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ABSTRACT The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus
transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs
(siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G)
binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with stan-
dard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-
type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations
first induce the loss of stacking interactions between p19 and siRNA, Trp42-Cyt1 (Cyt1 from the 50 to 30 strand) and Trp39-Gua019
(Gua19 from the 30 to 50 strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-
type. The steered molecular dynamics simulations also show that the mutant p19 complex is ‘‘decompounded’’ very fast under
a constant separation force, whereas the wild-type remains largely intact under the same steering force. Moreover, we have
used the free energy perturbation to predict a binding affinity loss of 6.98 5 0.95 kcal/mol for the single mutation W39G, and
12.8 5 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution
(~90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking
the strong stacking interaction between Cyt1 and Gua019 with end-capping tryptophans. These large scale simulations might
provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.
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INTRODUCTION

RNA silencing plays an important role in gene expression at

the transcriptional or posttranscriptional level in eukaryotes

(1–3). Double-stranded RNAs (dsRNA) or self-complemen-

tary fold back RNAs are first cleaved into short interfering

RNA (siRNA) or microRNA (miRNA) of 21–24 nucleotide

(nt) by an RNase III-like enzyme DICER (4). Next, these

small RNAs are unwound and loaded into a multi-protein

complex known as RNA induced silencing complex

(RISC). Finally, the active RISC combines to the target

messenger RNA and guides its degradation or stops its trans-

lation (5–8).

Many plant viruses of single-stranded RNA genomes can

form dsRNA during the replication in host cells (1). These

dsRNAs can be joined into RNA silencing system and

specifically target cognate viral RNA for degradation with

RISC programming (3). Meanwhile, plant viruses evolve

a defense mechanism to suppress RNA silencing (9–13).

P19 is such a plant suppressor encoded from Tombusvirus
as a counter-defense against plants (14–25). It shows

a high affinity in binding to siRNA, especially 21 nt siRNA

(double-stranded) with 2 nt, 30 overhangs in cytosolic (16).

Recent studies have shown that p19 not only suppresses

RNA interference (RNAi) in Tomato Bushy stunt virus

(TBSV) hosts but also in other plant, insect (26), and human
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cells (27,28), such as Arabidopsis thaliana (27,29,30),

Drosophila (31), and Caenorhabditis elegans (2,26).

Furthermore, p19 can interact with an RNA binding host

protein and bind to a short RNA in mouse embryonic stem

cells (32). All these evidences indicate that p19 can bind to

small RNAs both in plant and mammalian cells and could

be a useful tool to dissect the RNAi pathway in vivo or

in vitro. It has been suggested previously that p19 first binds

to siRNAs and then sequesters them, preventing their incor-

poration into a RISC (14–16,22). However, the exact molec-

ular mechanism by which this suppression occurs remains

somewhat unclear (33,34).

The structure of p19 binding to 21 nt siRNA duplex in

Carnation Italian ringspot virus was reported by Hall et al.

(34), and the structure in TBSV was reported by Ye et al.

(35). These structures show that p19 forms a homodimer

with a concave surface made of eight b-strands in the middle

of the dimer, where the RNA duplex binds (Fig. 1). Residues

Trp39 and Trp42 from each monomer of the p19 act as caliper

measuring and bracketing the siRNA. These two trypto-

phans, along with Arg43 and Asn46, form a glove to hold

each side of the nucleic acids at the terminal of siRNA.

The contacts between p19 protein and siRNA seem to be

sequence independent because there are no interactions

between the protein and the RNA bases, other than stacking

interactions with the last basepairs at each end of the duplex

region (see below) (34).
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Experiments suggest that mutations on the two tryptophan

residues W39 and W42 of p19 strongly reduces the RNA

silencing suppression (33,34), as the two hydrophobic resi-

dues Trp39 and Trp42 are key amino acids for p19 dimer to

contact and recognize the two siRNA terminals (34). The

crystal structures of p19 provide details on how Trp39 and

Trp42 interact with siRNA statically, however, the molecular

details on how exactly the Trp39 and Trp42 residues interact

and recognize the 21-nt siRNA dynamically, how much

binding affinity each Trp residue contributes, what physical

interactions dominate, and what structural changes the muta-

tions introduce are still unclear. To address these questions,

we have carried out molecular dynamics (MD) simulations

for both the wild-type and mutant p19 protein siRNA

complexes. These large scale simulations can complement

experiments for better understanding of the p19-siRNA

molecular recognition mechanism by providing atomic

details that are often inaccessible in experiment due to reso-

lution limits, even with the currently available sophisticated

experimental techniques (36–47). Besides normal MD simu-

lations, steered molecular dynamics (SMD), and free energy

perturbation (FEP) calculations are also used to investigate

the interaction between p19 protein and 21-nt siRNA. In

all these simulations (unless otherwise explicitly stated),

three types of p19 complex are simulated: the wild-type,

the single mutant W39G, and the double mutant W39/42G.

The simulation results and discussions are presented in the

following sections.

METHODS

The starting structure of the p19 protein from Carnation Italian ringspot

virus bound to a 21-nt siRNA duplex is taken from the x-ray crystal structure

deposited in the Protein Data Bank (PDB, 1RPU.pdb) (34). As shown in

Fig. 1, p19 is a homodimer, with each monomer containing five a-helices

and four b-strands, and it binds to a 21nt siRNA duplex. The conformation

of the 21 nt siRNA duplex is A-Form double helix with 2 nt 30 overhangs

(numbers 1–19 are Watson-Crick basepairs and numbers 20 and 21 are

unpaired). For description purpose, we name residues from the first mono-

mer as XXX (e.g., Trp42) and the same residue from the second monomer

as XXX0 (e.g., Trp
042). In a similar fashion, nucleotides from the 50 to 30

FIGURE 1 Stereo view of p19-siRNA complex structure. (A) The siRNA

is rendered as licorice, and the p19 dimer is represented as green ribbons. (B)

Residues Trp39 and Trp42 (turquoise sticks) in the N-terminal subdomain

with the interaction of nucleic acids Gua019 and Cyt1 (pink sticks) in siRNA.
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strand of the siRNA duplex is named as YYY (e.g., Cyt1), and the ones

from the other strand as YYY0 (e.g., Gua019). To investigate the importance

of end-capping mechanism of p19, which is considered to be the key for

siRNA recognition and combination, we simulated the p19-siRNA complex

for both the p19 wild-type and mutants. Either one or two tryptophans

(Trp39, Trp42) were substituted with glycines for each monomer in the

wild-type structure (experiments done on W39G single mutation and

W39/42R double mutations (34); and to observe more significant effects

in MD simulations within a reasonable time, we also simulated a more

drastic double mutation W39/42G, see below). Therefore, for a double muta-

tion, actually four Trp residues in the p19 dimmer are mutated (Trp39, Trp42,

and Trp
039, Trp

042). Both the wild-type and mutants were then solvated in

water boxes with size ~70 � 60 � 90 Å3. A total of 39 Naþ counterions

were then added to neutralize the solvated systems. We have also simulated

the system in 100 mM NaCl salt solution to mimic the biological environ-

ment, where 23 more pairs of Naþ and Cl� ions are further added (see

below). The total size of the solvated systems was ~30,000 atoms.

The NAMD2 (48,49), program was used for the MD simulations with the

NPT (constant pressure 1 atm and constant temperature 305 K, same as the

experiment) ensemble for data collection. The CHARMM (CHARMM32,

parameter set c32b1) (50–52) force field was used for the protein and

RNA, and the TIP3P (53,54) water model was used for the explicit solvent.

We treated the long-range electrostatic interactions with the particle mesh

Ewald (PME) (55,56) method and used a typical 10 Å cutoff for the van

der Waals interactions. Before data collection, both the wild-type and mutant

p19 complex systems were equilibrated. First, a 10,000 steps minimization

was run to remove bad contacts due to the solvation process. Then, the mini-

mized configurations were used as the starting point for another 1,000 ps

NPT equilibration at 1 atm and 305 K. The time step for equilibration was

0.5 fs. Up to five different configurations from the last 500 ps trajectory

were chosen as the starting configurations for production runs. The time

step for all production runs was 1.5 fs.

In the normal MD, only the wild-type and double mutant were simulated

(for SMD and FEP, the single mutation was also included, see below) to

observe meaningful differences in regular MD within a reasonable simula-

tion time. Two long trajectories, one for the wild-type and one for the double

mutant, were simulated up to 100 ns to monitor the differences in complex

stability. An additional of eight shorter trajectories, four for the wild-type

and four for the double mutant starting from different initial configurations,

were also simulated up to 10 ns. On the other hand, all three systems, the

wild-type, the single mutant, and the double mutant were simulated in the

SMD. SMD simulations also were carried out to study the interaction

between p19 protein and the siRNA under steering force or ‘‘perturbation’’

starting from the equilibrated structures. Both the wild-type and mutants

were given a constant force along the z-axis (the direction in alignment

with the siRNA strand). The residues of Ala81, Asn96, His132, and Leu145

from each p19 monomer, which are far away from the active region, were

fixed in space to hold the p19 dimer in a proper position during the SMD

simulations. Six different constant forces, 0.001, 0.005, 0.01, 0.02, 0.03,

and 0.05 kcal/mol/Å, were applied to the siRNA in the wild-type, single

mutant and double mutant p19 protein siRNA complexes, resulting a total

of 18 SMD simulations with each up to 10 ns. For the constant force of

0.01 kcal/mol/Å case, additional trajectories were also run starting from

different initial configurations (chosen from the first 1 ns normal MD trajec-

tory; see Results).

A rigorous FEP method (57,58) is further used to calculate the binding

affinity changes for both the single and double mutations. The Helmholtz

free energy of a system can be expressed as

G ¼ �kT ln Z ¼ �kT ln

�Z Z
dpdq exp½�bHðp; qÞ�

�
;

(1)

where Z is the partition function and H (p,q) is the Hamiltonian of the

system. With a thermal integration approach, the binding free energy change

DG due to a mutation such as W39G in p19 can then be calculated as
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DGl ¼ �kT ln

�
expð�b½Vðl þ DlÞ � VðlÞ�Þ

�
l

(2)

DG ¼
X

l

DGl; (3)

where V(l)¼ (1� l) V1þ l V2, and V1 represents the potential energy of the

wild-type, and V2 represents the potential energy of the mutant. The FEP

parameter l changes from 0 (V1) to 1 (V2) when the system changes from

the wild-type to the mutant, and h.il represents the ensemble average

at potential V(l). In typical FEP calculations, for a single mutation from

residue A (e.g., W39) to residue B (e.g., G39), many perturbation windows

have to be used to have a ‘‘smooth’’ transition from state A to B, with typi-

cally more windows near the two ends to enhance the sampling statistics.

In general, it is difficult to directly calculate the binding affinity change

DGA for the binding process between a protein and a siRNA due to the

complicated binding process. However, we can avoid this problem by

designing a thermodynamical cycle to calculate the relative binding free

energy change, i.e., DDGAB. Instead of calculating the difficult direct

binding energies DGA and DGB, we calculate the free energy changes for

the same mutation in both the bound state (i.e., p19 and siRNA already

bounded, DG1) and the free state (i.e., p19 and siRNA not bounded, DG2)

(57–59). Within a complete thermodynamical cycle, the total free energy

change should be zero, which gives the relative binding affinity due to the

mutation from A / B as

DDGbind ¼ DGB � DGA ¼ DG1 � DG2: (4)

In the current setup, a 22-window scheme has been adopted. For each muta-

tion, single (W39G) or double (W39G and 42G), a total of 10 independent

runs starting from different initial configurations (some taken from the
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100 ns long normal MD trajectory) are carried out for better convergence.

It is widely recognized that for effective FEP calculations, a sufficient confor-

mational space sampling is often critical (57,59,60,62,63). Many groups have

developed efficient sampling methods to tackle this problem (57,59,62,63).

Warshel et al. (65–67) also pointed out that a satisfactory convergence in

FEP is not only related to the extensive sampling, but also to the proper elec-

trostatic boundary condition and long range treatment (such as local reaction

field). Our current total simulation length is 264 ns (22 windows � 0.6 ns �
10 runs � 2 states) for each mutation, which is much longer than most FEP

calculations reported currently in the literature (57–59).

RESULTS AND DISCUSSION

Normal MD not sufficient to show the difference
within the simulation length

To examine the effect of mutation on p19 structure, we plot

the trajectories of the backbone RMSD from the crystal

structure for both the wild-type and the double mutant p19

in Fig. 2. Somewhat larger fluctuations in the double mutant

were observed during the normal MD simulations. For both

the wild-type and double mutant p19 protein, the backbone

RMSDs plateaued at ~2.5 Å from the crystal structure for

all trajectories simulated for 10 ns, indicating that the p19

protein is fairly stable in normal MD (that is why the single

mutation W39G was not simulated in normal MD and not

shown). In the longer 100 ns simulations, both increased to

1763
FIGURE 2 (A) Comparison of backbone RMSDs from

the starting crystal structures for both the wild-type (blue)

and the double mutant (red) trajectories. The results are

obtained from 305 k NPT simulations with the simulation

time of 130 ns. Overall, these trajectories show comparable

RMSDs from the initial structures. The double mutant p19

dimer experiences a larger increase in RMSD than wild-

type during 80–115 ns. (B and C) Comparison of Ca-

RMSFs of p19 dimers for the wild-type (blue) and the

double mutant (red). (D and E) Measured B-factors from

the x-ray structure for Ca atoms in both monomers of

wild-type. Our RMSFs agree well with B-factors.
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~3 Å before 80 ns, and then the double mutant showed

a larger RMSD than the wild-type after ~80 ns, rising to

~4 Å, but the difference was not remarkable (Fig. 2 A), indi-

cating that the normal MD is not sufficient in distinguishing

the two within the simulation length (that is why we carry out

further SMD and FEP simulations; see below). Nevertheless,

the normal MD simulations do show some meaningful

changes in local regions already.

To characterize the local fluctuations of the wild-type and

mutant p19 dimmer, we calculated the root mean-square fluc-

tuations (RMSF) of the Ca atoms and also compared with the

measured B-factors from x-ray structure (34), as shown in

Fig. 2. Overall, our RMSF curves agree with B-factors very

well for the wild-type (there is no x-ray structure for the

mutant yet), with major peaks near residues Ser23, Leu74,

and Ala105 all well captured except that the Ala105 B-factor

peak is somewhat broader. The mutant p19 experiences

slightly larger fluctuations than the wild-type in local regions

near residues Leu74, Ala105, and Phe110 in monomer I, and

near residues Ser23 and Ala105 in monomer II. These observa-

tions indicate that the W39/42G double mutation indeed

causes some of the local contacts to be more flexible.

Furthermore, a detailed examination on the mutation site,

Trp39/Trp42, shows a noticeable decrease in local stacking

interactions in the double mutant. The van der Waals interac-

tions, or ‘‘stacking interactions’’, between the indole rings of

Trp42 (Trp39) and the bases of Cyt1 (Gua019) in the wild-type

are basically lost in the mutant due to the loss of indole ring in

the Gly side chains. In addition, the original stackings between

Arg43 and Asn46 with Trp39 and Trp42, respectively, in the

wild-type, which prevent the solvent exposure of hydrophobic

tryptophan side chains, are also gone in the double mutant.

FIGURE 3 Change in the average distance between a target residue

(W/G39, W/G42) and other residues in the p19 dimer, when mutating

from the wild-type to the double mutant (double mutant minus wild-type).

The distance difference for residues. (A) W/G39 in monomer I. (B) W/G42

in monomer II. Compared to the wild-type, the residues G39 and G42 in the

double mutant have a significantly shorter average distance with other resi-

dues 43–48 (R43, L44, Y45, N46, D47, and E48; yellow background).
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The hydrogen bonds between Trp39, Gua019, and Trp42,

Cyt1 (between the imino nitrogen of Trp39/Trp42 and the

phosphate group of Gua019/Cyt1) are also largely destroyed

in the mutant. We further observed an increase of non-

native-like contacts among Arg43 and Gua019; Asn46, Asp47,

and Cyt1 in the mutant (see below). This is probably due to

the much smaller size of the Gly side chain as compared to

Trp, which leaves more space for Cyt1 and Gua019 to contact

closely with neighboring residues in p19. As a result, Cyt1 and

Gua019 cross over Gly39 and Gly42, and make contacts with

Arg43, Asn46, and Asp47, instead. To confirm this observation,

we then calculated the average distance between each p19

residue and the W/G39, W/G42 residues. The mutant G39/

G42 residues indeed have notably shorter distances with

neighboring residues 43–48 (R43, L44, Y45, N46, D47,

E48) when compared to the wild-type, as shown in Fig. 3.

This indicates that the glove formed by residues W39, W42,

R43, and N46, etc. was largely crunched in the mutant.

p19 mutants showing stronger tendency
to be decompounded in SMD

To further characterize the interaction between 21-nt siRNA

and p19 residue sites W/G39, W/G42, we carried out SMD

simulations, by applying an external constant force on the

siRNA to ‘‘pull apart’’ the complex. These SMD trajectories

of both the wild-type and the mutants show clearly that the

siRNA and p19 protein were still bound together during

our 10 ns simulation when a small force was applied, indi-

cating the initial complex structure was fairly stable. Only

when the external force increased to a certain value

(R0.01 kcal/mol/Å), the complex started to be decom-

pounded, with the mutants, particularly the double mutant,

showing a much stronger tendency of falling apart.

Fig. 4 A shows the RMSD comparison for the wild-type

and the double mutant during the 10ns SMD simulation

with an external constant force of 0.01kcal/mol/Å (for better

statistics, total 6 trajectories were run, with 3 each, for this

case starting from different initial configurations). The

double mutant undergoes a much faster increase in the back-

bone RMSD, indicating that the double mutant structure was

less stable compared to the wild-type. Similar results were

also obtained from other trajectories with large external

forces. However, at too large forces (e.g. 0.05 kcal/mol/Å

and above), the complex was decompounded too fast for

both the wild-type and the mutant, thus overwhelmed the

intrinsic difference due to the mutation. The RMSD changes

of the single mutant (W39G) displayed similar effect as well,

even though not as dramatic as of the double mutant.

Fig. 4, B and C, show the distance between siRNA nucleic

acids (Cyt1 or Gua019) and p19 residues (W/G39 or W/G42)

as a measure of the separation between p19 and siRNA

during the SMD simulation (force constant of 0.01 kcal/

mol/Å). A sharp increase (>20 Å/ns) in the separation

distance for the double mutant is seen around 4.0 ns, indi-

cating the complex was decompounded already after 4 ns.
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In contrast, the wild-type shows a much milder increase

(<0.2 Å/ns) in the separation distance up to 8 ns; and the

complex starts to be decompounded only after ~8 ns with

the same external force (Fig. 4, B and C). Overall, at the

0.01 kcal/mol/Å constant force a relatively smooth separa-

tion process can be observed in a reasonable timescale; there-

fore, in the following discussions we use this case for further

analysis, unless otherwise stated explicitly.

Loss of stacking interactions responsible for less
stable mutant structures

To provide insight into the decompounding mechanism of

p19-siRNA complex, we examine the snapshots of the

SMD trajectories in detail. Fig. 5 shows some representative

ones at 0, 1, 2, 3, and 4 ns for both the wild-type and the

double mutant. Because the majority of the contacts between

p19 dimer and siRNA are hydrogen bonds between p19

basic and polar residues with siRNA phosphate/sugar

groups, we followed these hydrogen bonds (many broken

during the SMD simulation) as a measure of complex

FIGURE 4 (A) Comparison of the backbone RMSDs for the wild-type

(blue) and double mutant (red) during the SMD simulation with a constant

force of 0.01 kcal/mol/Å. In the absence of the stacking interactions, the

double mutant shows a much faster increase in the RMSD from the crystal

structure. (B and C) The separation between p19 and siRNA for both the

wild-type (blue) and double mutant (red) during the SMD simulation with

a constant force of 0.01 kcal/mol/Å. (B) The distance between nucleic

acid Gua019 of siRNA and p19 residue W/G39. (C) The distance between

nucleic acid Cyt1 of siRNA and p19 residue W/G42. The exponential

increase at the curve end indicates that p19 dimer and siRNA are separated.

The separation time is ~4 ns for the mutant and ~8 ns for the wild-type.

Recognition of siRNA by p19
stability. Here, we define a hydrogen bond with a distance

cutoff of 3.5 Å (measured form the donor to the acceptor)

and the X–H .Y angle cutoff of 150�. Obviously, the exact

time and location of hydrogen bond losses depend on the

particular trajectories, but the overall conclusion described

below is qualitatively consistent.

Let us consider the wild-type first. The first hydrogen

bond loss was between Gua2 phosphate and Lys60 imino

nitrogen (Lys60-Gua2), which happened around ~500 ps,

whereas the similar one Arg18-Gua2 was broken at ~1 ns,

and subsequently Lys
067-Ura9 and Arg

011-Cyt10 ones were

lost around 1.5 ns. A series of hydrogen bonds, such as

Gln107-Gua13, Gln107-Cyt14 and Thr
040-Ura21 were lost at

~2.0 ns. The loss of these hydrogen bonds resulted in the

distortion of the siRNA structure (Fig. 5 A), which subse-

quently introduced more hydrogen bond losses during

2–5 ns simulation time. Surprisingly, the stacking interac-

tions between Trp42-Cyt1 and Trp39-Gua019 remained intact

during this time period, with the two siRNA ends well cap-

ped. This supports the experimental findings of the strong

FIGURE 5 Snapshots of p19 complex at 0, 1, 2, 3, and 4 ns of SMD simu-

lations with a constant force 0.01 kcal/mol/Å. The p19 dimer is rendered as

a green solid surface. The siRNA is represented as a brown tube. See text for

detailed descriptions.
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staking interactions between Trp42/Cyt1 and Trp39/Gua019

by Hall et al. (34). This stacking interaction provides

a capping as well as a recognition signature on the exposed

RNA basepairs at each end of the siRNA duplex. Our results

also indicate that the major cleavage events actually start at

the middle of siRNA instead of the two ends on external pull-

ing forces. Only after ~7.3 ns, the distortion force caused the

end-cap stacking interactions to be broken in the first strand

(50 to 30). Similarly, the second strand (30 to 50) also went

through a serious of hydrogen bond losses before the end-

cap was broken. In conclusion, the wild-type p19-siRNA

complex undergoes a ‘‘middle cleavage before two capping

ends’’ mechanism on an external pulling force.

On the other hand, the double mutant W39/42G displayed

a very different behavior from the wild-type. Without the

stacking interactions between G42-Cyt1 and G39-Gua019,

the separation of siRNA became much easier and much

faster. The first hydrogen bond loss between Cyt14 phos-

phate group and Gln107 imino nitrogen (Gln107-Cyt14)

happened extremely fast, with only 57 ps in the 30 to 50

strand. Other similar hydrogen bonds were also lost fast,

with Lys60-Gua2 and Lys67-Ura9 ones lost around 250 ps.

At ~800 ps hydrogen bond Arg18-Gua2 was broken, which

resulted in a slight shift of the 50 to 30 strand with respect

to the p19 dimmer. Interestingly, a number of new hydrogen

bonds were formed between G39/G42 with neighboring

nucleotides Cyt1, Gua2, etc.; however, they were not as

stable as the original ones because they form and break

frequently. This observation is consistent with above normal

MD results, where the formation of non-native-like on-and-

off local contacts was also found near Gua019 and Cyt1, but

they were not as stable as the native-contacts in the wild-

type. These newly formed hydrogen bonds in the mutant

are not strong enough to offset the loss of the stacking inter-

actions, as indicated by the much faster decompounding of

the mutant p19-siRNA complex. The sliding of the 30 to 50

strand was observed after 1.3 ns, followed by the 50 to 30

strand. All of the native hydrogen bonds were broken after

1.8 ns simulation time. Therefore, different from the wide-

type’s middle cleavage before two capping ends mechanism,

the mutant displays a ‘‘relatively uniform sliding’’ mecha-

nism due to the lack of stacking interactions. This relative

importance of stacking interactions over electrostatic interac-

tions (hydrogen bonds) between Trp39/Trp42 residues and

Gua019/Cty1 nucleotides can also be seen from another

mutation experiment with W39/42R (34). The mutation

effect of W39R on the virus silencing suppression is not as

dramatic as that of W39G. In other words, the W39G muta-

tion results in a more dramatic plant recovery from the

mutant virus infection than the W39R mutation (34), indi-

cating that even the enhanced electrostatic interactions

between the basic residue Arg39 with phosphate group of

Gua019 is not strong enough to offset the loss of the stacking

interaction (van der Waals interaction) between Trp39 and

Gua019.
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FEP showing lower binding affinity for p19
mutants

A total of 10 independent FEP runs were carried out for both

the single and double mutations starting from different initial

configurations (some taken from the 100 ns long normal MD

trajectory), with a total simulation time of 264 ns for each

mutation. These extensive FEP calculations show a binding

affinity decrease of 6.98 5 0.95 kcal/mol for the single

mutation W39G, and a 12.8 5 1.0 kcal/mol decrease for

the double mutation W39/42G. The direct measurement of

the wild-type p19-siRNA dissociation constant (Kd) shows

a Kd value of 0.17 5 0.02 nM at room temperature (34),

which is equivalent to a binding affinity of 13.3 5

1.5 kcal/mol. Even though no direct experimental Kd values

are available for the mutants, our FEP binding affinities seem

to be in line with the experimental value for the wild-type,

given that the double mutant results in a complete dissocia-

tion of the p19 from siRNA (i.e., a binding affinity near

zero). It will be interesting to see more experimental results

on these binding affinity changes due to mutations to validate

our current predictions.

It is of interest to see a decomposition of the total binding

free energy into its van der Waals and electrostatic compo-

nents because it might offer useful information about the

energetic interactions involved in the p19-siRNA binding.

However, the free energy decomposition might be path-

dependent (i.e., turning on van der Waals interactions first

or electrostatic interactions first). Moreover, there are

controversies in literature about the meaningfulness of

breaking the total free energy into components (68–71).

Nevertheless, such a decomposition can offer some clues

in the contributions of various physical interactions in deter-

mining the binding mechanism. In this study, we use

a straightforward decomposition in FEP by collecting van

der Waals and electrostatic interaction contributions sepa-

rately, i.e., V(l) ¼ V(l)elec þ V(l)vdW, in the same ensemble

with full interactions in Eq. 2 (see System and Methods).

Due to the nonlinearity of the FEP formulation, there might

be a small coupling term in this approach (71). Using W39G

as an example, we found the following detailed numbers for

free energy changes, DG1, DG2, and DDG, in Eq. 4 and

their components. For the bound state, out of �6.73 kcal/

mol total free energy change DG1, 6.49 kcal/mol is from

the electrostatic interactions, �13.52 kcal/mol from van

der Waals, and ~0.34 kcal/mol from the coupling term.

Therefore, the net electrostatic interactions unfavor the

binding, whereas the van der Waals interactions dominate

the binding or recognition in this process. Similarly, for

the free state, out of the total �13.71 kcal/mol total free

energy change DG2, 5.75 kcal/mol is from the electrostatic

interactions,�19.76 kcal/mol from van der Waals, and again

~0.30 kcal/mol from the coupling term. In the final binding

affinity change DDG (DDG ¼ DG1 � DG2 ¼ 6.98 kcal/

mol), the van der Waals interactions (6.24 kcal/mol) again
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dominate the contribution, with ~90% contribution, whereas

the electrostatic interactions (0.74 kcal/mol) only contribute

~10%. Similar conclusions can be obtained from the double

mutation FEP data. A visual inspection of the FEP mutation

trajectories also shows the gradual loss of the packing interac-

tions during the Trp / Gly mutation process.

For further validation, we carried out FEP simulations in

100 mM NaCl salt solution to mimic the biological environ-

ment. Twenty-three pairs of Naþ and Cl� ions were added to

the equilibrated simulation box to obtain an ~100 mM NaCl

solution. The resulting salted systems were then further

equilibrated for another 3 ns. Five FEP simulations starting

from different initial configurations (picked from the last

1 ns of the equilibration trajectory) were simulated with

the same simulation length (22 windows � 0.6 ns) for both

the single and double mutations. These new FEP calculations

show a binding affinity decrease of 7.13 5 0.89 kcal/mol for

the single mutation W39G, and a 13.3 5 1.2 kcal/mol

decrease for the double mutation W39/42G. Overall, these

simulations from the 100 mM NaCl solution show a slightly

larger binding affinity decrease, but these changes are still

within the SD, therefore, we conclude there is no significant

change in the binding affinity for our current p19-siRNA

complex with or without the 100 mM NaCl salt. Again,

the van der Waals interactions are found to be the dominant

force with ~90% contribution, whereas the electrostatic inter-

actions contribute the remaining 10%.

Therefore, these extensive FEP calculations support the

above observations on the strong stacking interaction mecha-

nism for the recognition of siRNA by p19 in the WT. Even

though a direct quantitative comparison with experiment is

not available for these mutants, these binding affinity results

seem to be consistent with the wild-type dissociation constant

(Kd) measurement mentioned above (Kd¼ 0.17 5 0.02 nM at

room temperature (34), which is equivalent to a binding

affinity of 13.3 5 1.5 kcal/mol), and also consistent with the

plants symptom development experiment using single or

double mutations, with double mutation showing more

dramatic plant recovery (34). In summary, our FEP calcula-

tions, as well as MD and SMD simulations, all found that the

stacking interactions of Trp42-Cyt1 and Trp39-Gua019 are the

most important interactions to hold the p19-siRNA complex

together. This stacking interaction might also explain why

p19 is an effective 21-nt siRNA combiner. It prevents siRNA

within the complex being deprived by other small RNA

receiver, like Argonaute (Ago) proteins in plants or mammals.

CONCLUSION

In this study, we have carried out a series of molecular

dynamics simulations, including SMD and FEP, to investi-

gate the interaction and recognition mechanism between

the RNA silencing suppression virus protein p19 and a 21-nt

siRNA, as well as the effects of mutations to two important

hydrophobic capping residues.

Recognition of siRNA by p19
The double mutation W39/42G was found to cause signif-

icantly higher fluctuations in the local structure of p19 near

the mutation sites (Gly39 and Gly42) due to the smaller size

of Gly side chain (as compared to Trp). The SMD simula-

tions show that the mutant p19 complex was decompounded

much faster than the wild-type under an external steering

force applied on siRNA. Detailed structural analysis indi-

cates that the stacking interactions of Trp42-Cyt1 (Cyt1

from the 50 to 30 strand) and Trp39-Gua019 (Gua19 from

the 30 to 50 strand) are the most important interactions to

hold the p19-siRNA complex together. In other words,

Trp39 and Trp42 from each monomer of p19 form strong

van der Waals interactions with bases of Gua019 and Cyt1,

respectively, thus capping the exposed RNA basepairs at

each end of the siRNA duplex. Under the pulling of an

external force, the wild-type displayed a ‘‘middle cleavage

before two capping ends’’ mechanism, whereas the mutant

displayed a ‘‘relatively uniform sliding’’ mechanism due to

the loss of stacking interactions at the two end-caps. The

FEP calculations also show a binding affinity decrease of

6.98 5 0.95 kcal/mol for the single mutation W39G, and

12.8 5 1.0 kcal/mol decrease for the double mutation

W39/42G, with the van der Waals interactions dominating

the contributions (90%). The additional FEP calculations in

100 mM NaCl solution (to mimic the biological environ-

ment) show similar binding affinity changes. Another change

in W39/42G double mutant is the deformation of the local

hydrophobic core, which includes the end-capping trypto-

phan residues and the basepairs on each end of the siRNA

(34).

The recent discovery of p19 suppression on RNA silencing

has led to its widespread use as an RNAi-probing tool in

various plant and animal models. However, our insufficient

understanding of the biochemical mechanism of p19/RNA

complex formation limits its further applications (72). The

current MD simulations provided a rich molecular picture

of the critical roles of stacking interactions and the hydro-

phobic core effect between the end-capping tryptophan resi-

dues and siRNA nucleotides, which explains the p19-siRNA

size selectivity and recognition mechanism (34). These large

scale simulations might also complement experiment to better

understand the evolutional correlation between viral pathoge-

nicity and RNA silencing or other transcriptional and post-

transcriptional gene silencing in host species.
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