
interaction markers, but would also lose some
power. To minimize such dilemma, it is sug-
gested that several rounds of analyses could be
conducted under different significance levels,
and comparisons of results from the analyses be
made. The repeatability of a specific identified
marker interaction across all of the rounds would
be measurement of the reliability ( or
correctness) of the marker interaction. On the

other hand, less stringent significance level
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could be taken for a larger sample size and/or
higher heritability, since in these circumstances,
random errors are better controlled.

Better understanding of QTL epistasis
should be obtained from directly mapping
epistatic QTLs. However, genome-wide search
for epistasis would need tremendously large
amount of computational work. Although cor-
rectly identified interaction markers usually do
not locate exactly at the QTLs involved in the
epistasis, they do provide an indication of the
rough region where the epistatic QTLs are possi-
bly located and the relative importance of the
epistasis. This is important not only for genetic
improvement of economically important quanti-
tative traits, but also for further mapping
epistatic QTLs. With identified interaction
markers, we could focus on genomic regions re-
vealed by the interaction markers so as to dra-
matically reduce the work needed for mapping
epistatic QTLs along whole genome.
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