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ARTICLE

A Generalized Combinatorial Approach for Detecting
Gene-by-Gene and Gene-by-Environment Interactions
with Application to Nicotine Dependence
Xiang-Yang Lou, Guo-Bo Chen, Lei Yan, Jennie Z. Ma, Jun Zhu, Robert C. Elston, and Ming D. Li

The determination of gene-by-gene and gene-by-environment interactions has long been one of the greatest challenges
in genetics. The traditional methods are typically inadequate because of the problem referred to as the “curse of dimen-
sionality.” Recent combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, the com-
binatorial partitioning method, and the restricted partition method, have a straightforward correspondence to the concept
of the phenotypic landscape that unifies biological, statistical genetics, and evolutionary theories. However, the existing
approaches have several limitations, such as not allowing for covariates, that restrict their practical use. In this study,
we report a generalized MDR (GMDR) method that permits adjustment for discrete and quantitative covariates and is
applicable to both dichotomous and continuous phenotypes in various population-based study designs. Computer sim-
ulations indicated that the GMDR method has superior performance in its ability to identify epistatic loci, compared
with current methods in the literature. We applied our proposed method to a genetics study of four genes that were
reported to be associated with nicotine dependence and found significant joint action between CHRNB4 and NTRK2.
Moreover, our example illustrates that the newly proposed GMDR approach can increase prediction ability, suggesting
that its use is justified in practice. In summary, GMDR serves the purpose of identifying contributors to population
variation better than do the other existing methods.
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Most, if not all, phenotypic traits of biomedical relevance
in humans and of economic importance in plants and
animals are the result of a series of dynamic, interrelated,
and hierarchical metabolic pathways under the control of
jointly acting networks of genes and environmental fac-
tors.1–5 When the change of a genetic factor or an alter-
ation in environment perturbs the overall homeostasis of
such a system, there may be detectable marginal effects
on a phenotypically relevant outcome. When some factors
approximately meet the criteria of conditional indepen-
dence, as defined by Bayesian network theory, their mar-
ginal effects can be viewed as being independent of one
another. This is the basic logic of traditional approaches
that typically attempt to isolate one factor at a time and
to ascribe the phenotype to some kind of additive or com-
binatorial effects of these factors. Such strategies, however,
can fail to detect the determinants if their measured effects
on variation depend on the context defined by other genes
and/or by exposures to environments—that is, if there
exist gene-by-gene interaction (epistasis) and/or gene-by-
environment interaction (plastic reaction norms).6,7

It has been well documented in the literature that, as
natural properties of complex networks and the ubiqui-
tous intermolecular dependence in gene regulation and
biochemical and metabolic systems, joint actions are the
norm rather than the exception in the inherited traits.7–

12 Traditional methods for detecting these as statistical in-
teractions are usually established by an extension under
the concept of single-factor–based approaches.13 Such
methods, in which the total number of possible param-
eters could rapidly outpace the total size of any sample
with increase in dimension, have several practical lim-
itations, such as having a heavy computational burden
(often being computationally intractable) and increased
type I and II errors and being less robust and potentially
biased as a result of highly sparse data in a multifactorial
model. Thus, they are hardly appropriate for tackling elu-
sive gene-gene and gene-environment interactions.

Recently, several approaches have emerged as promising
tools for detecting gene-by-gene and gene-by-environ-
ment interactions in either dichotomous or continuous
phenotypes. For example, Ritchie and her colleagues14–16

proposed an algorithm, called the “multifactor dimen-
sionality reduction” (MDR) method, for balanced case-
control or discordant sib-pair designs. Hahn and Moore17

presented a mathematical proof that shows that MDR ide-
ally discriminates between discrete clinical endpoints by
the use of multilocus genotypes. Recently, Martin et al.18

extended the MDR method for family-based designs, and
Velez et al.19 proposed a balanced accuracy function to
detect interactions in unbalanced data sets.

Since publication of the original report,14 MDR has been
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applied by many research groups to detect interactions
for a number of complex disorders (for a detailed list
of publications, see the Epistasis Blog). However, there
still exist several limitations in the currently established
MDR implementation that may restrict its practical use
in genetic data analysis: (1) it does not allow for adjust-
ment of covariates such as ethnicity, sex, weight, and/or
age, and (2) it is applicable only to dichotomous pheno-
types, not to continuous phenotypes that contain more
information.

Nelson et al.20 developed the combinatorial partitioning
method (CPM) for quantitative traits, which shares a sim-
ilarity with the MDR method. Prohibitively intensive com-
putation makes this method less practical for dealing with
cases with more than two loci. Culverhouse et al.21 ad-
vocated the restricted partition method (RPM). Although
it substantially reduces the computational burden, as com-
pared with the CPM, the RPM still requires significant
computational effort for high-dimensional data. Further,
the validity of the RPM relies on a reasonably good par-
titioning of genotypes into subgroups implemented iter-
atively by multiple comparison tests.22 Moreover, neither
Nelson et al.20 nor Culverhouse et al.21 included covariates
in their approaches.

In this article, we propose a generalized MDR (GMDR)
framework based on the score of a generalized linear
model, of which the original MDR method is a special
case. Our proposed approach has several advantages: (1)
it permits adjustment for covariates, (2) it provides a uni-
fied framework for coherently handling both dichoto-
mous and quantitative phenotypes, and (3) it is applicable
to a variety of flexible population-based study designs—
for example, it can be applied without modification to
unbalanced case-control samples and to both random and
selected samples. To help readers follow our approach, we
first present the theory and then demonstrate, through a
series of simulations for both continuous and dichoto-
mous phenotypes, the improvements it leads to in testing
accuracy and cross-validation consistency when an infor-
mative covariate exists. Finally, we apply our proposed
novel approach to a genetic data set on tobacco depen-
dence and find significant joint action of genes for nic-
otine dependence (ND).

Methods

In this section, we first introduce the generalized linear model
commonly used for either dichotomous or continuous pheno-
types. We then introduce the concept of a score statistic into the
current MDR framework and formulate our GMDR approach. We
should emphasize that the score-based derivation should be con-
sidered merely a device for obtaining an appropriate statistic to
classify multifactor cells into different two groups. It is not nec-
essarily implied that the GMDR method is likelihood based; for
example, we can use other measures computed via least-squares
regression or other statistical methods for nonnormal continuous
traits. Moreover, like MDR,16 the GMDR method can also be con-
sidered a constructive induction approach.

Models

Let denote the phenotype of individual , either dichotomousy ii

or continuous, with expectation . In general, it can beE(y ) p mi i

represented by a generalized linear model in the exponential fam-
ily of distributions that includes the normal, Poisson, and Ber-
noulli distributions23,24:

T Tl(m ) p a � x b � z g , (1)i i i

where is an appropriate link function, is the intercept,l(m ) a xi i

is the predictor-variable vector that codes gene-by-gene and/or
gene-by-environment interactions of interest, is the vector cod-zi

ing for covariates, and and are the corresponding parameterb g

vectors. In what follows, we call the “target effects.” With di-b

chotomous phenotypes following, say, a Bernoulli distribution,
a natural link function is the logit,

mil(m ) p log .i [ ](1 � m )i

For continuous phenotypes having a normal distribution, the
natural link is the identity. In the presence of statistical inter-
actions between the target attributes and covariates, the above
model can be further extended to

T T T Tl(m ) p a � x b � z g � x � z d , (2)i i i i i

where is the vector of the interaction effects and � representsd

a direct (Kronecker) product.

Score Statistics

The log-prospective likelihood of independent observations yi

and , with conditioning on the predictor-variablei p 1,2, … ,n
vectors and , can be written as23,24x zi i

n

[ ]logL(yFQ) p y l(m ) � f l(m ) ,{ }� i i i
ip1

where is the vector of observations, is the vector of param-y Q

eters, in model (1) and in model (2),Q p (a,b,g) Q p (a,b,g,d)
and is a function of with the property thatf [l(m )] l(m )i i

when is a canonical link function. The�f [l(m )] /�l(m ) p m l(m )i i i i

first partial derivative of the log-likelihood, also termed the
“score,” is

n
� logL(yFQ) y �l(m ) m �l(m )i i i ip � ,� [ ]�v �v �vip1

where . Setting in model (1) yields the residual scorev � Q b p 0
vector

ˆ ˆˆ ˆS (a ,b p 0,g ) p [S (a ,b p 0,g )] , (3)b 0 0 b 0 0j

where component , the estimatednˆ ˆ ˆS (a ,b p 0,g ) p � x (y � m )b 0 0 ij i iip1j

expectation is , and are the maximum-like-�1 Tˆ ˆ ˆ ˆm̂ l (a � z g ) a gi 0 i 0 0 0

lihood estimates (MLEs) under the null hypothesis ( ) (i.e.,H b p 00

no target effects of study), and is the contribution ofˆx (y � m )ij i i
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individual to the score for . Likewise, we obtain the residuali bj

score vector for model (2) by setting and :b p 0 d p 0

ˆˆS (a ,b p 0,d p 0,g )b 0 0j

ˆˆS (a ,b p 0,d p 0,g ) p _ ,b,d 0 0 [ ]
ˆˆS (a ,b p 0,d p 0,g )d 0 0k

where component is analogous to that inˆ ˆS (a ,b p 0,d p 0,g )b 0 0j

equation (3), component

n
T Tˆˆ ˆS (a ,b p 0,d p 0,g ) p (x � z ) (y � m ) ,�d 0 0 i i k i ik ip1

is the MLE under ( and ), and T Tˆ ˆm H b p 0 d p 0 (x � z ) (y � m )i 0 i i k i i

is the contribution of individual to the score for .i dk

Then, we define the following score-based statistics for indi-
vidual i, on the basis of normalized contributions:

ˆx (y � m )ij i iTS p , (4)�i ˆ�j Var(y )i

T T ˆ(x � z ) (y � m )i i k i iTCS p ,�i ˆ�k Var(y )i

and

T Tˆ ˆx (y � m ) (x � z ) (y � m )ij i i i i k i iT�TCS p � ,� �i ˆ ˆ� �j kVar(y ) Var(y )i i

where is the estimated variance of , and where , ,T TCˆVar(y ) y S Si i i i

and , respectively, measure the normalized contributions toT�TCSi

the scores of the target effects, target-by-covariate interactions,
and both target and target-by-covariate effects. We can use any
one of the three according to our purpose. We use to illustrateTSi

our GMDR method, which we call the “score-based MDR” meth-
od for the time being.

Score-Based MDR Method

The score-based MDR method proposed in this article uses the
same data-reduction strategy as does the original MDR meth-
od14,15—that is, the possible cells classified by a set of factors are
pooled into two distinct groups, effectively reducing the dimen-
sionality from multidimensional to one-dimensional and thereby
identifying, from all potential combinations, the specific com-
binations of factors that show the strongest association with the
phenotype. To make the presentation self-contained, we first
briefly review the current MDR procedure and then describe our
generalization under the same framework, using the score statistic
to define the two distinct groups. As shown below, the current
MDR method is a specific case of our GMDR method.

Figure 1, adapted from the work of Ritchie et al.14 and Hahn
et al.,15 illustrates the general steps involved in implementing the
MDR method for case-control or discordant-sib studies. In the
first step, the data are randomly split into some number of equal
parts for cross-validation; for an illustrative purpose, the use of
10-fold cross-validation is shown in figure 1. One subdivision is
used as the testing set and the rest as the independent training
set. Then, steps 2–5 are run for the training set and step 6 for the
testing set. (To reduce the fluctuations due to chance divisions

of the data, each possible training set and its corresponding test-
ing set are used, and the results are averaged. The consistency of
the model across cross-validation training sets [i.e., how many
times the same MDR model is identified in all the possible train-
ing sets] is also evaluated.) In the second step, a set of n genetic
and/or discrete environmental factors is selected from the list of
all factors. In the third step, the possible multifactor classes or
cells defined by the n factors are represented in n-dimensional
space. Then, the ratio of the number of cases to the number of
controls is calculated within each multifactor cell. In the fourth
step, each multifactor cell in n-dimensional space is labeled either
as “high-risk” if the ratio of cases to controls meets or exceeds a
preassigned threshold (e.g., ), including the cells that haveT T p 1
cases but no controls, as “low-risk” if the threshold is not ex-
ceeded, including the cells that have controls but no cases, or as
“empty” otherwise. A model is formulated by pooling high-risk
cells into one group and low-risk cells into another group. In the
fifth step, all potential combinations of n factors are evaluated
sequentially for their ability to classify cases and controls in the
training data, and the best n-factor model that yields minimum
misclassification error is chosen. In the sixth step, the indepen-
dent testing set is used to estimate the prediction error of the
best model selected from the fifth step. Finally, among this set
of best models, we pick the model that has minimum prediction
error and/or maximum cross-validation consistency.

In our generalization, we replace the ratio of cases to controls
by the score in each cell to discriminate between high-risk and
low-risk cells and assess classification accuracy and prediction
error, while keeping the rest of the procedure unchanged. First,
we compute the MLEs and the score values of all individuals
under the null hypothesis, : for model (1) or andH b p 0 b p 00

for model (2). Since the null hypothesis assumes there ared p 0
no effects of the putative factors or their interactions, the score
values are the same for all different factor classifications. Now, in
the third step, the cumulative score value is calculated within
each multifactor cell. In the fourth step, each multifactor cell is
labeled either as “high-risk” if the average score meets or exceeds
a preassigned threshold (e.g., 0) or as “low-risk” if the thresholdT
is not exceeded. Correspondingly, we substitute the score values
for the numbers of cases and controls, to evaluate the classifi-
cation and prediction errors, and thereby identify the best model
in later steps. The original MDR method is a specific version of
the method proposed in this report. For balanced case-control
studies with no covariates, the sample prevalence is . Them̂ p 0.5
case:control ratio within each cell is replaced by the cell’s average
score—for example, 1:1 is equivalent to a score value 0.

This generalization offers much flexibility in the use of covar-
iates, different study designs, and different types of phenotypes.
The method allows for covariate adjustments and provides a uni-
fied framework for analyzing both continuous and dichotomous
traits, as well as others, under generalized linear models. It can
also be applied without modification to unbalanced case-control,
random, and selected samples. Moreover, although we borrow
the concept of score functions to formulate it, our GMDR method
is not dependent on the usual score or likelihood properties. The
validity of the GMDR method depends only on the availability
of an appropriate statistic that can provide a measure of the as-
sociation between the putative factors and the phenotype. Other
statistics, such as moment and least-squares statistics, can also be
used. Thus, like the MDR method, the GMDR method can be
considered model free.
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Figure 1. Summary of the steps involved in implementing the MDR and GMDR methods (adapted from the work of Ritchie et al.14 and
Hahn et al.15). The two methods share the same reduction strategy. The difference is that, in the GMDR method, we substitute a score
statistic or some other quantitative measure, instead of affection status, to define the two different groups. In balanced case-control
studies with no covariate, the two methods are exactly equivalent—that is, given an equivalent threshold, the two methods yield the
same results, including the best model and classification and prediction accuracies. For a detailed description of the steps, please see
the “Score-Based MDR Method” subsection. In step 3, bars represent hypothetical distributions of cases (left, dark shading) and controls
(right, light shading); numbers not in parentheses above bars are the numbers of cases and controls, and those in parentheses are the
sums of the scores. In steps 4 and 6, numbers not in parentheses are the ratios of the number of cases to the number of controls,
and those in parentheses are the average scores. “High-risk” cells are indicated by dark shading, “low-risk” cells by light shading, and
“empty” cells by no shading.

Results
Simulation Results

To evaluate the ability of the GMDR method to detect
factor interactions, we simulated a series of data sets on a
sample consisting of 1,000 unrelated subjects for both
continuous and dichotomous phenotypes under three dif-
ferent epistatic models that have been considered before—
that is, digenic, trigenic, and tetragenic interaction mod-
els—but each with one extra risk factor (covariate) that
contributes to the phenotype. Genotypes were simulated,
for a total of 10 unlinked diallelic loci with equifrequent
alleles, including two, three, or four disease-causing genes
and the rest nonfunctional loci, with the assumption of
Hardy-Weinberg equilibrium and linkage equilibrium. To
simplify our exposition, phenotypes were generated under
model (1) with one covariate but no interaction between
genes and the covariate. We simulated patterns for di-

genic, trigenic, and tetragenic interactions, similar to
those in the work of Ritchie et al.14 and Culverhouse et
al.,21 for models in which the independent-locus main ef-
fects are small—for example, diagonal (i.e., genotypes
AABB, AaBb, and aabb are considered high-value groups
and the rest low-value groups), antidiagonal (i.e., AAbb,
AaBb, and aaBB vs. the others), and checkerboard (i.e.,
AABb, AaBB, Aabb, and aaBb vs. the others).

For the purpose of comparison between the GMDR and
original MDR methods, we used a balanced case-control
design for dichotomous phenotypes, although GMDR can
also accommodate unbalanced designs. We simulated 500
cases and 500 controls on the basis of a logit model with

, , and , where the genotypes ofa p �5.29 b p 3.09 g p 1
high risk have a penetrance of ∼0.1 and the others have
a risk of ∼0.005 when the value of the covariate is 0. The
covariate was assumed to have a normal distribution, with
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Table 1. Comparison of Cross-Validation Consistency and Prediction Accuracy between
GMDR and the Original MDR Method for a Dichotomous Trait

Modela and No. of Loci

GMDR
(Mean�SEM)

MDR
(Mean�SEM)

Cross-Validation
Consistency

Prediction
Accuracy

Cross-Validation
Consistency

Prediction
Accuracy

Digenic anti-diagonalb:
1 8.825�1.564 .579�.033 8.885�1.629 .548�.022
2 10.000�.000 .802�.016 10.000�.000 .688�.014
3 6.385�2.133 .790�.018 6.670�2.094 .673�.017
4 5.645�2.083 .758�.026 5.640�2.089 .645�.023
5 4.865�1.917 .704�.029 4.950�1.954 .611�.022
6 5.030�2.169 .666�.034 5.220�2.094 .595�.027
7 4.715�1.960 .639�.039 5.220�2.030 .580�.036
8 5.440�1.930 .618�.060 5.525�2.173 .574�.046
9 6.455�2.126 .609�.085 6.570�2.163 .570�.068

Trigenicc:
1 8.100�2.008 .540�.039 7.655�2.123 .519�.028
2 8.455�1.730 .587�.033 8.340�1.844 .552�.026
3 10.000�.000 .799�.017 10.000�.000 .675�.018
4 6.480�2.027 .763�.023 6.905�1.930 .644�.022
5 5.455�2.182 .712�.032 5.645�2.105 .611�.025
6 5.395�1.923 .672�.033 5.225�2.195 .594�.028
7 5.135�1.999 .644�.040 5.525�2.096 .587�.037
8 5.570�2.075 .621�.065 5.275�1.928 .567�.052
9 6.775�2.106 .619�.091 6.375�2.137 .567�.069

Tetragenicd:
1 8.055�2.060 .533�.037 7.500�2.074 .514�.025
2 7.595�2.113 .563�.040 6.995�2.200 .531�.026
3 7.925�1.883 .602�.035 7.265�2.172 .551�.030
4 10.000�.000 .762�.022 10.000�.000 .636�.022
5 6.915�1.949 .712�.027 6.910�1.924 .607�.025
6 6.150�2.039 .676�.033 5.780�2.094 .591�.029
7 5.690�2.023 .645�.044 5.275�2.005 .575�.037
8 5.695�2.185 .619�.068 5.705�2.196 .564�.049
9 6.740�2.058 .609�.086 6.505�2.067 .564�.070

a Each model used two groups.
b The genotypes with two uppercase-letter alleles (i.e., AAbb, AaBb, and aaBB) are set as the high-risk

group and the rest as the low-risk group.
c The genotypes with three uppercase-letter alleles are set as the high-risk group and the rest as the low-

risk group.
d The genotypes with four uppercase-letter alleles are set as the high-risk group and the rest as the low-

risk group.

mean 0 and variance 10, and to be observed for all sub-
jects; when the covariate variance is 10, the separation
between groups is ∼1 SD.

Subjects were sampled randomly from a reference pop-
ulation for studying a continuous phenotype. Continuous
phenotypes were generated in terms of a normal model
with , , and and a separation ofa p 0 g p 1 e � N(0,1)

between groups. As in the work of Culverhouseb p 0.5
et al.,21 in addition to two groups—high value and low
value—we also performed simulations under a diagonal
model, with three groups for digenic interaction models,
to assess the performance of GMDR in a more general case.
This results in a bimodal or trimodal distribution. The
group separation was further modeled by a (0, 1) covariate
assumed to come from a Bernoulli distribution with prob-
ability 0.5 and to be available for all subjects.

Scores for all the individuals, both with and without
inclusion of the covariate, were computed using equation

(4), under the null hypothesis for two types of phenotypes.
The GMDR method with a threshold of 0 was employed
in the subsequent analysis, with the use of scores with or
without covariate adjustment. In the case of a dichoto-
mous phenotype, GMDR without adjustment was equiv-
alent to the original MDR method with a threshold case-
control ratio of 1:1. An exhaustive computational search
strategy was performed for all possible one- to nine-locus
models in our simulations. The average cross-validation
consistency and prediction accuracy, as well as the SEMs,
were computed on the basis of 200 simulation replicates.
Since the different interaction forms, such as diagonal,
antidiagonal, and checkerboard models, gave similar re-
sults, for the purpose of a clear presentation, we list only
partial results.

Table 1 summarizes, for the dichotomous trait, the
means and SEMs of both the cross-validation consistency
and the prediction accuracy. As expected, with use of the
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correct model for analysis, both GMDR and MDR always
gave maximum prediction accuracies and cross-validation
consistencies. Analysis with use of a model in which only
the one-locus main effects were considered resulted in the
poorest performance among all incorrect models. The
SEMs of prediction accuracy and cross-validation consis-
tency were also the lowest for analyses under the correct
model. As compared with the original MDR method, al-
lowing for the covariate with GMDR increased prediction
accuracies under the correct analysis model—for example,
from 0.688 to 0.802, from 0.675 to 0.799, and from 0.636
to 0.762 for the digenic, trigenic, and tetragenic models,
respectively. This indicates that GMDR can effectively
eliminate the noise from the covariate and can increase
prediction accuracy, whereas failing to consider the co-
variate would lead to an increased prediction error. Al-
though all cross-validation consistencies listed in table 1
were 10.000 for both GMDR and MDR—that is, the same
models were found in each possible training sample—it
was not always true that the original MDR had the same
cross-validation consistency as did GMDR. In some cases
(data not shown), GMDR had higher cross-validation con-
sistency—for example, the means (�SEMs) of cross-vali-
dation consistency and prediction accuracy with GMDR
were and , respectively, where-9.925 � 0.436 0.673 � 0.026
as those with MDR were and8.510 � 2.091 0.566 �

, respectively, under one of the tetragenic models we0.027
evaluated. Taken together, we conclude that the GMDR
method consistently had higher or at least equal predic-
tion accuracy and cross-validation consistency and better
ability than did the MDR method to identify the correct
model.

Table 2 presents the means and SEMs of both the cross-
validation consistency and the prediction accuracy for a
continuous trait. Because the original MDR method can-
not handle continuous traits, no analogous simulation
was conducted for MDR. Here, we compared the results
of GMDR with and without covariate adjustment. The re-
sults indicated that GMDR could identify the correct
model irrespective of the presence of two or three under-
lying groups, demonstrating that GMDR is applicable to
more-general cases, not to just discrete clinical endpoints
or two risk groups of genotypes. Although GMDR with no
covariate adjustment gave reasonably good estimates, it
had consistently lower prediction accuracy and cross-val-
idation consistency than did GMDR with covariate ad-
justment, verifying that ignoring a covariate leads to loss
of prediction ability. The accuracy seemed to be decreased
for trigenic and tetragenic interaction models, and this
might be, in part, because of a lower frequency of the high-
value group and heritability.

In summary, GMDR is valid for both dichotomous and
quantitative traits and for balanced case-control and ran-
dom samples, as well as for more than two penetrance
functions. The existing methods, which fail to consider
causative covariates, would lead to reduced accuracy aris-
ing from the increased background noise contributed by

such covariates. The GMDR method, with inclusion of
any covariate that confers an increased disease risk or af-
fects a phenotypic value, is able to remedy such limita-
tions because of its capability to account for the variation
ascribable to the covariate and, thus, leads to improved
accuracy.

Application to ND Data

To illustrate use of the method proposed here, we present
an application to identify susceptibility genes for ND, with
a set of genotype data including 23 SNPs located in four
candidate genes: brain-derived neurotrophic factor (BDNF
[MIM 113505]); neurotrophic tyrosine kinase, receptor,
type 2 (NTRK2 [MIM 600456]); cholinergic receptor, nic-
otinic, alpha 4 (CHRNA4 [MIM 118504]); and cholinergic
receptor, nicotinic, beta 2 (CHRNB2 [MIM 118507]). De-
tailed information on the gene structures and SNPs is
given in tables 3 and 4; for DNA extraction and genotyp-
ing information, please refer to our other reports.25–27 The
participants involved in this study were of either African
American or European American ancestry and were en-
rolled during 1999–2004 in the U.S. Mid-South Tobacco
Family (MSTF) cohort for family-based linkage and/or as-
sociation studies. Detailed demographic and clinical char-
acteristics of this sample have been reported elsewhere27

and are not included here. A total of 191 unrelated smok-
ers and 191 nonsmokers were selected from this family
cohort (the majority of this cohort are smokers) to meet
the requirement of a balanced case-control design.

After we examined genotyping quality and excluded
possible genotyping errors on the basis of the genotype
data from other family member(s) of subjects, ethnicity,
sex, and age were modeled as covariates to compute the
scores under the null hypothesis. GMDR was performed
with the computed score. For the purpose of comparison,
we also used MDR14 to analyze the same data set. An ex-
haustive search of all possible one- to five-locus models
was first performed for all 23 SNPs. If these models had
not attained the maximum prediction accuracy and cross-
validation consistency, higher-order models were then
evaluated until the extrema were reached. P values were
determined by the sign test, a robust nonparametric test
implemented in the MDR software.15 Permutation testing
was also conducted to gain empirical P values of prediction
accuracy as a benchmark based on 10,000 shuffles.

Since inclusion of age as a covariate did not improve
the prediction accuracy, we report the results from the
analyses in which only ethnicity and sex were included
as covariates. Given that the four-locus model had at-
tained the best prediction accuracy and cross-validation
consistency, higher-order models were not evaluated. Ta-
ble 5 lists the best models, prediction accuracies, cross-
validation consistencies, and P values by the sign test ob-
tained from GMDR and MDR, for each number of loci
from one to five. GMDR and MDR yielded the same best
four-locus model that had maximum prediction accuracy
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Table 2. Comparison of Cross-Validation Consistency and Prediction Accuracy between GMDR With and
Without Covariate Adjustment for a Continuous Trait

Modela and
No. of Loci

With Adjustment
(Mean�SEM)

Without Adjustment
(Mean�SEM)

Cross-Validation
Consistency

Prediction
Accuracy

Cross-Validation
Consistency

Prediction
Accuracy

Digenic checkerboardb:
1 6.865�2.039 .497�.032 6.560�2.145 .492�.032
2 10.000�.000 .648�.019 9.995�.071 .630�.020
3 6.385�2.147 .619�.028 6.610�2.047 .601�.027
4 5.660�2.070 .588�.029 5.215�1.923 .570�.029
5 5.165�2.029 .560�.033 5.140�2.129 .550�.033
6 4.970�2.035 .544�.034 4.780�2.091 .532�.035
7 4.925�1.779 .531�.040 4.845�1.886 .522�.042
8 5.235�1.997 .525�.053 5.125�2.000 .518�.054
9 6.325�2.246 .524�.082 6.410�2.065 .520�.081

Digenic diagonalc:
1 6.910�2.120 .500�.032 6.985�2.140 .499�.032
2 10.000�.000 .683�.018 10.000�.000 .665�.018
3 6.510�1.970 .661�.025 6.550�2.112 .639�.027
4 5.385�1.938 .626�.028 5.490�2.005 .608�.028
5 5.140�1.985 .595�.030 4.985�1.778 .577�.029
6 4.890�1.949 .566�.031 4.745�2.057 .553�.036
7 5.075�2.117 .553�.042 4.910�2.048 .541�.040
8 5.520�2.141 .545�.055 5.245�2.133 .530�.055
9 5.520�2.141 .545�.055 6.390�2.299 .534�.081

Trigenicd:
1 7.175�2.046 .506�.033 7.050�2.114 .503�.033
2 6.590�2.229 .518�.037 6.170�1.988 .511�.032
3 9.640�1.143 .599�.032 9.225�1.624 .581�.036
4 6.275�2.199 .569�.036 6.210�2.100 .555�.035
5 5.130�1.981 .545�.035 5.300�2.027 .535�.033
6 4.945�2.165 .531�.037 4.695�1.884 .523�.034
7 4.945�2.067 .524�.044 4.690�1.855 .515�.041
8 5.510�2.127 .526�.054 5.190�2.033 .515�.056
9 6.445�2.214 .527�.084 6.520�2.136 .514�.079

Tetragenice:
1 7.075�2.115 .501�.033 6.790�2.114 .498�.033
2 5.835�2.152 .506�.032 5.920�2.097 .505�.032
3 4.810�1.895 .504�.034 5.070�1.999 .507�.031
4 7.335�2.588 .546�.044 6.355�2.457 .529�.041
5 5.195�2.121 .527�.039 4.930�2.082 .521�.037
6 4.825�1.971 .519�.031 4.505�1.791 .513�.033
7 4.830�2.115 .517�.042 4.695�2.141 .512�.042
8 5.120�2.066 .518�.058 5.245�2.068 .512�.058
9 6.475�2.210 .519�.082 6.515�2.091 .513�.082

a Each model used two groups, except the digenic diagonal model, which used three.
b .b p b p b p b p .5AABb AaBB Aabb aaBb
c and .b p b p 1 b p .5AABB aabb AaBb
d The genotypes with three uppercase-letter alleles are set as the high-risk group and the rest as the low-risk group.
e The genotypes with four uppercase-letter alleles are set as the high-risk group and the rest as the low-risk group.

and cross-validation consistency. However, GMDR had
better prediction ability than did MDR. For example, the
prediction accuracy and cross-validation consistency were
0.603 and 7, respectively, for GMDR, whereas they were
0.596 and 6, respectively, for MDR. GMDR yielded a P
value of .011 by the sign test, whereas MDR yielded a P
value of .055, which does not even reach the traditional
cut-off significance level of .05. The empirical P values of
prediction error by permutation testing were .014 and .021
for GMDR and MDR, respectively.

The best prediction model identified in our analysis in-

cluded one SNP, rs2229959, in CHRNA4 and three SNPs,
rs993315, rs1122530, and rs736744, in NTRK2, suggesting
that the CHRNA4 and NTRK2 genes were significant con-
tributors to ND in the MSTF cohort. The prediction ac-
curacies of the one-locus models by GMDR (MDR) were
0.453 (0.456), 0.508 (0.503), 0.508 (0.503), and 0.503
(0.525) for SNPs rs2229959, rs993315, rs1122530, and
rs736744, respectively, and the minimum P value was .377
(.623), suggesting that the contribution was not from their
main effects but from the joint action of the two genes.
Figure 2 shows the identified best model. The patterns of
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Table 3. Information on the Genes Used in this Study

Gene Chromosome Location

Gene
Size
(kb)

No.
of

Exons

mRNA
Size
(bp)

Protein
Size
(aa)

CHRNA4 20 61445109–61463192 18.08 7 5,540 627
CHRNB2 1 152806881–152815707 8.83 6 5,731 502
NTRK2 9 86473286–86828325 355.04 17 5,608 838
BDNF 11 27633016–27699872 66.86 2 3,972 247

NOTE.—All information was obtained from dbSNP, Entrez Gene, and Ensembl.

Table 4. Information on the SNPs for the Four Genes of
Study

Gene and SNP Domain
Physical
Position Allelesa

Reported
MAFb

CHRNA4:
rs2273505 Intron 2 61461322 C/T .119
rs2273504 Intron 2 61458505 A/G .470
rs2229959 Exon 5 61451998 G/T .179
rs1044396 Exon 5 61451578 C/T .389
rs3787137 Intron 5 61449544 A/G .261
rs2236196 Intron 6 61448000 A/G .266

CHRNB2:
rs2072658 5′ Flanking 152806849 A/G .074
rs2072660 Exon 6 152815345 C/T .258
rs2072661 Exon 6 152815504 A/G .261
rs3811450 3′ Flanking 152817656 C/T .132

NTRK2:
rs993315 Intron 2 86477541 C/T .495
rs1659400 Intron 6 86515814 C/T .353
rs1187272 Intron 12 86593906 C/T .443
rs1122530 Intron 12 86654172 C/T .218
rs736744 Intron 14 86704227 A/G .221
rs920776 Intron 14 86728156 C/T .217
rs1078947 Intron 15 86753072 C/T .262
rs4075274 Intron 17 86786382 A/G .332
rs729560 Intron 17 86824125 A/G .387

BDNF:
rs6265 Exon 2 27636492 A/G .269
rs2049045 Intron 1 27650817 C/G .053
rs6484320 Intron 1 27659764 A/T .310
rs988748 Intron 1 27681321 C/G .340
rs2030324 Intron 1 27683491 C/T .431
rs7934165 Intron 1 27688559 A/G .438

a The nucleotide of each SNP shown in bold represents the minor allele,
as given in dbSNP.

b Based on the minor-allele frequency (MAF) presented in dbSNP (build
123).

high-risk and low-risk cells differ across each of the dif-
ferent multilocus dimensions; that is, the influence that
each genotype of SNP rs2229959 in CHRNA4 has on ND
is dependent on the genotypes of the other three SNPs in
NTRK2 and vice versa, which also provides evidence of
the joint action of the two genes (fig. 2).

Both CHRNA4 and NTRK2 have plausible biological ba-
ses for being involved in smoking behaviors that are mod-
ulated by a series of complex neurobiological and psy-
chological processes, from nicotine metabolic pathways
to neural signal transduction to the reward circuitry of
the brain. Nicotine, the primary psychoactive, addictive
agent in tobacco, produces pleasant and rewarding psy-
chopharmacologic effects through functionally diverse
neuronal nicotinic acetylcholine receptors (nAChRs).28,29

CHRNA4 encodes the a4 subunit of nAChRs, which, to-
gether with the subunit b2 encoded by CHRNB2, form the
most prevalent nAChRs in brain. NTRK2 (also known as
the “tyrosine kinase receptor gene” [TRKB]) encodes the
neurotrophic tyrosine kinase receptor 2 (NTRK2), which
is stimulated by neurotrophins and is responsible for the
transduction of signals controlling neuropoiesis and neu-
ron survival in the CNS and peripheral nervous system.30

The binding of NTRK2 to BDNF regulates short-term syn-
aptic functions and long-term potentiation of brain syn-
apses.31 Furthermore, NTRK2 is essential for the develop-
ment of g-aminobutyric acid (GABA)ergic neurons and
regulates synapse formation, in addition to its role in the
development of axon terminals.32 Significant joint con-
tribution supports their roles in the etiology of ND. Al-
though CHRNA4 and NTRK2 are not directly interacted
each other from a biological point of view, they still ex-
hibit significant joint actions between them, indicating
that, as found by other investigators, such joint actions
of genes located in biochemically distinct circuits are
common.33,34 Despite the potential importance from a bi-
ological viewpoint, no noticeable joint action was de-
tected between the SNPs in CHRNA4 and CHRNB2 or be-
tween those in BDNF and NTRK2 in this data set. The
possible reasons may include the narrow allelic spectrum
of these genes in our sample, low linkage disequilibrium
between the SNPs under study and the causative locus,
and/or insufficient statistical power due to small sample
size.

Discussion

Although the magnitude and prevalence of interactions
or joint actions of multiple factors in biological systems
are largely unknown, “cryptic” interaction and decanali-
zation (canalization is a particular sort of joint action)
have been increasingly appreciated in exquisite studies,35–

39 suggesting that they may be the rule rather than the
exception. The possible mechanisms contributing to such
joint actions may include, but are not limited to, the fol-
lowing. First, apparent interaction is an inherent property
of a network system. As recognized by Kacser and Burns40
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Table 5. Comparison of Best Multigene Models, Prediction Accuracies, Cross-Validation Consistencies,
and P Values Identified by GMDR and MDR for ND Data

No. of Loci
Considered
and Method Best Modela

Prediction
Accuracy

Cross-Validation
Consistency Pb

1:
GMDR rs4075274 .538 4 .172
MDR rs4075274 .547 4 .172

2:
GMDR rs3787137, rs729560 .546 4 .945
MDR rs3787137, rs729560 .543 2 .377

3:
GMDR rs1044396, rs1659400, rs1122530 .558 2 .377
MDR rs1044396, rs1659400, rs1122530 .575 2 .055

4:
GMDR rs2229959, rs993315, rs1122530, rs736744 .603 7 .011
MDR rs2229959, rs993315, rs1122530, rs736744 .596 6 .055

5:
GMDR rs2229959, rs2072660, rs993315, rs1122530, rs4075274 .539 3 .377
MDR rs2229959, rs993315, rs1122530, rs736744, rs4075274 .558 4 .377

a GMDR and MDR gave the same best models for one, two, three, and four loci but different ones for five loci.
b P values were from the sign test.

and Nijhout,41 the effect of a gene on the flux (phenotype)
is context dependent, as a result of enzyme saturation
even in an unbranched multistep enzymatic pathway
where the encodings of the genes are independent of one
another. A highly interconnected metabolic network be-
haves similarly, except that the nonlinearity becomes
more complicated.41,42 Second, there is a vast repertoire of
joint action mechanisms, with positive and negative feed-
back regulation at several levels, including the biomole-
cular, functional module; tissue and organ implicated in
transcription, translation, and/or signal transduction; and
biochemical, metabolic, and physiological processes.43–46

And, third, it has been hypothesized that interactions are
a consequence of evolutionary processes.47 Phenotypic ro-
bustness to genetic and nongenetic perturbations, cana-
lization, developmental homeostasis, and buffering can all
be attributed to a response to stabilizing selection and
other selective forces in evolution.33,34,48,49 If these actions
are the result of effects of factor levels that differ in mag-
nitude or direction contingent on the background, they
may lead to a weak marginal correlation between the lev-
els of each factor individually and the phenotype. This
makes these determinants elude traditional hunting strat-
egies that consider them only in isolation. To track down
such determinants with interactive behaviors is a daunt-
ing challenge.

Although the ubiquity of joint actions appears to be a
natural property of complex inherited traits, the nature
of joint actions has not yet been well investigated and
understood. Central reasons include the lack of applica-
tion of appropriate methodologies and a common rift be-
tween biological mechanism and statistical abstraction.
For example, “epistasis,” a term coined for a specific type
of gene-by-gene interaction, has evolved to have different
meanings in biological and statistical genetics.12,50 To date,

most of the findings and biologically supported models
have been those of the joint action of multiple factors
without a clear distinction of whether they can be ade-
quately described without statistical “interaction” terms.
Interactions are represented as a deviance from additivity
in a linear model in statistics, with the result that whether
and to what extent they exist depends on the scale of
measurement employed for analysis, which is rarely de-
termined by biological principles. To shed light on the
biological basis for phenotype formation and trait varia-
tion, it will be necessary to have innovative methodolo-
gies that integrate the scale on which a trait is measured
with the mathematical model used.51–53

The conflicting definitions of interaction in biology and
statistics can be reconciled under the emerging concept
of the phenotypic landscape in hyperspace,41,54–56 in which
different aspects of the same phenomic architecture are
described. A phenotype can be hypothesized as a function
of the underlying genetic and environmental factors and
can be geometrically plotted as a landscape in a hyper-
space, each axis of which describes a range of variation
for the corresponding factor, specifically on the scale in
which that factor is measured. (A subset of underlying
factors that build the phenotype comprises a “slice” of the
whole phenotypic landscape, if all other factors are held
constant.) The topographical features of the landscape,
characterized by parameters such as gradient, curvature,
etc., are determined by the developmental network that
governs the joint action of the underlying factors, which
provides a straightforward relationship between the ter-
minology of biological “interaction” and the geometry of
landscape. An individual is a point in the hyperspace with
location determined by the values of his/her underlying
factor levels and the phenotypic value at the correspond-
ing coordinate on the phenotype surface. The point can
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Figure 2. The identified best model. In each cell, the left bar represents a positive score, and the right bar a negative score. High-
risk cells are indicated by dark shading, low-risk cells by light shading, and empty cells by no shading. Genotypes 0, 1, and 2 are,
respectively, TT, GT, and GG for rs2229959; CC, CT, and TT for rs993315; AA, AG, and GG for rs1122530; and GG, AG, and AA for rs736744.
Note that the patterns of high-risk and low-risk cells differ across each of the different multilocus dimensions, presenting evidence of
epistasis.

have different profiles along the axes or other directions
depending on its locality, implying differential response
to alterations of the underlying factors. The factor(s) con-
trolling rate-limiting step(s), or the “hub” node(s) of the
network, may have a steep profile while the others still
have relatively flat slopes and curvatures, so that the phe-
notype is sensitive to the former but robust to the latter;
but it must be remembered that the shape of the profiles
depends on how the factors (the axis scales) are measured.
The profiles of a point are region specific—that is, they
vary with position. Factors may have steep slopes in
regions that have narrow ranges for the limits of robust-
ness but are relatively flat in regions that have broader
ranges possible. Individuals in a population locate in a

limited region of the landscape, and the total phenotypic
variation is determined by both the distribution of indi-
viduals—that is, their spectrum and density—and the lo-
cal geometry of the various regions—for example, the lim-
its for robust variation. When a population under selec-
tion moves from one region to another, there is pheno-
typic evolution. Biological joint action (“interaction”), the
underlying mechanism generating phenotype, deter-
mines the topography of the hyperdimensional landscape,
whereas statistical interaction reflects, in addition, how
the phenomic architecture is measured over the distri-
bution of individuals in a population, not just the intrinsic
property of the interactive system in which the factors are
embedded. The model of phenotypic landscape that cap-
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tures the factor-phenotype mapping relationships well of-
fers a general framework for unifying the insights from
studies at the molecular genetic, gross phenotypic, and
evolutionary biological levels.

The biological concept of interaction focuses on char-
acterizing biological mechanisms, whereas the statistical
concept is purely descriptive of population variation. Al-
though constructing the landscape is a major aim in con-
temporary biology, hunting those determinants that con-
tribute to population variation is, for pragmatic reasons,
more important for public health and for making genetic
improvements in crops and animals. Not all changes in
the underlying factors yield large marginal effects on phe-
notypic variation because of buffering in the system. Only
those factors that vary sufficiently to exceed the limits for
robust variation are responsible for population variation.
Factors having no measurable effects, although playing
important roles from a biological viewpoint, are of rela-
tively less interest. The identification of phenotypically
relevant factors is the core mission of genetics and epi-
genetics. Considerable effort is being expended in at-
tempts to evolve powerful methods for identification of
factors with interactive behaviors in the statistical sense,
unfortunately often without taking biological plausibility
into account.

Among the recently emerging methods,16,22,57 combi-
natorial approaches such as MDR, the CPM, and the RPM
have a straightforward correspondence to the concept of
phenotype landscape and could bridge the gap between
statistical theory and its application to the questions of
biological interest. On the basis of the recent progress in
combinatorial approaches, we have developed a more gen-
eral combinatorial approach that can accommodate both
qualitative and quantitative phenotypes, can allow for
both discrete and continuous covariates, and can offer
more flexibility for a study design. The original MDR
method is a specific application of our new approach. In
other words, the new approach can do not only whatever
the original MDR method can do but also what the MDR
method fails to do, such as handling quantitative traits
and covariates. The results herein on simulations dem-
onstrate that this new method can substantially increase
the prediction accuracy when the phenotype is subject to
the influence of covariate(s), even when applied to com-
plex models that may or may not be common in the real
world. Our working example also provides support that
the use of the new approach is justified in practice and
illustrates that, even when a few factors are involved, there
is no need (in this example) to invoke complex statistical
interaction to describe their joint action. In contrast to
the CPM and RPM, GMDR, like MDR, looks for the major
signal in the variation (i.e., whether there is a difference
attributable to the underlying factors) and ignores minor
signals (i.e., how many underlying groups there are). Thus,
GMDR does not need to classify groups by using an anal-
ysis of variance implemented in the CPM or multiple com-
parisons in the RPM, and it can thereby largely reduce the

computational burden and be more feasible for use with
multilocus models. Also like MDR, GMDR tends to avoid
chance fluctuations due to incorrect grouping arising from
type I and II errors. For these reasons, we believe that
GMDR can serve the purpose of identifying major factors
contributing to population variation better than can other
existing methods. The software for the reported GMDR
method in this study can be downloaded from the GMDR
program Web site.

Several problems and limitations associated with the ex-
isting MDR methods, as discussed in the literature,14–16

have been circumvented within our GMDR statistical
framework, such as modification for continuous pheno-
types. The theory of phenotype landscape can also give a
clearer biological interpretation of joint action. One of the
remaining problems is how to evaluate prediction errors
for the cells that are empty in the training data set but
are not empty in the testing data set. High dimensionality
and a small sample usually lead to many such cells. This
means that the model has no clear ability to make pre-
dictions for those cells. One option is to simply leave those
empty cells out when estimating prediction errors. An al-
ternative strategy, as implemented in our GMDR algo-
rithm, is to treat them as misclassification cells when sum-
ming the scores of high-risk and low-risk cells. Such a
strategy is one way, consistent with statistical parsimony,
to impose a penalty on oversubdividing a small sample.

The problem of high-dimensional computation still re-
mains with this new approach. The computational ex-
pense in the current version is significant when 110 fac-
tors are considered but could be much reduced by limit-
ing the combinations examined to the relatively few that
are biologically more plausible.58 Initial attempts to use
new strategies such as parallel genetic algorithms are also
encouraging. We have started to tackle the problem of
higher-dimensional computation by incorporating better
optimization algorithms. Up until now, GMDR has been
applicable only to population-based (unrelated) observa-
tions. Its extension to family-based designs will require
further development of the GMDR method.
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mdr-applications.html
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software.html)
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