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Abstract: Additive-dominance-maternal genetic models are emplayed for eight
inbred lines by using mating design of diallel crosses with Fi’s and reciprocal F)'s.
Monte Carlo simulations are conducied for comparisons among models by including or
ignoring maternal effects. maternal by environment effects and genotype by environ-
ment interaction effects. When o3, and ¢}, exist in the full model, the significance
of non-zero o4 and o3 can be detected around 97% and that for 0. 0% 5. 055, o3k
and o can be more than $9%. When maternal and maternal by environment effects
are ignored, overestimation of variance components is observed except for dominance
variance. The overestimation is highest for 2 followed by % when particularly total
genolype by environment effects is ignored in the additive-dominance model. When
matermal effects and genotype by environment interaction effects are ignored. vari-
ances of predictor increase significantly.
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0 Introduction

Many kinds of genetic models were used to study phenotypic traits of the individuals or to
analyze their differences, and their relationships (Eisen et al., 1966, Searle, 1971; Cockerham and
Weir, 1977; Zhu, 1997). An understanding of the inheritance of these differences is of fundamentat
significance in the study of evolution and in the application of genetics to animals and plant breed-
ing {Falconer 1996). Idea about polygene theory proposed by Johannsen (1909), Nilsson- Ehle
(1909) and East (1916) indicates that a quantitative trait is controtled by many Mendelian factors

or genes, groups of genes (polygene systems) each of which has small effects on the considered
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trait and is easily influenced by the environments. For most of the quantitative traits, geneticists
think that the phenotypic variation is due also, in large part. to the influence of the environments.
Most of them are quantitative with conlinuous phenotypic variation, which can depend on the
variations of main genetics effects and genotype by environment (GE) interaction effects. Many
genetic models were developed and are still now analyzed by ANOVA methods. However, when
the genctic model presents decimal values of coefficients and/or correlated random effects with un-
balanced data, this statistical technique can not be applied. Improvement of quantitative genetics
is due at the same time to the genetic studies and Lo the statistical methods merged progressively
with the computational methods in data analysis (Weir, 1996 Witliam, et al, 1992).

From 1967's slatisticians developed some new methods capable to handle complicated models.
These techniques based on the mixed linear models are Maximum likelihood (Hartley and Rao,
1967): Restricted Maximum likelihood (Patterson and Thompsom, 1971} and Minimum Norm
Quadratic Unbiased Estimation {MINQUE) (Rao, 1971a, b and 1972). Then many researches
concerning the estimation of variance components were conducted (Henderson, 1979; Keele and
Harvey, 1989; Searle et al, 1992; Zhu, 1992). Cockerham (1980) proposed a general genetic model
for partitioning the total genotypic effect (). Zhu (1994) extended Cockerham’s general genetic
model by including GF interaction. Monte Carlo simulations (Zhu, 1989; Zhu and Weir, 1994a,
b, 1998) showed that MINQUE has more advantages than REML. It involves easier computation
and needs no tequirement for normality distribution. Monte Carlo simulation proved also that
AUP would give unbiased mean and variance for predicted effects (Zhu and Weir, 1996).

The object of the present study is to conduct Monte Carlo simulation for comparing genetic
full and reduced models with additive, dominance and maternal effects as well as genotype by

environment interaction eflects.

1 Models and Methodology

For the additive-dominance-maternal {ADM) models with GE interaction eflects in multiple
environments, the phenotypic mean of parent (i = j) and Fy (i # j) in the kth block within the

hth environment is
Vhijk = 1L+ Ep+Ai+ A+ Dy + M; + AExi + AEhJ' + DEi, + MEw: + Bre + €nigk (1)

where g is the population mean, £4 is the environment effect; A; or 4; ~ (0, o2) is the additive
effect; Dy; ~ (0,¢3) is the dominance effect; M; ~ (0,0%) is the maternal effect; ALy or
AE,; ~ (0,0%) is the additive by environment interaction effect; DEni; ~ (0,0%) is the
dominance by environment interaction effect; M E; ~ (0,03 ) Is the maternal by environment
interaction effect; By ~ (0,0%) is the block effect; &5, ~ (0, o2) is the residual effect.

The ADM model in {1} can be expressed in a general matrix form of a maxied linear rnodel.

8

y= Xb+Usea+Upep+Usey +Uapear+Uppepe+Uupenp+Unen+ec = Xb+ Z Uyey

u=l
where e, are the random effects with a known coefficient matrix (.
When maternal effects and maternal by environment effects are ignored. the ADM model
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can be reduced 1o the AD model in the following expression
Yhigk =p+ A+ A+ D+ AR+ ARG, + DEgij + Bue + €nije. (2]

The AD model in (2) can be presented in a general matrix form of a mixed linear model

8
y=Xb+Uqeq +Upep + Uspeap + Upgepp + Lpep + ¢, = Xb+ Zl/uru.
u=1

ADM model and AD model are employed for genetic entries i x j for (r = 1,2, 8} =
1.2,---.8) by using mating design of dialle] crosses with F,’s and reciprocal Fy’s. Randomized
complete block design of three blocks is used with a total of 192 genetics entries per block 1n
multiple environments. The three environments are assumed fixed with values of 50, 100, 150. re-
spectively. Genetic effects are assumed independent and random. The genetic entries are assigned
at random within each block. Variance components are estimated by MINQUE (1) methed and
predicted for genetic effects by AUP method. Jackknifing over block method (Miller 1974: Efron.
1982) is conducted for estimating the standard error. Pseudo-random normal deviates with zero
mean and unit variance (0,1) are generated by the method of Kinderman and Monahan (1977).
Given the eight-parent number, [} 's generation, true values of variance components and the three
environment numbers. balanced data are used for ADM models and A7) models. 500 Simulations
are used for computing the sample mean of estimate, btas, M.S.E. and power value. Predicted
mean, predicted variance and power are also computed for each specific effect of the ADM models
and AD models. MSE is calculated by Var(é) + (bias)?, which is usually used as a main criterion
for comparing the efficiency of estimation methods. Bias is calculated as § — 8. If Bias/8 < 5%.

the estimate @ is considered as unbiased (Graybill and Wortham, 1956). Sampling variance of

. ) o 1 . _ < 9
estimates is calculated by Var{f) = - Z(E) ).
2 Results and Analysis

Sirnulations are conducted for making comparsion among ADM models according to the con-
sideration of maternal effects and maternal by environment interaction effects (Table 1). When
o3 and o are significantly superior to zero in the full model, the power of detecting signif-
icance of non-zero ¢2 and o} is around 97% and that for 03, 0% 5. 055, 03 and o? is more
than 99%. Robustness of estimation is tested by simulation under the conditions of no specific
variation. If a?w = g}p = 0, all parameters are still unbiased and the variance components
o3,0%,0% s, 0hg, a7 can be estimated with similar bias, M.SE and power value to thosc when
maternal effects and maternal by environment interaction cffects are present. Significance of ma-
ternal and maternal by environment variance components can be falsely detected with probability
of about 1%. When both maternal and maternal by environment interaction effects are ignored in
the full models, bias and MSE increase highly and conscquently the estimated variance compa-
nents are overestimated except for o, The increases of biases of additive variance and additive by

environment interaction variance are around 14.6% of the parameter values and that of dominance
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by environment interaction variance component reaches 11.5%. Residual variance component is

particularly overestimated with the highest value of bias around 244.2% of the parameter value.

Table 1 Bias. MSE and Power According to Maternal Effects and Maternal by Environment
Interaction Effects

Parameter  True Full model With M =ME=0 Ignored M&MF

Value Bias MSE  Power Bias MSE  Power Bias MSE  DPower

ad 50 217 3039.06 097 217 303799 097 11,71 3705.01 098
ah 50 0.25 23762  1.00 0.25 23761 100 0.19 23736 1.00
al, 400r0 -138 60421 097 001 004 0O - —
%y 40 101 28271 10U 100 28260 1.00 587 37137 1.00
alg 0 =011 2579 1.00 -042 2579 1.00 288 3562 100
g 200r0 -013 6312  1.00 -003 013 0.01 — -

ol 10 000 052 1.00 ool 052 1.00 2442 T00.08 100

Simulation results for prediction of genetic effects concerning maternal model are listed in
Table 2. Mean and variance of predicted effects are almost the same whether or not maternal
effects and maternal by environment interaction effects exit. However when both effects are
ignored, mean and vatiance of predicted effects are significantly different. Additive, dominance,
additive by environment and dominance variance components increase significantly.

Table 2 Mean and Variance of Predicted Effects According to the Consideration of Maternal
Effects and Maternal by Environment Effects

Preditor ~ Variance Ful! model With M =ME =0 [gnored M&ME
Mean Variance Mean Variance Mean Variance
Ea 80 0.00164 82.41 0.00164 82.41 —0.00112 91.90
Ep 50 0.00021 50.99 0.00021 50.99 —0.00015 55.83
éx 40 or O 0.00078 38.79 4.00023 0.25 -— —
AR 40 0.00055 41.50 0.00055 41.46 —0.00037 46.13
épg 25 0.00007 26.98 6.88E - 05 26.97 —-441E - 05 31.93
EME 20 or 0 0.00026 20.87 5.07E - 05 .40 — —

Simulation results of bias, MSE and power value for AD models are shown in Table 3. In
the full model with significant genotype by environment interaction eflects, hias of the respective
odp and o}z can be around 4.7% and 0.2% of the parameter values. The signficance of non-
ZEIO aiE,a%E can be detected with probability of over 99%. For diallel crosses with Fi's and
reciprocal Fi’s from eight inbred lines within three blcoks and three environments, robustness of
estimation is tested under the conditions of no specific variation. When 0%z = oh g = 0.0%. 0%
and o7 can be estimated with similar bias, MSE and power value. However with no genotype by

environment interaction effects, the bias, MSE and power value of both 0%, and o become
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smaller. Bias of % decreases from 188 to 0.01 and that of o from 0.06 to 0.02. When
genotype by environment interaction effects arc ignored, the main effects and residual effects tend
to be overestimated by eight-parent diallel crosses with F;’s and reciprocal Fy’s. Additive and
dominance variance components are respectively overestimated with values of bias around 14%
and 13% of the corresponding parameter values. Residual variance component is particularly
averestimated with the highest value of bias around 745.5% of the parameter value.

Table 3 Bias, MSE and Power According to Genotype by Environment Interaction Effects

Parameter  True Full model With GE =0 With &R
Value  Bias MSE  Power Bias MSE  Power Bias  MSFE  Power
a? 80 061 276591 0.97 —0.160 198874  1.00 11.08 286552  0.97
0% 50 087 25391  L.00 023 18300 100 680 29573 100
okg  40or0 188 26437 100 001 041 003 - -
ol 250 006 2942 100 -002z o2 0.01 - -
al 10 -002 041 1.00 -0.02 041 1.00 7455 604710 1.00

Simulations are also conducted for the predicted é,(yy (Table 4). Mean and variance of
predicted effects are used to compare full model including genotype by environment interaction
effects and full model ignoring interaction effects. AUP method gives extremely low biases for niean
of predicted genetic effects with absolute value between 4.357% ~ 29.107*. With ignored genotype
by environment interaction effects, additive and dominance variances of predictor increase with
respective values of bias around 17% and 19% of the corresponding parameter true values.

Table 4 Distance of Genetic Predictor According to the Consideration of Genotype by
Environment Interaction

Prediter  Variance Full model With GE =0 Tgnored GE
Mean Variance Mean Variance Mean Variance
€4 80 -0.00112 80.86 -0.00127 78.50 —-0.00294 94.63
£p 50 —0.00015 31.61 -0.00016 50.99 —0.00034 349.40
éag 40 or 0 —0.00037 42.14 —1.58E — 05 0.09 —
EpE 25000 —5.25E - 05 27.14 -4.35E - 08 0.44 — -~

3 Discussion

ADM model with maternal and maternal by environment interaction effects gives unbiased
estimates with biases less than 5% of the parameter values. No matter whether or not the two
effects exist, additive, dominance and residual variance components can be obtained with saruli
biases and high efficiency. If maternal and maternal by environment interaction effects are neg-
ligible or null, the values of 62, and ¢, should be around zero or equal to zero. under this

condition. maternal effects and environment eflects are not interdependent. 'Therefore the full
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ADM model can be reduced to AD model,

According to the simulation results {Table 1), maternal and maternal by environment effects
are ignored in the full model but eflectively they exist. In this situation. the reduced model can
nat be an appropriate model because interaction eflects are not included in it. Therefore, induced
by some genes scnsible to the environment, these effects are added to the original effects and in
large part to the residual effects. Consequently the diferent variance components of the specific
effects are overestimated. When o% and o% are ignored in the additive-dominance model,
Lheir effects are distributed into the main genetic effects and mostly into the residual effects. The
effects of ignoring o2, and o3, are added o additive, additive by environment, dominance by
environment and particulatly to residual effects. For diallel crosses with £1’s and reciprocal £i’s
from the eight inbred lines, overestimation of dominance variance component cannot be detected
in the maternal model. Maternal and maternal by environment effects are important in plant and
animal breeding. More important are the ignored genetic effects; higher can be the overestimation
of variance components. The overestimation is highest when particularly total genotype by envi-
ronment effects is ignored in the additive-dominance model (Table 3). However the detection and
evaluation of genotype by environment effects need more control on the experimental design, more
entries and replications than those of main effects. When both additive-dommance and maternal
model are used with eight-parent modified diallel crosses, the adujsted unbiased prediction with
prior value 1 for all variances gives small biases of mean prediction. Mean of predictor is almost
near the zero value. The ignoring genotype by environment interaction effects gives high variances
of predictor. Before the start of an experiment, the breeder must necessarily have previous in-
formation zbout genotype by environment interaction effects. By default, the appropriate model
must be the full AD genetic model or ADM model. The reduced model AD and ADM models in
single environment can be used only when genotype by environment interaction effects is known

as non-significant for the traits studied.
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