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ABSTRACT

It is well known that pedigree/family data record information on the coexistence in founder haplotypes of
alleles at nearby loci and the cotransmission from parent to offspring that reveal different, but complementary,
profiles of the genetic architecture. Either conventional linkage analysis that assumes linkage equilibrium or
family-based association tests (FBATs) capture only partial information, leading to inefficiency. For example,
FBATs will fail to detect even very tight linkage in the case where no allelic association exists, while a violation of
the assumption of linkage equilibrium will result in biased estimation and reduced efficiency in linkage
mapping. In this article, by using a data augmentation technique and the EM algorithm, we propose a
likelihood-based approach that embeds both linkage and association analyses into a unified framework for
general pedigree data. Relative to either linkage or association analysis, the proposed approach is expected to
have greater estimation accuracy and power. Monte Carlo simulations support our theoretical expectations
and demonstrate that our new methodology: (1) is more powerful than either FBATs or classic linkage analysis;
(2) can unbiasedly estimate genetic parameters regardless of whether association exists, thus remedying the
bias and less precision of traditional linkage analysis in the presence of association; and (3) is capable of
identifying tight linkage alone. The new approach also holds the theoretical advantage that it can extract
statistical information to the maximum extent and thereby improve mapping accuracy and power because it
integrates multilocus population-based association study and pedigree-based linkage analysis into a coherent
framework. Furthermore, our method is numerically stable and computationally efficient, as compared to
existing parametric methods that use the simplex algorithm or Newton-type methods to maximize high-order
multidimensional likelihood functions, and also offers the computation of Fisher’s information matrix. Finally,
we apply our methodology to a genetic study on bone mineral density (BMD) for the vitamin D receptor (VDR)
gene and find that VDR is significantly linked to BMD at the one-third region of the wrist.

TWO approaches are commonly used in pedigree-
or family-based gene mapping, i.e., linkage anal-

ysis (e.g., Elston and Stewart 1971; Haseman and
Elston 1972; Ott 1974; Lander and Green 1987;
Risch 1990; Ward 1993; Amos 1994; Kruglyak and
Lander 1995; O’Connell and Weeks 1995; Kruglyak
et al. 1996; Gudbjartsson et al. 2000; Abecasis et al. 2002)
and family-based association tests (FBATs) (e.g., Falk and
Rubinstein 1987; Spielman et al. 1993; Lazzeroni and
Lange 1998; Laird et al. 2000; Rabinowitz and Laird
2000). Linkage analysis focuses on gene cosegregation
that can be characterized by inheritance vectors or gene
concordance between related individuals (identical-by-
descent, IBD, or identical-in-state, IIS) at each locus, while
association tests (which, when due to linkage, are tests of
gametic association, also called linkage disequilibrium,

LD) directly utilize allele status and linkage phase that
record historic events. Pedigree data contain both these
components of information that give rise to comple-
mentary profiles of the genetic architecture. Either link-
age or association analysis alone, however, can capitalize
only on the genetic information from one of these
components and fails to grasp the whole picture, thereby
leadingtoaloss inmappingaccuracyandstatistical power.

To illustrate the limitations of applying either a link-
age or association approach alone, let us consider the
affected sib pair design used in Risch (1990) and Risch
and Merikangas (1996). First, traditional linkage anal-
ysis will give a biased result in the presence of popula-
tion association. To simplify our exposition, assume
there are a diallelic disease locus Q with alleles Q and q
and a codominant marker locus A with alleles A and a.
Alleles Q and A have the same frequency and are in
perfect association, and let pQ ¼ pA ¼ pAQ ¼ p. Table 1
lists the assumed probabilities (under no association),

1Corresponding author: 1670 Discovery Dr., Ste. 110, Charlottesville,
VA 22911. E-mail: ml2km@virginia.edu

Genetics 172: 647–661 ( January 2006)



the true probabilities, and Risch’s (1990) LOD scores
of all six possible sib configurations in the case where
marker A is unlinked to a recessively inherited disease
gene Q. Using Risch’s (1990) EM iterative Equation
4, we can obtain the maximum-likelihood estimates
(MLEs) of the posterior probabilities that the affected
sib pairs share i marker alleles IBD (i ¼ 0, 1, 2). To
illustrate the result, we take p to be a specific value, say
p ¼ 0.5, then we have ẑ2 ¼ 0:444, ẑ2 ¼ 0:487, and ẑ0 ¼
0:069, respectively, and the expected LOD (ELOD) ¼
0.384. These values deviate substantially from the true
IBD sharing scores of 0.25, 0.5, and 0.25, respectively, and
exhibit a spuriously excessive allele sharing. This suggests
that a false-positive result can occur in allele-sharing anal-
ysis. We further demonstrate that, generally, the assumed
likelihood is a monotonically decreasing function of the
recombination fraction u for u 2 [0, 0.5] (see the
appendix). This means that, if the true recombination
fraction u0 6¼ 0, we may still obtain an estimate of zero.

Second, neglecting to take account of information on
association may cause loss of statistical power. As pointed
out by Risch and Merikangas (1996), the allele-sharing
method is much less powerful than the transmission/
disequilibrium test (TDT) method in the cases they
considered, i.e., when there is no recombination and the
alleles at the two loci are perfectly associated. This arises
because the linkage statistic, the mean allele sharing,
fails to consider the allele-specific IBD sharing. Actually,
allele A (increasing disease risk) contributes more allele
sharing to the statistic, whereas allele a contributes less,
so that the overall mean allele sharing is diluted. Our
simulations of model-based linkage-only analysis sup-
port this theoretical argument, i.e., the plausible bias
and the reduced power (see simulation studies).

Because they fail to incorporate information on link-
age, FBATs are inherently conservative, and so they can-
not detect linkage even when two or more siblings are
available, unless there is also population association.
The conclusion by Risch and Merikangas (1996) was
drawn from the ideal circumstance where the marker is
the disease gene itself. In such a situation, FBATs reach
their maximum potential power. In practice, however, it
may not be true that a marker happens to have the same
variant frequencies as, and be perfectly associated with,
the disease gene of interest, even for fine mapping, as
there are always many polymorphic SNPs within a gene
whereas only a few may be responsible for the change of
its function. Both theoretical and empirical studies (e.g.,
Kruglyak 1999; Hinds et al. 2005) have shown that
the founder LD within a small region has usually been
largely disrupted by various population forces, such as
recombination, gene conversion, and/or mutation ac-
cumulated over time, so that high-LD regions with little
genetic shuffling, termed haplotype blocks, span only a
very short distance, implying that strong LD is not
inevitable with tightly linked loci. HapMap studies also
indicate that the frequencies of variants change from
one SNP to another largely within a block (Interna-
tional HapMap Consortium 2003). In practical ap-
plication, FBATs can therefore lose their theoretical
power even with closely linked loci, owing to the violation
of such an ideal assumption. Furthermore, association
may extend over a great distance, even to nonsyntenic
loci because of factors other than linkage, such as pop-
ulation subdivision and admixture, population bottle-
necks, mutation, gene conversion, meiotic drive, sampling
or ascertainment bias, nonrandom mating, and coan-
cestry. Caution is also required in that a positive result

TABLE 1

Probabilities and RISCH’s (1990) LOD scores in affected sib-pairs designs for a marker unlinked to, but perfectly associated with,
a recessive disease gene

Sib configuration
Assumed probability

(when p ¼ 0.5)a

True probability
(when p ¼ 0.5) LOD scoreb

AA, AA a2p2 1 a1p3 1 a0p4( 9
64)

ð11 7pÞ2

16ð11 pÞ2

9

16

� �
log

ẑ2p2 1 ẑ1p3 1 ẑ0p4

a2p2 1a1p3 1a0p4

AA, Aa a1[2p2(1 – p)] 1 a0[4p3(1 – p)]( 3
16)

ð1 � pÞð11 7pÞ
4ð11 pÞ2

1

4

� �
log

ẑ1½2p2ð1 � pÞ�1 ẑ0½4p3ð1 � pÞ�
a1½2p2ð1 � pÞ�1a0½4p3ð1 � pÞ�

AA, aa a0[2p2(1 – p)2]( 1
32)

ð1 � pÞ2

8ð11 pÞ2

1

72

� �
log

ẑ0

a0

Aa, Aa a2[2p(1 – p)] 1 a1[p(1 – p)] 1

a0[4p2(1 – p)2]( 5
16)

ð1 � pÞð11 3pÞ
4ð11 pÞ2

5

36

� �
log

ẑ2½2pð1 � pÞ�1 ẑ1½pð1 � pÞ�1 ẑ0½4p2ð1 � pÞ2�
a2½2pð1 � pÞ�1a1½pð1 � pÞ�1a0½4p2ð1 � pÞ2�

Aa, aa a1[2p(1 – p)2] 1 a0[4p(1 – p)3]( 3
16)

ð1 � pÞ2

4ð11 pÞ2

1

36

� �
log

ẑ1½2pð1 � pÞ2�1 ẑ0½4pð1 � pÞ3�
a1½2pð1 � pÞ2�1a0½4pð1 � pÞ3�

aa, aa a2(1 – p)2 1 a1(1 – p)3 1

a0(1 – p)4( 9
64)

ð1 � pÞ2

16ð11 pÞ2

1

144

� �
log

ẑ2ð1 � pÞ2
1 ẑ1ð1 � pÞ3

1 ẑ0ð1 � pÞ4

a2ð1 � pÞ2
1a1ð1 � pÞ3

1a0ð1 � pÞ4

a ai (i ¼ 0, 1, 2) is the prior probability that two siblings share i alleles IBD, a2 ¼ a0 ¼ 0.25, a1 ¼ 0.5, respectively.
b ẑi (i ¼ 0, 1, 2) is the estimated posterior probability that two affected siblings share i alleles IBD.
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from an FBAT does not necessarily imply the presence
of tight linkage; i.e., an FBAT alone cannot distinguish
strong association and loose linkage from weak associ-
ation and tight linkage (Elston 1998; Whittaker et al.
2000).

Therefore, it is of great interest to remedy the above
limitations. A judicious way is to take both these pieces of
information into consideration in gene mapping. Such
an idea was conceived in earlier literature (e.g., MacLean
et al. 1984) and adopted in some computer software such
as LINKAGE (Lathrop and Lalouel 1984; Lathrop
et al. 1985). Unfortunately, the bonus from joint mapping
was not recognized, so this remarkable idea has been
buried for several years (Xiong and Jin 2000). Recently,
Zhao et al. (1998) proposed a semiparametric method for
a combined linkage and linkage disequilibrium analysis.
Xiong and Jin (2000) advocated a likelihood-based
parametric method for joint analysis with nuclear family
data. Cantor et al. (2005) further extended Xiong and
Jin’s (2000) method for general pedigrees. Li et al. (2005)
suggested an approach that identifies associated and
potentially causal SNPs through joint modeling of link-
age and association. Parallel to parametric ones, variance
components (e.g., Allison et al. 1999; Fulker et al. 1999;
Abecasis et al. 2000) and nonparametric (Huang and
Jiang 1999; Wicks 2000; Wicks and Wilson 2000;
Lazzeroni 2002) methods have also been developed.
However, those methods work mostly for specific data
structures and types such as affected sib pairs, nuclear
families, and categorical traits and/or can provide a
solution only for specific problems such as single-point
analysis. The bonus of combined mapping has also not
been thoroughly explored. By invoking a data augmen-
tation technique and the EM algorithm, we have evolved a
general likelihood-based statistical framework for inte-
grating linkage and association analyses (Lou et al. 2005).
In the present article, we further extend this model-based
approach for general pedigrees. This approach allows us
to simultaneously perform segregation, linkage, and asso-
ciation analyses, i.e., to estimate penetrance functions,
genetic distances, and association parameters, as well as to
carry out the corresponding hypothesis tests within a
unified framework. More appealingly, it adds several
unique strengths to existing parametric methods (e.g.,
Xiong and Jin 2000; Cantor et al. 2005; Li et al. 2005).
First, this framework is conceptually straightforward, flex-
ible, easy to generalize, and also comprehensive, so that it
covers a wide range of cases with multiple loci and/or
multiple alleles. Multilocus mapping and epistatic QTL
mapping can be implemented as well under the same
concept. Second, our new approach is computationally
efficient and powerful. We formulated the closed-form
solutions for MLEs implemented with EM iteration and
thus avoid the computational difficulty of high-order
multidimensional searches, leading to less computational
time per iteration and quick convergence. Third, due to
the advantage of the EM algorithm over the simplex

algorithm and Newton-type methods in the context of
a mapping study, as pointed out by some authors (e.g.,
Lander and Green 1987), our new approach is numer-
ically stable, as compared with existing methods. In our
experience, a wide range of initial values appears to give
good convergence. Finally, we offer the computation of
Fisher’s information matrix and hence can provide the
estimation precision of MLEs. Although this article em-
phasizes a demonstration of the improvement in mapping
accuracy using a two-locus model, i.e., one marker and one
trait gene, we use an interval mapping model to describe
our new approach in the model and method section for
readers to have a clearer picture about it. After presenting
the theory, we use simulation studies to compare the power
of an FBAT, of the pure linkage method, and of our new
approach and the estimation precision of the latter two. An
application to the genetic study of bone mineral density
(BMD) is used to demonstrate this new methodology.
Finally, we discuss some relevant issues to provide further
insights into this approach.

MODEL AND METHOD

Here we use a three-diallelic-locus model to illustrate
the approach. Suppose there are three loci, one trait
gene or QTL, Q, bracketed by a pair of flanking mark-
ers, A and B, respectively. Let A, a, Q, q, B, and b be the
alleles at the three loci, respectively. All the alleles to-
gether form eight haplotypes, AQB, AQb, AqB, Aqb, aQB,
aQb, aqB, and aqb. These haplotypes unite to generate a
total of 36 diplotypes, AQB/AQB, AQB/AQb, . . . , and aqb/
aqb, where the ‘‘/’’ denotes the separation of the ma-
ternally and paternally derived gametes. The 36 diplo-
types are collapsed into 27 zygote genotypes, each with an
identical allelic combination at all the loci, and further,
into 9 marker genotypes and 3 QTL genotypes. Owing
to the fact that genotypes are conflated data that ignore
the linkage phases of diplotypes, some of the genotypes
consist of .1 diplotype. For example, all 4 diplotypes
AQB/aqb, AQb/aqB, AqB/aQb, and Aqb/aQB exhibit the
same genotype, AaQqBb. To express the relationship
between diplotypes and genotypes, we denote by Gð�Þ,
Gmð�Þ, and Gqð�Þ the many–one mapping operators tak-
ing the genotypes at all loci, the marker loci and the
QTL, of a diplotype in parentheses, respectively. Thus,
GðAQB=aqbÞ¼GðAQb=aqBÞ¼ GðAqB=aQbÞ¼GðAqb=aQBÞ¼
AaQqBb; GmðAQB=aqbÞ ¼ GmðAQb=aqBÞ¼GmðAqB=aQbÞ¼
GmðAqb=aQBÞ ¼ AaBb, and GqðAQB=aqbÞ ¼ GqðAQb=
aqBÞ ¼ GqðAqB=aQbÞ ¼ GqðAqb=aQBÞ ¼ Qq.

We use pAQB, pAQb, . . . , paqb and PAQB/AQB, PAQB/AQb, . . . ,
Paqb/aqb to denote the frequencies of the haplotypes AQB,
AQb, . . . , aqb and diplotypes AQB/AQB, AQB/AQb, . . . ,
aqb/aqb, respectively, in the population studied. If the
population is at Hardy–Weinberg equilibrium, we have

PAQB=AQB ¼ p2
AQB ; PAQB=AQb ¼ 2pAQBpAQb ; . . .
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The frequencies of the haplotypes can be decomposed
into different components determined by the allele fre-
quencies at each locus and LD coefficients of different
orders; e.g.,

pAQB ¼ pApBpQ 1 pADBQ 1 pBDAQ 1 pQ DAB 1DAQB ;

where pA, pB, and pQ are the frequencies of alleles A, B,
and Q, respectively and DAQ, DBQ, DAB, and DAQB are the
LD coefficients, respectively. Reversely, the frequencies of
alleles and LD coefficients can also be represented by the
frequencies of haplotypes; e.g., pA ¼ pAQB 1 pAQb 1 pAqB 1

pAqb, . . . , DAB ¼ pAB � pApB, . . . , and DAQB ¼ pAQB �
pADBQ � pBDAQ � pQDAB � pApBpQ. For a more general
expression with an arbitrary number of alleles and/or
loci, see one of our recent communications (Lou et al.
2003) for details.

Crossing over between a pair of contiguous loci may take
place during meiosis. Either recombination (R) or non-
recombination (N) between each of the pairs of adjacent
loci (i.e., A and Q, B and Q) will give rise to four re-
combination configurations described by NN, NR, RN, or
RR. The frequency of a new haplotype is a function of the
recombination fraction(s) associated with its recombina-
tion configuration(s). For simplicity, we here ignore cross-
over interference during gametogenesis. Let uAQ and uBQ

be the recombination fractions between loci A and Q and
between B and Q, respectively. The frequencies of these
four configurations can be expressed in terms of uAQ and
uBQ, i.e., (1 � uAQ)(1 � uBQ), (1 � uAQ)uBQ, uAQ(1 � uBQ),
or uAQuBQ corresponding to NN, NR, RN, or RR, re-
spectively. Furthermore, the conditional probability of a
zygote randomly formed by the haplotypes generated
from a pair of parents is a product of the frequencies of
paternally and maternally original haplotypes.

For any complex trait, either continuous or discrete,
there is no one–one correspondence between genotype
and phenotype. The conditional probability of observ-
ing a phenotype given a specified genotype, termed the
penetrance function, is thus used to characterize the rela-
tionship between genotype and phenotype. Because the
phenotype is genetically determined by the genotypes at
locus Q, the penetrance function, given diplotype D,
can be expressed as

f ðyjDÞ ¼ f ðyjGqðDÞÞ ¼ 1ffiffiffiffiffiffi
2p

p
s

exp �
ðy � mGqðDÞÞ2

2s2

" #
;

for a continuous phenotype in which it is typically assumed
that the distribution within each subpopulation defined by
genotype is normal, wheremGqðDÞ is the genotypic mean of
QTL genotype GqðDÞð¼ QQ ; Qq; or qqÞ and s2 is the
residual variance. For a categorical trait the penetrance
f ðyjGqðDÞÞ is defined as the probability that individuals
with genotypeGqðDÞmanifest phenotype y. We may specify
different penetrance functions to mothers, fathers, and
children on the basis of the inheritance pattern of the trait
under investigation. To make this presentation terser, here

we assume the same penetrance for the parental and off-
spring generations. However, it is not difficult to recast
the methodology to be applicable to the case with different
penetrance functions. Mendelian trait(s) and marker(s)
can be viewed as specific examples with full penetrance.
Then the methodology developed hereinafter is also ap-
plicable to their analysis.

In a gene-mapping study aimed at estimating param-
eters of penetrance, association, and position (usually
measured by the recombination fractions), a major chal-
lenge is that latent data exist, also referred to as missing
data, that cannot be directly observed, such as disease
genotype, diplotype, and recombination configuration.
We hypothesize the observed data, i.e., marker geno-
types and phenotypes, together with the latent data, i.e.,
diplotypes and recombination configurations, as com-
plete data, also termed augmented data. Correspondingly,
the observed data alone are called incomplete data. The
observed data can be viewed as mixtures of complete
data and then we can use a mixture model to tackle the
issue of parameter estimation.

The complete data likelihood: Denote marker, dip-
lotype/haplotype, recombination configuration, and phe-
notype data by M, D/H, R, and y, respectively. Observed
marker and phenotypic data are in boldface type while
the missing data for parent and child diplotypes and
child recombination configurations are in script type.
We first use nuclear family data, in which there is no
phenotypic covariance between parents and children, to
demonstrate parameter estimation within a unified frame-
work of interval mapping and LD mapping, and then
extend the method to general pedigree data.

With N unrelated nuclear families randomly drawn
from a general population, the overall likelihood is the
product of individual family likelihoods, denoted L1,
L2, . . . , LN. Let us present an example to demonstrate
how to build the likelihood function. In the example,
family i consists of a mother with diplotype AQB/AQB
(Dm

i ) and phenotype yi
m, a father with AQB/Aqb (Df

i )
and yi

f, and two children with diplotypes and recombi-
nation configurations AQB/AQB and NN/RN (Do

i1; Ri1)
and AQB/AQb and NN/NR (Do

i2; Ri2), respectively, and
phenotypes yo

i1 and yo
i2, respectively. The likelihood can

be expressed by a three-level hierarchical model,

Li ¼ Lðym
i ; yf

i ; yo
i1; yo

i2; Dm
i ; Df

i ; Do
i1; Ri1; Do

i2; Ri2jVÞ
}PrðDm

i ÞPrðDf
i Þf ðym

i jDm
i Þf ðyf

i jDf
i Þ

3
Y2

j¼1

PrðDo
ij ; Rij jDm

i ; Df
i Þf ðyo

ij jDo
ijÞ

h i
} p3

AQBpAqbuAQ ð1 � uAQ Þ3uBQ ð1 � uBQ Þ3

3 f ðym
i jQQ Þf ðyf

i jQqÞf ðyo
i1jQQ Þf ðyo

i2jQQ Þ;

where V is the vector of unknown parameters contain-
ing three subsets of population genetic parameters
(haplotype frequencies, VP), penetrance parameters
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(e.g., genotypic values and the residual variance, VQ),
and position parameters (recombination fractions,
VR), related to the parental diplotype distribution, the
phenotype density functions, and PrðDo

ij ; Rij jDm
i ; Df

i Þ,
respectively. PrðDo

ij ; Rij jDm
i ; Df

i Þ represents the condi-
tional probability of child j of family i having diplotype
Do

ij and recombination configuration Rij given parental
diplotypes Dm

i and Df
i . The overall likelihood can be

represented as

Lðym; yf ; yo; Dm; Df ; Do; RjVÞ

¼
YN
i¼1

Li }
YN
i¼1

PrðDm
i ÞPrðDf

i Þf ðym
i jDm

i Þf ðyf
i jDf

i Þ

3
QNi

j¼1 PrðDo
ij ; Rij jDm

i ; Df
i Þf ðyo

ij jDo
ijÞ

h i
8<
:

9=
;

} p
nAQB

AQB p
nAQb

AQb . . . p
naqb

aqb u
nuAQ

AQ ð1 � uAQ Þ
nūAQ u

nuBQ

BQ ð1� uBQ Þ
nūBQ

3
YN
i¼1

f ðym
i jDm

i Þf ðyf
i jDf

i Þ
YNi

j¼1

f ðyo
ij jDo

ijÞ
" #

; ð1Þ

where the y’s are the phenotypic vectors; D’s are the
diplotype vectors; R is the recombination configuration
for the children; Ni is the number of children within family
i; nAQB, nAQb, . . . , naqb are the numbers of haplotypes AQB,
AQb, . . . , aqb appearing in parental diplotypes, respec-
tively; nuAQ

and nūAQ
are the numbers of recombinants and

nonrecombinants between loci A and Q existing in the
recombination configurations, respectively; and nuBQ

and
nūBQ

are those between B and Q, respectively.
In many cases, information is partial because of experi-

mental errors, financial limitations, or other practical
constraints, as often occurs in studies of late-onset dis-
eases such as Alzheimer’s disease where parents are
unavailable. Since missing phenotypic observations can
be treated by simply setting the corresponding f(yjD)’s
equal to 1 wherever they occur in the above likelihood,
Equation 1 automatically covers the likelihoods of fam-
ily data with missing phenotypes like TDT-type data. For
data with missing diplotypes such as sibship data, in-
stead of Equation 1 we can use a form of mixture model
summing over all plausible diplotypes and/or recombi-
nation configurations compatible with the available
data to represent such likelihoods and so address the
statistical analysis within the EM framework described in
The incomplete data likelihood section.

Equation 1 can be generalized to the case ofN pedigrees,

LðyF; yN; DF; DN; RjVÞ ¼
YN
i¼1

Li } p
nAQB

AQB p
nAQb

AQb . . . p
naqb

aqb

3 u
nuAQ

AQ ð1 � uAQ Þ
nūAQ

3 u
nuBQ

BQ ð1 � uBQ Þ
nūBQ

3
YN
i¼1

QN F
i

j¼1 f ðyF
ij jDF

ijÞ

3
QN N

i
j¼1 f ðyN

ij jDN
ij Þ

2
4

3
5;

ð19Þ
where the likelihood of pedigree i,

Li ¼
YN F

i

j¼1

PrðDF
ijÞf ðyF

ij jDF
ijÞ

h iYN N
i

j¼1

PrðDN
ij ; Rij jDm

ij ; Df
ijÞf ðyN

ij jDN
ij Þ

h i

¼
YN F

i 1N N
i

j¼1

PrðDij Æ;Rij j�æÞf ðyij jDijÞ
h i

;

assuming that the rightmost is ordered as Elston and
Stewart’s (1971) recursive form in which PrðDij ; ÆRij j�æÞ
represents the probability of either child j given the par-
ental diplotypes or founder j within pedigree i; Dm

ij and
Df

ij are the parental diplotypes of nonfounder j within
pedigree i, respectively; yFandyNare the founderand non-
founder phenotypic vectors; DF and DN are the founder
and nonfounder diplotype vectors; R is the recombina-
tion configuration for nonfounders, respectively; Ni

F and
Ni

N are the numbers of founder(s) and nonfounder(s)
within pedigree i; nAQB, nAQb, . . . , naqb are the numbers
of haplotypes AQB, AQb, . . . , aqb appearing in founder
diplotypes, respectively; and nuAQ

, nūAQ
; nuBQ

, and nūBQ
are

the numbers of recombinants and nonrecombinants be-
tween loci A and Q and between B and Q across all N
pedigrees, respectively.

The maximum-likelihood estimator can be derived
through differentiating the log-likelihood with respect
to V and then setting each derivative equal to 0 and
solving the set of simultaneous equations. Define the
identity indicators

I ðQQ jDÞ ¼

1 if GqðDÞ ¼ QQ ;

i:e:;diplotypeD is compatible with

the genotype QQ

0 otherwise;

8>>>>><
>>>>>:

I ðQqjDÞ ¼
1 if GqðDÞ ¼ Qq

0 otherwise;

(

and

I ðqqjDÞ ¼
1 if GqðDÞ ¼ qq

0 otherwise:

(

The MLEs for the likelihood (1) are

p̂AQB ¼ nAQB

4N
; p̂AQb ¼

nAQb

4N
; . . . ; p̂aqb ¼

naqb

4N
;

ûAQ ¼
nuAQ

nuAQ
1nūAQ

; ûBQ ¼
nuBQ

nuBQ
1nūBQ

;

m̂G ¼
PN

i¼1 I ðG jDm
i Þym

i 1 I ðG jDf
i Þyf

i 1
PNi

j¼1 I ðG jDo
ij Þyo

ij

h i
PN

i¼1 I ðG jDm
i Þ1 I ðG jDf

i Þ1
PNi

j¼1 I ðG jDo
ij Þ

h i ;

ŝ2 ¼
P

N
i¼1 ðym

i � m̂GqðDm
i ÞÞ2 1 ðyf

i � m̂GqðDf
i ÞÞ

2 1
PNi

j¼1ðyo
ij � m̂GqðDo

ij ÞÞ
2

h i
2N 1

PN
i¼1 Ni

;

ð2Þ

for quantitative traits, and
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f̂ ðyjGÞ ¼
XN
i¼1

X0

0

I ðG jDm
i ÞI ðy ¼ ym

i Þ1 I ðG jDf
i ÞI ðy ¼ yf

i Þ
" 

1
XNi

j¼1

I ðG jDo
ij ÞI ðy ¼ yo

ij Þ
#!� XN

i¼1

X0

0

I ðG jDm
i Þ

" 

1 I ðG jDf
i Þ1

XNi

j¼1

I ðG jDo
ij Þ
#!

;

for categorical traits, where G 2 fQQ, Qq, qqg; and in-
dicators I(y ¼ yi

m), I(y ¼ yi
f), and I(y ¼ yij

o) are 1 when y ¼
yi

m, y ¼ yi
f, and y ¼ yij

o, respectively, and 0 otherwise. The
MLEs of the recombination parameters for likelihood
(19) are the same as those for likelihood (1), and the
other MLEs have similar forms,

p̂AQB ¼ nAQB

2
P

N
i¼1 N F

i

; p̂AQb ¼
nAQb

2
P

N
i¼1 N F

i

; . . . ; p̂aqb ¼
naqb

2
P

N
i¼1 N F

i

;

m̂G ¼
P

N
i¼1

PN F
i

j¼1 I ðG jDF
ij ÞyF

ij 1
PN N

i
j¼1 I ðG jDN

ij ÞyN
ij

h i
P

N
i¼1

PN F
i

j¼1 I ðG jDF
ij Þ1

PN N
i

j¼1 I ðG jDN
ij Þ

h i ;

ŝ2 ¼
P

N
i¼1

PN F
i

j¼1ðyF
ij � m̂GqðDF

ij ÞÞ
2 1

PN N
i

j¼1ðyN
ij � m̂GqðDN

ij ÞÞ
2

h i
P

N
i¼1ðN F

i 1N N
i Þ ;

ð29Þ

for quantitative traits, and

f̂ ðyjGÞ ¼
P

N
i¼1

PN F
i

j¼1 I ðG jDF
ij ÞI ðy ¼ yF

ij Þ1
PN N

i
j¼1 I ðG jDN

ij ÞI ðy ¼ yN
ij Þ

h i
P

N
i¼1

PN F
i

j¼1 I ðG jDF
ij Þ1

PN N
i

j¼1 I ðG jDN
ij Þ

h i ;

for category traits.
Unlike the traditional approach, for flexibility we

make here no assumption such as that the recombina-
tion fraction between the two markers can be known
a priori. If the recombination fraction between the two
markers (uAB) is available, however, the corresponding
terms with respect to one of the recombination frac-
tions, uAQ and uBQ, will disappear from the above esti-
mation procedure since any one of the two is a function
of the other one and of uAB. A grid search procedure can
also be used for estimating QTL position on the basis of
the preceding methodology.

The incomplete data likelihood: In practice, only
markergenotypeandphenotypedataareobserved,whereas
the data on diplotypes, recombination events, and QTL
genotypes are hidden. The observed data are mixtures
of component complete data, and the statistical analysis
becomes a typical mixture issue. Let us go back to the
above example again and assume that only marker
genotypes AABB (Mi

m), AABb (Mi
f), AABB (M o

i1), and
AABb (M o

i2) and phenotypes ym
i ; yf

i ; yo
i1, and yo

i2 are avail-
able for the mother, father, and two children of family i,
respectively. Now M m

i is a mixture of diplotypes AQB/
AQB, AQB/AqB, and AqB/AqB; and Mi

f is composed of
diplotypes AQB/AQb, AQB/Aqb, AQb/AqB, and AqB/Aqb;
and both M o

i1 and M o
i2 also consist of unidentified dip-

lotype(s) together with recombination configuration(s)
nested within the paired parental diplotypes. The likeli-
hood can be formulated as

Li ¼ Lðym
i ; yf

i ; yo
i1; yo

i2; M m
i ; M f

i ; M o
i1; M o

i2jVÞ

¼ PrðAQB=AQBÞPrðAQB=AQbÞf ðym
i jQQ Þf ðyf

i jQQ Þ

3
X

*2fN ;Rg
PrðAQB=AQB; **=**jAQB=AQB; AQB=AQbÞf ðyo

i1jQQ Þ

3
X

*2fN ;Rg
PrðAQB=AQb; **=**jAQB=AQB; AQB=AQbÞf ðyo

i2jQQ Þ

1PrðAQB=AQBÞPrðAQB=AqbÞf ðym
i jQQ Þf ðyf

i jQqÞ

3

X
*2fN ;Rg

PrðAQB=AQB; **=*N jAQB=AQB; AQB=AqbÞf ðyo
i1jQQ Þ

1
X

*2fN ;Rg
PrðAQB=AqB; **=*R jAQB=AQB; AQB=AqbÞf ðyo

i1jQqÞ

2
664

3
775

3

X
*2fN ;Rg

PrðAQB=AQb; **=*R jAQB=AQB; AQB=AqbÞf ðyo
i2jQQ Þ

1
X

*2fN ;Rg
PrðAQB=Aqb; **=*N jAQB=AQB; AQB=AqbÞf ðyo

i2jQqÞ

2
664

3
775

1 � � �
¼ LiðAQB=AQB; AQB=AQbÞ1LiðAQB=AQB; AQB=AqbÞ1 � � �

¼
X
Dm

i ;Df
i

LiðDm
i ; Df

i Þ;

where
P

*2fN ;Rg denotes summation over all recombi-
nation configuration(s) by taking ‘‘*’’ as either recom-
bination or nonrecombination that is compatible with
parent and child diplotypes; Li(AQB/AQB, AQB/AQb),
Li(AQB/AQB, AQB/Aqb), . . . , are probabilities of the
mother and father of family i with diplotypes AQB/AQB
and AQB/AQb, AQB/AQB and AQB/Aqb, . . . , respec-
tively; and

P
ðDm

i ;Df
i Þ

denotes summation over all pairs of
ðDm

i ; Df
i Þ compatible with the observed marker pheno-

types in family i. The partial derivative of the log-
likelihood of family i is

@

@V
ln Lðym

i ; yf
i ; yo

i1; yo
i2; M m

i ; M f
i ; M o

i1; M o
i2jVÞ

¼ pi
ðAQB=AQB;AQB=AQbÞ

@
@VP

ln PrðAQB=AQBÞ
1 @

@VP
ln PrðAQB=AQbÞ

1 @
@VQ

ln f ðym
i jQQ Þ

1 @
@VQ

ln f ðyf
i jQQ Þ

2
666664

3
777775

1
X

*2fN ;Rg
pi1
ðAQB=AQB;**=**jAQB=AQB;AQB=AQbÞ

3

@
@VR

ln PrðAQB=AQB; **=**jAQB=AQB; AQB=AQbÞ
1 @

@VQ
ln f ðyo

i1jQQ Þ

" #

1
X

*2fN ;Rg
pi2
ðAQB=AQb;**=**jAQB=AQB;AQB=AQbÞ

3

@
@VR

ln PrðAQB=AQb; **=**jAQB=AQB; AQB=AQbÞ
1 @

@VQ
ln f ðyo

i2jQQ Þ

" #

1 � � � ;

where pi
ðDm

i ;Df
i Þ

and p
ij

ðDo
ij ;Rij jDm

i ;Df
i Þ

are the posterior prob-
abilities that the mother and father of family i have
diplotypes Dm

i and Df
i and that child j from family i has

diplotype Do
ij and reduced recombination Rij produced

by the mother and father diplotypes Dm
i and Df

i , re-
spectively; e.g.,

pi
ðAQB=AQB;AQB=AqbÞ ¼

LiðAQB=AQB; AQB=AqbÞ
Li
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and

pi1
ðAQB=AQB;NN =NN jAQB=AQB;AQB=AqbÞ

¼ pi
ðAQB=AQB;AQB=AqbÞ

3 ½PrðAQB=AQB; NN =NN jAQB=AQB; AQB=AqbÞ

3 f ðyo
i1jQQ Þ�=

X
*2fN ;Rg

PrðAQB=AQB; **=*N jAQB=AQB; AQB=AqbÞ

2
4

3 f ðyo
i1jQQ Þ

1
X

*2fN ;Rg
PrðAQB=AqB; **=*R jAQB=AQB; AQB=AqbÞ

3 f ðyo
i1jQqÞ

�
:

The grand likelihood of the incomplete data, including
the phenotype (y) and marker information (M), can be
represented as

Lðym; yf ; yo; Mm; Mf ; Mo jVÞ

}
YN
i¼1

Lðym
i ; yf

i ; yo
i1; yo

i2; . . . ; M m
i ; M f

i ; M o
i1; M o

i2; jVÞ;

ð3Þ

where Mm, Mf, and Mo are the marker genotypes of the
mothers, fathers, and children, respectively.

Differentiating the log-likelihood of Equation 3 leads
to

@

@V
ln Lðym; yf ; yo; Mm; Mf ; MojVÞ

¼
XN
i¼1

@ ln Lðym
i ; yf

i ; yo
i1; yo

i2; . . . ;M m
i ; M f

i ; M o
i1; M o

i2; . . . jVÞ
@V

¼ n*
AQB

@ ln pAQB

@VP
1n*

AQb

@ ln pAQb

@VP
1 � � � n*

aqb

@ ln paqb

@VP

1n*
uAQ

@ ln uAQ

@VR
1n*

ūAQ

@ lnð1 � uAQ Þ
@VR

1n*
uBQ

@ ln uBQ

@VR

1n*
ūBQ

@ lnð1 � uBQ Þ
@VR

1
XN
i¼1

X
Dj ;De

pi
ðDj ;DeÞ

@ ln f ðym
i jDjÞ

@VQ
1

@ ln f ðyf
i jDeÞ

@VQ

� �

1
PNi

j¼1

P
Dz ;Rt

p
ij
ðDz ;Rt jDj ;DeÞ

@ ln f ðyo
ij jDzÞ

@VQ

8>>><
>>>:

9>>>=
>>>;; ð4Þ

where nAQB* , nAQb* , . . . , naqb* are the expected numbers
of haplotypes AQB, AQb, . . . , and aqb, respectively;
nuAQ

* ; nuBQ
* ; nūAQ

* , and nūBQ
* are the expected numbers of re-

combinants and nonrecombinants between A and Q
and between B and Q, respectively; and sums are taken
over all diplotypes and recombination configurations
consistent with the marker genotypes.

Similarly, the pedigree-based likelihood is

LðyF; yN; MF; MN jVÞ}
YN
i¼1

LðyF
i ; yN

i ; M F
i ; M N

i jVÞ

¼
YN
i¼1

YN F
i

j¼1

X
Dj

½PrðDjjMij Þf ðyij jDjÞ�

3
YN N

i

j¼1

X
De ;Rt

½PrðDe; RtjDm
ij ; Df

ij Þf ðyN
ij jDeÞ�

¼
YN
i¼1

YN F
i 1N N

i

j¼1

X
Dj,;Rt.

½PrðDj , ; Rt j � . Þf ðyij jDjÞ�;

ð39Þ

where MF and MN are the marker genotypes of found-
er(s) and nonfounder(s), respectively, the last line is
placed in a recursive order, and

P
denotes summation

over all diplotype(s) and/or recombination configura-
tion(s) compatible with the observed data. The partial
derivative is

@

@V
ln LðyF ; yN; MF ; MN jVÞ ¼ n*

AQB

@ ln pAQB

@VP
1 n*

AQb

@ ln pAQb

@VP

1 � � � 1 n*
aqb

@ ln paqb

@VP

1n*
uAQ

@ ln uAQ

@VR
1n*

ūAQ

@ lnð1 � uAQ Þ
@VR

1n*
uBQ

@ ln uBQ

@VR
1n*

ūBQ

@ lnð1 � uBQ Þ
@VR

1
XN
i¼1

PN F
i

j¼1

P
Dj

p
ij
ðDj Þ

@ ln f ðyF
ij jDjÞ

@VQ

1
PN N

i
j¼1

P
Dj ;De

P
Dz ;Rt

p
ij
ðDz ;Rt jDj ;De Þ

@ ln f ðyN
ij jDz Þ

@VQ

2
664

3
775:

ð49Þ

We can adopt the peeling algorithm (Elston and Stewart

1971) to calculate the likelihood and the posterior prob-
abilities. Under the assumption of linkage equilibrium,
our approach reduces to an EM version of Elston
and Stewart’s (1971) algorithm. For pedigree(s) with
loop(s), we can use Lange and Elston’s (1975) method
to break the loop(s).

We implement the EM algorithm (Dempster et al.
1977) to estimate the parameters of the likelihood
function, i.e., haplotype frequencies VP, QTL genotypic
effects and residual variance or penetrances VQ, and
recombination fractions VR. In the E-step, we update
the posterior probabilities and expected numbers con-
ditional on the initial values or the estimates of the
current iteration. In the M-step, substituting expected
numbers nAQB* , nAQb* , . . . , naqb* , nuAQ

* ; nuBQ
* ; nūAQ

* , and
nūBQ

* and posterior probabilities
P

Dj;Dz
I ðG jDjÞpi

ðDj;DzÞ;P
Dj;Dz

I ðG jDzÞpi
ðDj;DzÞ, and

P
Dj;Dz

P
D§;Rt

I ðG jD§Þ �
p

ij
ðD§;RtjDj;DzÞ for I ðG jDf

i Þ, I ðG jDm
i Þ, and I ðG jDo

ijÞ in
Equations 2 for likelihood (3), respectively, G 2 fQQ,
Qq, qqg, we compute the next cycle of MLEs of the un-
known parameters. Likewise, we perform a similar M-step
in (29) for the pedigree-based likelihood (39). These two
steps are repeated until convergence is attained. Allele
frequencies and linkage disequilibria, QTL additive and
dominance effects, and relative locations on the chro-
mosome can be calculated from the haplotype frequen-
cies, QTL genotypic effects, and recombination fractions,
respectively.
The asymptotic variance–covariance matrix of the

MLEs: Louis’ (1982) procedure or the supplemented
EM (SEM) (Meng and Rubin 1991) that embeds the
computation of the observed information within the
EM iteration can be adopted to obtain the asymptotic
variance–covariance matrix for MLEs of haplotype fre-
quencies, genotypic effects, residual variance, and re-
combination fraction(s). In our computer program we
use the improved equations of Louis’ (1982) method,
Lou et al.’s (2005) (C3) and (C5), to compute the
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observed information matrix of the parameters (i.e., the
haplotype frequencies, penetrance or genotypic effects
plus residual variance, and recombination fractions).
The information on other parameters can be calculated
with that for these basic parameters. The variance–
covariance matrix for genetic effects and allele frequen-
cies can be calculated easily since they are linear functions
of the haplotype frequencies or genotypic effects. The
approximate variances of the linkage disequilibria can
be found by the delta method, based on their Taylor series
expansions. If the parameter vector u is a function of the
basic parameter f, i.e., u ¼ f(f), then the approximate
variance–covariance of û ¼ f ðf̂Þ is given by

VarðûÞ ¼ @f ðfÞ
@f

Varðf̂Þ@f ðfÞ
@fT : ð5Þ

For example,

Var

d̂AB

d̂AQ

d̂BQ

d̂AQB

0
BBB@

1
CCCA=Ŝ

T
3Vâr

p̂AQB

p̂AQb

p̂AqB

p̂Aqb

p̂aQB

p̂aQb

p̂aqB

0
BBBBBBBB@

1
CCCCCCCCA

3 Ŝ;

where

Ŝ ¼

1 � p̂A � p̂B 1 � p̂A � p̂Q 1 � p̂B � p̂Q

�p̂B 1 � p̂A � p̂Q �p̂B

1 � p̂A � p̂B �p̂Q �p̂Q

�p̂B �p̂Q 0 �
�p̂A �p̂A 1 � p̂B � p̂Q

0 �p̂A �p̂B

�p̂A 0 �p̂Q

0
BBBBBBBBBBBB@

1 � D̂AB � D̂AQ � D̂BQ � p̂A � p̂B � p̂Q 1 2p̂Ap̂B 1 2p̂A p̂Q 1 2p̂B p̂Q

2p̂A p̂B 1 2p̂B p̂Q � D̂AB � D̂BQ � p̂B

2p̂Ap̂Q 1 2p̂B p̂Q � D̂AQ � D̂BQ � p̂Q

2p̂B p̂Q � D̂BQ

2p̂Ap̂B 1 2p̂Ap̂Q � D̂AB � D̂AQ � p̂A

2p̂Ap̂B � D̂AB

2p̂Ap̂Q � D̂AQ

1
CCCCCCCCCCCCCA
:

Hypothesis testing: The following hypotheses are
tested sequentially: (1) the existence of a trait gene and
(2) various submodel hypotheses. The existence of a trait
gene with significant effects can be tested by calculating a
log-likelihood ratio (LR) test statistic under the null (H0:
there is no trait-causing gene) and alternative hypotheses
(H1: there is a trait-causing gene) as

LR ¼ �2½log L0ðmQQ ¼ mQq ¼ mqq ¼ m̃; s̃2; ṼP ; ṼR Þ � log L1ðV̂Þ�;

for quantitative traits and

LR ¼�2½log L0½f ðyjQQ Þ ¼ f ðyjQqÞ ¼ f ðyjqqÞ ¼ f̃ðyj�Þ; ṼP ; ṼR �� log L1ðV̂Þ�

for categorical traits. The LR under the null hypothesis
is asymptotically x2-distributed with corresponding de-
grees of freedom for a fixed set of frequencies and

relative position of the putative gene. However, because
these are nuisance parameters under H0, the regular-
ity conditions required for the x2-distribution of the
LR statistic are violated. Parametric or nonparametric
bootstrap (e.g., the permutation procedure proposed by
Churchill and Doerge, 1994) can be adopted to
determine a critical threshold for declaring the pres-
ence of a gene at a given significance level.

After rejecting the hypothesis of no gene, the tests for
particular subsets of hypotheses regarding gene action
mode, gene position, and/or LD coefficient(s) can be
conducted in tandem with the corresponding LR statis-
tics that are approximately distributed as x2-statistics
with degrees of freedom equal to the relevant numbers
of parameters being tested.

Benefiting from making full use of both comple-
mentarycomponentsof informationoncorrelated trans-
mission within pedigrees and correlated occurrence at
the population level, the proposed approach is expected
to have greater analytical accuracy and testing power. To
validate our theoretical expectation, we conducted a
series of simulations under a variety of disease models
and degrees of LD to compare the performance of three
methods: an FBAT, pure linkage (PL) analysis, and the
combined linkage and association analysis (LLD).

SIMULATION STUDIES

A model with two diallelic loci, one marker and one
disease gene each with a minor allele frequency of 0.4,
was considered in our simulation studies. LLD was run
by a computer program written in the C11 language,
while PL analysis was performed by the EM version of
Elston and Stewart’s (1971) algorithm. Average MLE,
mean square error (MSE), and the power of both LLD
and PL were computed on the basis of 200 simulations
for each case. Power calculation of the FBAT was imple-
mented with the PBAT software package on the basis of
simulation using the default choice (Lange and Laird
2002; Lange et al. 2002). Unless otherwise stated, all
powers were evaluated at the 0.05 significance level for a
null hypothesis of no linkage. The complete details of
the scenarios used in the simulations are given in the
relevant text and tables of this section.

To confirm that PL analysis may result in a biased
estimation in the presence of association while our new
approach can remedy this limitation, we first conducted
a set of simulations for a comparison between LLD and
PL. Although such a case may represent an extreme
one, for full exposition we concentrate here on a com-
pletely penetrant codominant disease model and, the-
oretically, the general conclusions from this will also be
valid for complex models. TDT-type (including parent
and child marker genotypes and child phenotypes) and
sib-type (including sibling marker genotypes and phe-
notypes) data were simulated on a sample consisting of
300 nuclear families with two children and 200 families
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with three children at two LD levels, d¼ 0.1 (normalized
LD, d9¼ 0.417) and d¼ 0.2 (d9¼ 0.833), and two linkage
levels, u¼ 0.05 and u¼ 0.2, respectively. Only the results
on the MLE and MSE of the recombination fraction are
shown in Table 2, since the MLEs of the other param-
eters, such as allele frequencies and LD coefficient (for
LLD), have an excellent accuracy and the statistical
power is very high. Table 2 shows that PL yields a large
bias (û� u) in both TDT-type and sib-type designs. For
example, the bias and the root MSE of the estimated
recombination fraction are 0.065 and 0.069 for TDT-
type design and 0.149 and 0.150 for sib-type design,
respectively, when true parameters are u ¼ 0.2 and d ¼
0.2. This implies that the result from linkage-only
analysis is less reliable when association is present. As
expected, however, LLD has highly precise estimation.
All the absolute values of the bias from LLD are ,5% of
the parameter values, a conventional criterion for un-
biased estimation, and all the MSEs are much less than
their counterparts from PL. The bias and the root MSE
are �0.001 and 0.017 for the TDT-type design and 0.001
and 0.023 for the sib-type design, respectively, when u¼
0.2 and d ¼ 0.2.

To demonstrate that LLD can give an unbiased esti-
mate of the recombination fraction and further test an
arbitrary null hypothesis, say H0: u ¼ 0.1, in such a way
that it has an advantage over FBATs in being capable of
identifying tight linkage, we carried out simulations on
the basis of a classic TDT-type design consisting of 500
nuclear families with a single child per family under
a fully penetrant codominant model. As before, we
considered two LD levels, d ¼ 0.1 (d9 ¼ 0.417) and d ¼
0.2 (d9 ¼ 0.833), and two tight linkage levels, u ¼ 0 and
u ¼ 0.05, respectively. Powers were calculated for the
hypotheses H0: u ¼ 0.5 and H0: u $ 0.1, respectively, in
LLD analysis. The MLE and MSE of the recombination
fraction and the corresponding powers are presented in
Table 3. As shown in Table 3, LLD gives an accurate
estimate and high power for both null hypotheses at
d9¼ 0.833; e.g., the bias and the root MSE are 0.007 and

0.014, the powers for both H0: u ¼ 0.5 and H0: u $ 0.1
are 1.0, in the case of u ¼ 0, and the bias and the root
MSE are �0.004 and 0.024, and the powers are 0.995
and 0.645, in the case of u ¼ 0.05, respectively. LLD has
reasonable estimation accuracy and test power at d9 ¼
0.417. These results suggest that LLD can offer the pos-
sibility of distinguishing strong association and loose
linkage from weak association and tight linkage, even in
the case of only one child per family.

Next we consider a more common case where the dis-
ease gene affects a quantitative phenotype. TDT-type data
were generated on a sample that consists of 300 families
with two children each and 200 families with three
children each under an additive model (no dominance
effect, i.e.,mQQ¼m1 a,mQq¼m, andmqq¼m� a, wherem
and a are the mean and additive effect, respectively). We
assumed that a marker locus is completely linked to the
disease susceptibility locus but with varying degrees of LD
(from 0 to 0.1) and heritability (from 0.1 to 0.4). The
results of the power comparison of the three methods are
summarized in Figures 1 and 2, while only the estimated
parameters from LLD and PL are shown in Table 4, be-
cause the nonparametric FBAT approach cannot per-
form parameter estimation. Figure 1 shows power plotted
against LD, where a, b, c, and d are for heritabilities 0.1,
0.2, 0.3 and 0.4, respectively. Figure 2 shows power plotted
against heritability, where a, b, c, d, and e are for no LD
(d¼ 0), d¼ 0.025 (d9¼ 0.104), d¼ 0.05 (d9¼ 0.208), d¼
0.075 (d9¼ 0.313), and d¼ 0.1 (d9¼ 0.418), respectively.

Clearly, the power profiles shown in Figures 1 and 2
support our expectation. As the degree of LD increases,
so does the power of the FBATand LLD, whereas that of
PL is almost unchanged or increases little (Figure 1, a–
d). The power also increases with heritability for most
cases, but when there is no LD, the FBAT has no power
regardless of the value of the heritability (Figure 2a).
Generally speaking, it appears that LLD is the most
powerful, followed by PL and then the FBAT when LD is
absent or weak (d9 , �0.2; Figure 2, a and b) or by the
FBAT and then PL when LD is strong (Figure 2, c–e).
Other than the cases of no LD, where PL has power close
to that of LLD, LLD is much more powerful than PL.
Also, LLD always performs better than the FBAT, even
under situations with strong LD (d9$ 0.313), where the

TABLE 2

Average MLEs (and root MSEs) of the recombination fraction
(u) from pure linkage analysis (PL) and combined linkage
and association analysis (LLD) at two levels of LD for

TDT-type and sib-type designs, respectively

Design d (d9) u LLD PL

TDT-type 0.1 (0.417) 0.05 0.049 (0.014) 0.035 (0.020)
0.2 0.197 (0.033) 0.178 (0.049)

0.2 (0.833) 0.05 0.050 (0.009) 0.020 (0.030)
0.2 0.199 (0.017) 0.135 (0.069)

Sib-type 0.1 (0.417) 0.05 0.052 (0.023) 0.017 (0.036)
0.2 0.203 (0.043) 0.142 (0.072)

0.2 (0.833) 0.05 0.051 (0.013) 0.005 (0.046)
0.2 0.201 (0.023) 0.051 (0.150)

TABLE 3

Average MLEs (and root MSEs) of the recombination fraction
(u) and powers for two null hypotheses (H0: u ¼ 0.5 and H0:
u $ 0.1) from combined linkage and association analysis

(LLD) at two levels of LD for the TDT design

d (d9) u LLD H0: u ¼ 0.5 H0: u $ 0.1

0.1 (0.417) 0 0.034 (0.059) 1.000 0.320
0.05 0.062 (0.063) 1.000 0.110

0.2 (0.833) 0 0.007 (0.014) 1.000 0.995
0.05 0.046 (0.024) 1.000 0.645
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power of the FBAT approaches that of LLD. This is not
surprising, because more than one sibling is available in
our simulations and hence, in theory, information on
allele sharing between siblings should contribute to de-
tecting linkage except for the case of no linkage, where
there is no practical importance as there is no interest in
testing for linkage with a type I error. The power com-
parison indicates that the union of two complementary
components of information allows LLD to be more
powerful.

Unlike FBATs, our new approach can also achieve
parameter estimation for gene effects, allele frequen-

cies, LD coefficient, and recombination fractions, so
that it can provide more knowledge regarding disease
etiology. Table 4 lists some typical results on the com-
parison between LLD and PL, but the results are not
shown when LD is absent or weak, as LLD has an esti-
mated result similar to that of PL. In the latter situation,
both LLD and PL gave unbiased estimates, although
LLD appeared to have slightly larger MSE, but the dif-
ference was very small. Such results are highly consistent
with our expectation because the assumption of linkage
equilibrium is indeed satisfied for linkage-only anal-
ysis while one needs to estimate one more unknown

Figure 1.—Power of FBAT, PL,
and LLD plotted against LD coeffi-
cient d (d9) at the 0.05 significance
level for four heritabilities: (a) h2 ¼
0.1, (b) h2 ¼ 0.2, (c) h2 ¼ 0.3, and
(d) h2 ¼ 0.4, respectively.

Figure 2.—Powerof FBAT, PL, andLLDplotted against heritability (h2)at the0.05 significance level for five LDcoefficients: (a)d¼
0 (d9¼ 0), (b) d¼ 0.025 (d9¼ 0.104), (c) d¼ 0.05 (d9¼ 0.208), (d) d¼ 0.075 (d9¼ 0.313), and (e) d¼ 0.1 (d9¼ 0.418), respectively.
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parameter for LLD. But for cases with slightly stronger
LDs, such as d9 $ 0.208, LLD gained much improve-
ment in estimation accuracy, which is reflected by bias
and MSE, over linkage-only analysis (see Table 4). The
bias and MSE of the estimated parameters from LLD are
almost uniformly less than their counterparts from PL.
This is in good agreement with theoretical expectations.
In general, the estimation accuracy increases with LD,
and LLD improves more than PL. The magnitude of
improvement differs with the various parameter values.
The estimates of recombination fraction and genetic
effects are greatly affected by LD level, while those of
population mean and variance are less affected. In some
cases, ignoring LD may result in a large bias and MSE in
PL. The comparison of parameter estimation strongly
indicates that it is necessary to capitalize on the infor-
mation from population association to get a better and
more reliable estimation.

APPLICATION

To demonstrate its use, we applied our new algorithm
to a BMD genetic study conducted at Creighton Univer-
sity. A total of 1873 subjects from 405 Caucasian pedi-
grees containing 740 parents/grandparents and 434
sibships were included in the study. The pedigrees varied
in size from 3 to 12 and the mean size was 4.86 while the
sibships ranged from 1 to 10 and averaged 2.61. Three
SNPs within the vitamin D (1,25-dihydroxyvitamin D3)
receptor (VDR) gene, ss12568610, ss12568583, and
ss12568608, were chosen to test association with BMD.
A detailed description of the clinical subjects and SNP-
related information, such as primers/probes and geno-

typing conditions, has been reported in a separate study
(Liu et al. 2005). Several BMD-related traits were mea-
sured in the study (Liu et al. 2005) and we used the BMD
at the one-third region of the wrist as an example here.
The phenotypic values of the BMD range from 0.349 to
0.997. Our segregation analysis suggested that there is a
major gene underlying this trait (data not shown). The
coefficients of skewness and kurtosis of the residual ef-
fects are 0.123 and 3.175, respectively, which can be re-
garded as having an approximately normal distribution.

The results analyzed by FBAT and our LLD approach
are presented in Tables 5 and 6 for P-values, MLEs, and
standard errors (SEs), respectively. The three P-values in
Table 5 are for null hypotheses u¼ 0.5, u $ 0.2, and u $

0.1, respectively, in LLD analysis, while the P-values are
for u¼ 0.5 in FBAT. After correction for multiple testing,
the LR statistic still remains highly significant (mini-
mum P ¼ 0.001 for H0: u ¼ 0.5), whereas the FBAT sta-
tistic shows only marginal significance (P ¼ 0.040) for
ss12568583. Furthermore, the results of parameter
estimation show that all the three SNPs are very tightly
linked to the putative disease gene, i.e., have near zero
estimated recombination fractions and small SEs, but
different frequencies from those of this gene (see Table
6). All estimates from the three SNPs are very consistent,
which indicates that, very likely, a gene responsible for
BMD is located within or near the VDR gene but the
genotyped SNPs do not seem to be the causal variant.
The MLEs of d9 are 0.045, 0.177, and 0.021 for SNPs
ss12568610, ss12568583, and ss12568608, respectively,
suggesting that the associations between the gene and
the SNPs are weak. This may be the reason why this gene
can elude most FBAT gene-hunting strategies such as
QTDT and FBAT. Our approach also gave estimates of

TABLE 4

Average MLEs (and root MSEs) from the approach of either pure linkage (PL) or combined linkage
and association analysis (LLD)

Parameter True value

LLD PL

d ¼ 0.05 d ¼ 0.1 d ¼ 0.05 d ¼ 0.1

h2 ¼ 0.2
pQ 0.6 0.549 (0.143) 0.571 (0.135) 0.532 (0.148) 0.545 (0.142)
d — 0.059 (0.024) 0.107 (0.026) — —
u 0 0.084 (0.138) 0.049 (0.083) 0.115 (0.197) 0.077 (0.151)
a 0.722 0.661 (0.212) 0.682 (0.164) 0.664 (0.239) 0.675 (0.223)
d 0 0.090 (0.445) 0.013 (0.292) 0.187 (0.580) 0.162 (0.544)
m 0 0.022 (0.244) 0.035 (0.171) �0.002 (0.338) �0.013 (0.311)
s2 1 0.971 (0.093) 0.986 (0.088) 0.952 (0.106) 0.953 (0.103)

h2 ¼ 0.3
pQ 0.6 0.563 (0.120) 0.585 (0.102) 0.549 (0.122) 0.552 (0.122)
d — 0.054 (0.016) 0.104 (0.018) — —
u 0 0.057 (0.098) 0.037 (0.063) 0.066 (0.125) 0.033 (0.074)
a 0.945 0.903 (0.186) 0.928 (0.141) 0.910 (0.183) 0.920 (0.201)
d 0 0.051 (0.349) 0.005 (0.230) 0.101 (0.379) 0.089 (0.370)
m 0 0.042 (0.190) 0.024 (0.145) 0.039 (0.218) 0.040 (0.221)
s2 1 0.980 (0.093) 0.985 (0.097) 0.970 (0.094) 0.962 (0.099)
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the penetrance parameters. As shown in Table 6, the
gene has a large genetic effect and displays an incom-
pletely dominant mode of inheritance. In summary, our
results indicate that the VDR gene is significantly linked
to that for BMD, especially for SNP ss12568583.

DISCUSSION

This study was motivated by the fact that traditional
mapping methods, e.g., FBATs and the allele-sharing
method, utilize only one component of genetic in-
formation, either on linkage or on association, often
leading to inefficiency and inaccuracy, although they
have desirable properties in some specific cases, e.g., if
the assumption of no LD is approximately satisfied in
linkage analysis or if the marker tested is exactly the trait
gene itself in FBATs. Owing to its ignoring association,
the weakness of linkage analysis motivated Risch and
Merikangas (1996) to conclude that the allele-sharing
method may be hardly up to the task of identifying
genes underlying complex traits. On the other hand,
however, the TDT may be not as ideal as Risch and
Merikangas (1996) claimed because such a perfect
case (i.e., perfectly associated, with no recombination
and the same allele frequencies) rarely occurs in real
data sets, even in a fine-mapping context. Mostly, there
are less extreme cases with diverse degrees of LD be-
tween both tightly linked loci and loosely linked loci,

arising from mutation, recombination erosion, or pop-
ulation admixture. Therefore, it is necessary to develop
new approaches that can improve the FBAT’s power for
successful gene hunting. Heuristically, exploiting in-
formation on allele sharing contained in each sibship
can achieve this aim and also circumvent the weakness
that association is required for linkage to be detected.
Such attempts have been pursued by a number of re-
searchers (e.g., Zhao et al. 1998; Xiong and Jin 2000;
Cantor et al. 2005; Li et al. 2005). In our previous study
(Lou et al. 2005), we reported the development of a
statistical framework with two hierarchies. In this article,
we address a further issue, i.e., developing mapping
models with an arbitrary number of hierarchies to han-
dle complex pedigrees. Thus, the proposed approach
not only is capable of accommodating multiple loci
and/or multiple alleles so that it is easy to tackle interval
mapping, multiple interval mapping, and epistasis mod-
els, but also allows for diverse types of traits and pedigree
structures. Haplotypes in founders contribute infor-
mation for an association study while informative and
partially informative meioses do so for linkage analysis.
We unify segregation, linkage, and association analyses
into a comprehensive mapping strategy and thus can
capture the two complementary aspects of the genetic
architecture. The proposed approach has the proper-
ties of both linkage analysis and association analysis.
From the viewpoint of linkage, it is a LOD score method
that is adaptive to the amount of LD. It can make use
of LD, if it is indeed present, while it reduces to the
standard LOD method when LD is weak or absent. From
another viewpoint, it is an association study that incor-
porates haplotyping analysis in pedigrees and genotyp-
ing by a progeny test at a disease locus. For singleton
data, it reduces to a parametric association study (e.g.,
Lou et al. 2003; Shibata et al. 2004). Although the EM
algorithm rather than the quasi-Newton method is used
to maximize the likelihood function, our approach is a
direct generalization of that of Cantor et al. (2005) to
multiple loci. The model of Li et al. (2005) is also a
specific application of the new method, which assumes
that the candidate SNP is completely linked to the
disease locus and that flanking markers are in linkage
equilibrium with one another, the SNP, and the disease

TABLE 5

A comparison of P-values for association of VDR SNPs with BMD

SNP Physical position Domain Allelea Allele frequencyb

FBAT
LLD P-value

P-value u ¼ 0.5 u $ 0.2 u $ 0.1

ss12568610 45,470,003 Intron 8 G/A 0.419 0.108 0.082 0.123 0.199
ss12568583 45,507,963 59-UTR G/A 0.280 0.040 0.001 0.021 0.081
ss12568608 45,468,924 Exon 9 T/C 0.408 0.246 0.102 0.158 0.241

a The boldface type in SNP polymorphisms represents minor alleles.
b The allele frequencies are for minor alleles.

TABLE 6

MLEs (and standard errors) for allele frequency, LD,
recombination fraction, additive and dominance
effects, mean, and variance on using different

VDR SNPs

Parameter ss12568610 ss12568583 ss12568608

pQ 0.811 (0.0234) 0.812 (0.0229) 0.812 (0.0234)
d �0.004 (0.0066) 0.024 (0.0074) 0.002 (0.0060)
u 0.000 (0.0025) 0.000 (0.0004) 0.000 (0.0040)
a 0.132 (0.0100) 0.134 (0.0110) 0.132 (0.0100)
d 0.072 (0.0112) 0.070 (0.0110) 0.073 (0.0112)
m 0.630 (0.0114) 0.630 (0.0115) 0.630 (0.0113)
s2 0.006 (0.0002) 0.006 (0.0002) 0.006 (0.0002)
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locus. Both the corresponding LR statistics, testing for
linkage equilibrium and complete LD, can be constructed
by using the new approach.

Another contribution of this article is that it shows,
through systematic simulation studies and an application,
the important conclusion that a mapping bonus can be
obtained by combined linkage and association analysis
without any increase in experimental expense. This is
highly consistent with theoretical expectation. First, the
improvement in mapping resolution arises from the
marriage of linkage and association. In a gene-hunting
context, latent data exist such as disease genotype, in-
heritance vector, and linkage phase. Parameter estimation
and statistical inference rely on accurate genetic recon-
struction of such ambiguous data, i.e., statistical imputa-
tion. Violation of the assumption of linkage equilibrium
leads to inaccurate imputation in pure linkage analysis so
that it may give a biased result, as demonstrated in this
article. On the other hand, the assumption of linkage
equilibrium also affects imputation precision, owing to its
resulting in a likelihood that retains maximum uncer-
tainty about which component of the mixture distribution
generates the data, and hence is least informative for the
recombination parameter u. Theoretically, integrating
both complementary components increases imputation
accuracy, leading to improvement in mapping accuracy,
precision, and power over traditional linkage analysis.
Intuitively, linkage induces more gene concordance be-
tween related individuals having similar phenotypes,
while the opposite holds true for those with disparate
phenotypes. Incorporating this information, which
FBATs fail to do, gives our LLD approach a higher
power than that of FBATs. This type of phenomenon
has also been widely observed with comparisons of the
TDT, the conventional affected sib pairs, and combined
methods (Huang and Jiang 1999; Wicks and Wilson

2000; Lazzeroni 2002). Both our simulation and real
data studies support our theoretical expectation.

Second, the improvement may also come from two
other potential sources, although they are not explored
in this article. The LLD approach integrates population-
based association analysis and pedigree-based linkage
analysis into a coherent framework so that it can handle
diverse types of data, including full sibs, half sibs, cous-
ins, nuclear families, extended nuclear families, com-
plex pedigrees, and singletons, as well as their mixtures.
Unlike those of Huang and Jiang (1999), Wicks and
Wilson (2000), and Lazzeroni (2002), which require
only affected pairs with at least one heterozygous par-
ent, our approach allows for analyzing any type of data
structure, including singletons and pedigrees without
any informative meioses, which do not contribute infor-
mation to linkage parameter(s) but do inform associa-
tion parameter(s). Without dropping any type of mapping
data, we make use of data to the maximum extent, lead-
ing to the possibility of improving mapping perfor-
mance. Furthermore, our flexible framework is easily

applied to a multipoint analysis. It has been well doc-
umented that multipoint analyses can extract more
statistical information than pairwise ones and thus may
substantially increase the power and reduce spurious
results (Lathrop et al. 1984, 1985). Conceivably, unify-
ing multilocus linkage and association mapping will
further improve mapping resolution.

Our current version of the program is capable of
handling five to six loci on a PC computer if only limited
amounts of data are missing. Although it allows for more
loci and alleles on a workstation or a PC cluster with
more memory and storage, computation can be very
time-consuming for a large number of loci and alleles
because the required memory and time exponentially
increase with the number of loci. To avoid a formidable
computational burden, the simulation-based versions of
the EM algorithm such as stochastic EM and Markov
chain Monte Carlo (MCMC) EM (Thompson 1994;
Celeux et al. 1996), based on estimating conditional pos-
terior probabilities in the E-step rather than computing
them exactly, can be used. The approximate methods
based a composite likelihood (e.g., Rannalaand Slatkin
2000) also seem to be the feasible ways to tackle this
problem. The relevant study is under way.

Moreover, unlike the model-free approaches such as
allele sharing and FBATs, which can tell us only whether
linkage or association exists but fail to provide any esti-
mates of what values they have, the proposed LLD ap-
proach can simultaneously provide parameter estimation
of genetic distance, allelic association, and genotype–
phenotype relationship and also perform various types
of hypothesis testing. For example, we can perform a com-
parison of the analyses, including or not the LD infor-
mation to assess the validity of the LD model assumptions.
Thus, this approach exposes more genetic mechanisms
than FBATs to genetic etiology and hence increases the
predictability of gene mapping.

Finally, as pointed out by Pérez-Enciso (2003), given
the diversity of genetic architectures and population
histories, it is unlikely that a single statistical approach
will be valid for all cases. The approach described here is
subject to the same limitations faced by all model-based
methods, i.e., the requirement of a correct, or close to
correct, model for the trait under study. If the model for
predicting disease status from phenotypes is not suffi-
ciently well known, this approach cannot perform well.
Therefore, this model-based LLD approach should
serve as a supplement to model-free methods in track-
ing the gene(s) underlying complex diseases, once model-
free methods have suggested how many loci are involved
and their approximate locations in the genome (Elston
1998).
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APPENDIX

For affected sib pair data with a recessively inherited disease as described in the text (p¼ 0.5), under the assumption
of linkage equilibrium we have the log-likelihood

ln LA ¼ Constant1 ð2nAA;AA 1 2naa;aa 1nAA;Aa 1nAa;aaÞln½u2 1 ð1 � uÞ2 1 4�
1 ð2nAA;aa 1nAA;Aa 1nAa;aaÞln½2uð1 � uÞ1 1�1nAa;Aa lnf½u2 1 ð1 � uÞ2 1 4�2 1 ½2uð1 � uÞ1 1�2g; ðA1Þ

where nAA,AA, nAA,Aa, nAA,aa, nAa,Aa, nAa,aa, and naa,aa are the numbers of affected sib pairs with marker configurations
fAA, AAg, fAA, Aag, fAA, aag, fAa, Aag, fAa, aag, and faa, aag, with true probabilities ½ð1 � u0Þ2

1 2�2=9;
4u0ð1 � u0Þ½ð1 � u0Þ2

1 2�=9; 2u2
0ð1 � u0Þ2=9; 4u2

0½ð1 � u0Þ2
1 1�=9; 4u3

0ð1 � u0Þ=9, and u4
0=9, respectively; and u and

u0 (a specific value) are the recombination fractions between the marker and the disease gene. The partial derivative
with respect to u, the score, is

@ ln LA

@u
¼ 2ð1 � 2uÞ 2nAA;aa 1nAA;Aa 1nAa;aa

2uð1 � uÞ1 1
� 2nAA;AA 1 2naa;aa 1nAA;Aa 1nAa;aa

u2 1 ð1 � uÞ2 1 4
� 4nAa;Aa ½u2 1 ð1 � uÞ2 1 1�
½u2 1 ð1 � uÞ2 1 4�2 1 ½2uð1 � uÞ1 1�2

� 	

¼ 2ð1 � 2uÞ 2ðnAA;Aa 1nAa;aaÞ1 8nAA;aa � 4ðnAA;AA 1naa;aaÞ � 2½u2 1 ð1 � uÞ2�ðnAA;AA 1naa;aa � nAA;aaÞ
½2uð1 � uÞ1 1�½u2 1 ð1 � uÞ2 1 4�

� 	

� 8nAa;Aað1 � 2uÞ½u2 1 ð1 � uÞ2 1 1�
½u2 1 ð1 � uÞ2 1 4�2 1 ½2uð1 � uÞ1 1�2:

ðA2Þ

Because

2ðnAA;Aa 1nAa;aaÞ1 8nAA;aa � 4ðnAA;AA 1naa;aaÞ � 2½u2 1 ð1 � uÞ2�ðnAA;AA 1naa;aa � nAA;aaÞ

� �n 4
ð1 � u0Þ4 1 u4

0 1 11 3u2
0 1 7ð1 � u0Þ2

9
1 2½u2 1 ð1 � uÞ2�ð1 � 2u0Þ2 1 4ð1 � u0Þ2 1 4

9

� 	
, 0;

whatever value u takes, the assumed likelihood is a monotonically decreasing function of u in the interval [0, 0.5], and
hence û ¼ 0 is the MLE, even if there is no linkage; i.e., u0 ¼ 0.5.
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