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AbstractE® New approaches based on general mixed linear models were presented for analyzing complex

quantitative traits in animal modelsE—seed models and QTIE quantitative trait locusE€mapping models. Vari-

ances and covariances can be appropriately estimated by MINQUEE minimum norm quadratic unbiased esti-

mationEC@approaches. Random genetic effects can be predicted without bias by LUFE linear unbiased predic-

tionEOor AUPE" adjusted unbiased prediction£Omethods. Mixed-model based composite interval mapping

£7"MCIMEGmethods are suitable for efficiently searching QTLs along the whole genome. Bayesian methods and
Markov Chain Monte CarlétE”" MCMCECmethods can be applied in analyzing parameters of random effects as

well as their variances.

Key words£® mixed model approachesE—penetic modelsE-estimation of variances and covariancesEprediction

of genetic effectsE-QTL mappingE-Bayesian methods .
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INTRODUCTION

Many genetic models based on the approach
of ANOVAE " analysis of varianceEOwere devel-
oped by Fishek ' 1925£0 Some of these modelsE-
e.g. NC design I and IE Comstock et al.£-
1952E»Hallaver et al.£-1981£€-diallel models
£ YatesE~1947£» GriffingE~ 1956£» Gardner and
EberhartE-1966£€-are still widely used by plant
and animal breeders. But ANOVA approaches
have some deficiencies in analyzing complex ge-
netic models for quantitative traits. Many genetic
models cannot be appropriately analyzed by the
ANOVA approach if they have more complicated
effects other than additive and dominance ef-
fectsE—e.g. Eisen’s animal model with sex-link-

age and maternal effectsE” Eisen et al.E-1966£0

and a bio-model including maternal and paternal
effect£ " Cockerham and WeirE-1977£0

In the 1970’sE-statisticians developed some
methods for analyzing mixed linear models which
can be applied in quantitative genetics. Mixed
linear model approaches can overcome the short-
comings of ANOVA methods for handling unbal-
anced data and complicated models. Develop-
ment of mixed linear model approaches and their
application in quantitative genetics will create

CLC number£® R69

enormous challenges for quantitative geneticists
in dealing with complicated genetic problems.

In the present paper we will review some of
our recent works in extending the mixed linear
model approaches and constructing complicated
genetic models for analyzing complex quantitative
traits . Methods recently developed for mixed lin-
ear models and their applications will be given to
show the ways for solving the real complicated
problems in quantitative genetics.

MIXED LINEAR MODEL APPROACHES

General mixed linear models

Many genetic models with biological mean-
ings for different generations are complicated and
have no integer coefficients or even correlated ef-
fects . Parameters in these genetic models are not
manageable by traditional ANOVA methodsE-but
can be analyzed by mixed linear model ap-
proaches .

Most genetic models can be expressed by a
general form of the mixed linear model£-

Yy = lel + X2b2 + i- + ann + Ulel

+ U,er, +i-+U,_e,| + e,
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= Xb + Z U,e,
u=1

~ B XbEVEO £71£0

where y is the vectol£  n x 1£Cof phenotype
value with mean Xb and variance VE»b is the
vecto£ p X 1ECof fixed effectsE»X is the known
incidence matrix€’ n x pE£OCrelating to the fixed
effectsEvef " u = 1£2£4-£-m — 1£85 the vector
£7q, x 1£Cof the u-th random factorE-e, £ O£~

o2R,EE-R, is a constant matrix describing the
relationship of e,£»U, is the known coefficient
matrix relating to the random vector e, £-e,, is
the vectof  n x 1ECf the residual random effects
with e,, £ O£o2IECnd R,, = 1.

If random factors are independent with cov

£e,fe/£0= O£~V = > 52V, with V,

u=1
URUE u = 1£264-£m — 1£Cand V,, = I.
When random effects of e, are also independent
£°R, = IE®~then V, = U, U, .

Variance and covariance estimation

The variances in modeE "1£Ccan be analyzed
by mixed linear model approaches such as maxi-
mum likelihood £ ML £0 method£ " Hartley and
Rao£- 1967 £8- restricted maximum likelihood

£ REMLEOmethod£™" Patterson and Thompsom£—
1971£8-or minimum norm quadratic unbiased es-
timatiorE” MINQUEECmethoE Rao£-1971£0

When random factors are independentE-esti-
mated variance components can be obtained by
the methods of ML inf" 2EE-REML inf 3£E8-or
MINQUE irE "4£0 ML estimates of variances can
be calculated by numerically solving the follow-
ing normal equations

£06 Vig eV, Vig e £V, W6 30, £V

=£Uy TQomVuQU heY £Y £ 2£0

where
. -1 =1 e yTir=1_ Tx7-1
Quner = Veoner — Veine® X Vé0,elXE® X Vigyey

. 2. 2. T
Vioner = 6 5meiV > 650U, R U,

6%unevis the estimate of o2 by the h-th itera-
tion.

Estimated variances obtained by the ML
method tend to be influenced by the fixed ef-
fectsEso ML is rarely used. The REML estima-

tion method can overcome the influence of the
fixed effects. The normal equations for obtaining
REML estimates of variances are very similar to
equatiortE’ 2E£8-except that Vj,zyin the left-hand
side of equatiorE” 2£GCis replaced by Qghgﬁ—'

E0&” QuierV, QuisiV, EY6 50, 10EY
=£0y" QueV, Qe Y £73£0
The MINQUE method does not need the as-
sumption of normal distribution for observed da-
taE—and can give estimated variances without ite-

ration. The MINQUE equations for estimating
variance components are

£06°0Q,V,0,V, 052 £V=£0y"Q,V,Q,y, H 4£0

where
0, = V' - vI2X'VIX£e x'v!
vV, = 2aV, = 2aURU,

Covariance components o,/, between two
trait€ 'y, and y,ECcan also be easily estimated

without bias by solving the following equations

£7°7hu and WeirE-1996£8-

£U& ’ Qa VuQa VL‘ £@é\u/u =£0y{ Qa ‘/u,anyZEY
£7°5£0

The MINQUE method uses the prior values
a, that may be chosen from prior experimentsE—
from iterations or theoretical considerations.

MINQUE "1£@as a MINQUE method with a, =1
can be employed for estimating variance compo-
nents when random factors are independent.

For certain genetic modelsEsome of the ran-
dom factors are correlated. Variance matrix V
consists of variance component£ % £Gor random
factors and also covariance componentsE sz, £0
between correlated random factors. Zhu and
Weitf  1994a£-1994b£0proposed genetic models
for diploid seed and triploid endosperm£-which
can be written by a mixed linear model£-

Xb + Use, + Upep + Ucer + Uy, ey,

Yy
+ Upnepn + Ugep + e,

£76£0

7
Xb + ZUue,,
with variance matrix

V =63V, +05Vy + 6%Vs + 64, Vi + 65, Vs

2 2
+ 08Ve + 04 anV7 + op.puVs + 0V
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29) oV plant additive effectsE—sp,p,, = covariance be-
e tween seed direct dominance effects and plant
where V. = UUE 1 = 1£2£-~i-£-6£8- dominance effectsE-o;c = covariance between
V., £ U, U + UU £8~V, =£ UU! seed cytoplasm effects and plant cytoplasm ef-
7 ! 1 =

+UsUVEBV,=1T.

MINQUE "0/1£Owas suggested by Zhu and
Weilf  1994a£0for unbiased estimation of vari-
ances and covariances for one traits and covari-
ances between two traits. MINQUE "0/1£Cproce-
dure is a MINQUE method setting O for all the
prior covariancesE a, ,£Qand 1 for all the prior
variancesE " «, £0 Variances and covariances for
one traitf” y,; = y,EB-and covariances between
two trait€ 'y, £ y,ECan be estimated by the fol-
lowing MINQUE "0/ 1£CequationsE—

£D &- ) Q '0/1£©Vu Q '0/1£©‘/1) £@géu/u £Y
=£0J’ { Q1Y @ on1£Y 2 £Y

where
Q0 = Wonso— Wones® X Ve eeXE®

- Tyx7-1
i2 X Vonz0e

£77£0

6
Vo0 = Z UuU! + I
u=1

Monte Carlo simulations showed that both
variances and covariances of seed traits can be
unbiasedly estimated by the MINQUE "0/1£Cpro-
ceduréE” Zhu and WeirE-1994a£-1994b£0

In plant breedingE—breeders usually want to
improve seed quality traits while still keeping the
genetic merit of yield traits. Therefore under-
standing the genetic relationship between seed
quality traits and plant yield traits is of impor-
tance. Seed models and plant models have un-
equal design matrices. ZhE  1993b£0developed
a new method for estimating genetic covariance
components between seed traits£” y, £0and plant
trait€”"y, £0 For seed modeE 6EE-the corespon-
dent plants bearing the seeds will have the fol-
lowing mixed linear model£—

Yopgo = Xbpso+ Ucegpso+ Upyneaspeo
+ Upnepspo+ Upeg peo+ €gpge

5
Xb: peo+ > U, €5 pse

There are covariances between random factors of
seed traits and those of plant traits£%,,,,, = co-

variance between seed direct additive effects and

fectsE—v 4,/ 4, = covariance between seed maternal
additive effects and plant additive effectsE-
covariance between seed maternal

O Dm/ Dm
dominance effects and plant dominance effectsE~
op/p = covariance between seed block effects and

plant block effectsEs,,. = covariance between
seed residual effects and plant residual effects.
If we define F, £ U, U}, + U, U'EB-F,
£ U U}, + Uy, UrEB~F, £ 2U U£8-F, =
£2U,, U, £8~-F; =£°2U,,, U, £8- F, =
£20U,Up£8-and F, = 2IE-covariance compo-
nents between seed trait and plant trait can then
be estimated by the following equationsE®

E0& Q-1eF , @-oneel, 895, £Y
:£U2y STQ"O/1£©F W Bongd, E£Y £78£0
where
Qonizo = Voneo— Vones® X' Vg X £O

i 9 X" V0
Veoueo = B0UUC + U, Uk, + Up, U,
+ UyUp + IEY
For time-dependable traitsE-the phenotype

data observed at time £ ¢t = 1£2£4-£0has the
following mixed linear model£-

Yoo = Xbgo+ >, Usegso

u=1

~ ]H--Xh"i@g_‘é"i@ = 2 Gzﬁ“tE@(]uRu Uét£@€©

u=1
Given the observed phenotype vector ¥, _jgomea-
sured at timeE ¢t — 1£E8-the conditional random
variables of ) ,gel 3, _ z0at time ¢ have condition-

al distributionf~

el X0 = Xbyizo+ O, Useg e
u=1
~ ]H Xh"m_w@g"{"m_m@
= 2G%i"zlt—1£©l]uRuU£'t\l,—1£(£©
u=1
£79£0

Since conditional ) zel 3, _1£01s independent of
¥, _ igEconditional random effects &-,,_ g0 and



COMPLEX QUANTITATIVE TRAITS

81

conditional variance components g2, _gecontain
extra variation not explainable by the accumulat-
Zhu
"1995£0proposed a mixed model approach for
analyzing conditional variance components and
conditional random effectsE-which had been used

ed effects from the initial time to time ¢-1.

™

in developmental quantitative genetic analysis
"Atchley and Zhu£-1997£»Yan et al.£-1998£0
When phenotypic vector y has large size and

™

multivariate normal distributionfE—variance esti-
mates will have asymptotic multivariate normal
distributionf~

£0s2£Y~ BEUG2E££23H'£0 £710£0

where H £0&" V'V, V'V £8Y' for ML esti-
mates £ SearleE~ 1970 £8~ or H = £0 v
"QV,QV, £8Y' for REML estimatesE ™ Searle£

1970£€ind MINQUE estimates£ Rao and Kleffe£-
1988£0

Hypothesis test for linear combination of
For

™

variances can be conducted by a Xz test.

null hypothesis HyE®> ) ¢,0%

= p vs. alternative

u=1
hypothesis H, EOZ c,0n # p E-the statistic Y2,
u=1

will asymptoticall_y have x? distribution with 1
degree of freedom when H is trueE-

(Ecau - o)
+ 22 icic%f{;})
u=1 v>u

£°11£0

X%al =
H 1

uu

2>,
u=1

Hy )@24,": 1£0

If X%al > )@zd/':m@‘a"Ho will be rejected and H; be
acceptedE-vtherwise Hy is not rejectable.

Zhu and Weirf " 1994a£-1996£0suggested ob-
taining estimates and their standard errors by resa-
mpling genetic entries or experimental blocks with
the Jackknife methodE™ MillerE-1974£0

If O is an estimate of a genetic parameter from
a sample of K entriesE-and O£k = 1£2£4-£K£Gs
the estimate resulting when entry k is omittedE~
then the Jackknife estimate @, and its sampling
variance va "0, £Care

A

0, = Kb £K - 1£@

K

K i
va€0,80= LA SE, _ psp
k=1

— K
where 0 = %2 0, . If K is not largeE"0; — O£D
k=1

/v "0;ECs approximately distributed as a ¢-dis-
tribution withkE”" K — 1£Cdegrees freedom under the
null hypothesis Hy .

Monte Carlo simulation showed that statistical

test for variances by y” test in equationf 11£Cis
much more conservative than that by a ¢-test with

the Jackknife procedureE™ Zhu£-1989£0

Random effects prediction

Except for the residual effects e,, Evandom ef-
fects in mixed linear modelE " 1£€can be predicted
by the best linear unbiased predictionf” BLUP£O
methodE” Henderson£E=1963£0 Hendersonf 1988£0
proposed a general approach which can result in
both unbiased estimation for fixed effects and un-
biased prediction for random effectsE-without cal-
culating the inverse of V. For modeE "1£E-the es-
timation and prediction can be obtained by solving
the following equationsE-

OX'R;'X X'R;'U, X'R;'U, i-0
DUTR,'X UIR,' + R;'/ot UiR,'U? i-U
QUSRX  UIR)Z ULRUL+ RiVGh i-
0 O O (e
Dii 0 DXTR;ly 0
e OuTR;'yUO ..
|:| 1 D my £ 12£©

Eez @ U'R;
inli y@

Normal equation£™ 12ECcan be expressed simply
as WB=d.

Since the solution of equation€™ 12E£Gequires
the unknown variancesE~Eq£" 12£0s estimates
still depend on the calculation of V~' by the
REML method .

If fixed effects and random effects of some
factors are not of interesttowe can obtained
BLUP for specific random effects ef£ u = 1£3£-
i—£m — 180 HendersonE-1963£8-

850 = AR, UVE y — XbEO
= R, U.Qy £713£0

Since the true variances are always unknown in

y
practiceE-estimated variances are usually used in
predictionE®

é5re0 = 62R,UQy

With such prediction by using estimatesE-only a

£714£0
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so-called BLUP which may have lost linearity
and unbiasednessE-is obtainable .

Instead of using parameter£  13£Cr their es-
timate£” 14£Cfor predicting random effectsE+Zhu
and Weitf " 1996£Csuggested choosing prior val-
ues a, as in the case of the MINQUE method£-

égut0 = a,R,ULQ,y £715£0

If the choice of prior value is not based on the
observed dataE-the predictor é, is a linear unbi-
ased predictiorE” LUPECfor random vector e, .
Monte Carlo simulations revealed that both
BLUP and LUP will give prediction with unbi-
ased mean but under-estimated variance
£ E " é'é/dfE& o*£Ofor random variablesE™ Zhu
and WeirE~1996£0 In order to solve this prob-
lem£-a method of adjusted unbiased prediction

£7AUP£Owas suggested for predicting random
variables£” Zhu£-1993a£>7Zhu and WeirE-1996£E8-

éé"a£© = ng“auRuUI{‘QayE(@ £"16£©

where k, = £ q, — 1£828a%y"Q,V,0.y£0 s
an adjusted coefficient to insure &é4-,s85 .8 qu
— 1£6= 62 £-und set 62 =0 when 62 <0.

Monte Carlo simulations proved that AUP
gives unbiased mean and variance for predicted
effect£ " Zhu and WeirE-1996£0

For mixed linear models with correlated ran-
dom variables cof e, £l £0= 5, , R, ,E-the

BLUP for random effects e, is given byE-
éﬁ"c9£© =£..U%LRuU5 + Glt.l)th.vU$£@s’] £"17£©
When MINQUE "0/1£Cis used for estimating

variances and covariances for seed traitsE’ Zhu
and WeirE-1994a£8-L.UP can be used for pre-
dicting random genetic effects ef u = 1E2E4-£-
m — 1£0

E5oe0 = RuUIZ‘Q"O/lE@v £718£0

And AUP is obtainable by

éionee = KR, ULQ 016y £719£0

where « = \/gnqu —1£6387y @01V B 0169 -

When random effects are predicted by BLUP
or LUP£E-the sampling variances for predicted ef-
fects can be calculated by

vl é5-:E£0= v 2R, ULQy£O
£ 52 £8R, U, Qv& yEQU,R,

—£7°52E£0R, U QVQU,R,
=£c2£O0R,U'QU,R, £ 20£0
for BLUPE-and
vefi @5, :£0= vl a,R,U,Q,yEO
=£"q,£8R,U,Q, vk yE@,U,R,
= ;R U.,Q.VO,U,R, £721£0

for LUP.

Hypothesis test for linear combination of ge-
netic effects can be conducted by a y test in the
same way as the variance test. But Zhu and
Weif " 1994a£-1996ECsuggested use of the Jack-
knife resampling technique in conducting a ¢-test
for predicted genetic effects because it is more
powerful for detecting non-zero parameters .

QTL mapping approaches

For mapping quantitative trait locE™ QTLsEGf
plantsE—putative QTL within two flanking markers
M;_ and M;, is searched along the whole ge-
nome. The markers linked to other QTLs are of-
ten included as fixed effects in a regression mod-
el for controlling background noise£ " Jansenf-
1993£5%.engE~1994£0 For mapping QTLs of ani-
mal populationsE~QTLs effects are often treated
as random effectsE=which will fit the framework
of mixed linear model<£ " Grignola et al.£-1997£»
Wang et al.£4998£0 The QTL effects for these
animal models are predicted by Henderson’s
BLUP approach as in equatioh’ 12£0

An approach of mixed-model-based compos-
ite interval mappingE€ MCIM £&" Zhuf- 1998£»
1999£» Zhu and WeirE» 1998£» Wang et alf-
1999£8by which the marker effects are treated
as random effectsE—can be constructed for han-
dling QTL x environment interaction or other
complicated effects. If the MCIM approach is
usedE-QTL mapping models can all be expressed
in the general mixed linear modeE "1£0 The like-
lihood functionf™™ LECfor the parameters of fixed
effects b and variance component£Us?2 £Vis

EBEVEC-E 2xE | V | Texpl- £y

— XbEOV Ly _ XBEEY £ 22£0
with the log of the likelihood functiorE™1ECas

L PEVEO- — LIE2rEC %m |V
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- 'y - XpEOVE "y — XBEO
£°23£0

If variance components of the model are
known£-the maximum likelihood estimates of
QTL effects in b can be obtained by the maxi-
mum likelihood estimationf—

b £ X'V XEO X'V'y
with sampling variance matrix
vl hEO=£" X"V~ XEO' .

We can search QTL within two flanking

markers M;_ and M;, for the whole genome by

£724£0

setting a prior value for recombination fraction
™, between marker and locus @Q. For each
prior value thQE—'the likelihood ratio statistic

£71LRECcan be calculated by
LR =26 bEVER, £6 26 bEVER, =0.5£0
£25£0

where variance components in V can be replaced
by their unbiased estimatesE~

V = D62UR,U,

The likelihood ratio statistic can also be used
for testing the null hypothesis HOEOrM__Q =0.5

vs. the alternative hypothesis H, £?/W,Q <0.5.

LR approximately has y* distribution.

When the null presentation of no QTL within
two flanking markers M;_ and M, is rejectedE~
Py, infers the position of the QTL while b gives
the estimates of additive and dominance effects
of this QTL. Hypothesis for additive and domi-
nance effects can be conducted by a i-test in a
general way for

HoE%%'b =m vs. HE%'b~m

If the statistic | cE"b — bEB/ £ X'V~ X£@ |
> z-.pe€Ethe null hypothesis is then rejected.

Bayesian analysis

Bayesian methods and Markov Chain Monte
Carl€ MCMCEGnethods were recently applied in
QTL mapping Bink et al.£-1998£0 The condi-

tional distribution for generating the data isE£®

y | bfe ,fe,£9-fv, £o°,

m—1

~ N(xb + D U,e,£021)

u=1

£ 26£0

£' 'a%n £©In+vm +2£R eXp{ —

The prior distributions for the unknowns in the

model can be assigned for b£ef u = 1E2E4-£Em
— 1£€und oE Wang et al.£-1994£0

Let p7 =£0b"£2 £} E5-£u), | EY
—£08,ER,E-ER EY
v =£063Eo3E1-£0?,_ £V
a’ :£00(1£?12£'i1'£?1m_1EamEY
vl =£U)J1£132£'i"_£vm,fl£vm£Y
be BT without (3£~
m-1

where N = p + >)q, = p + g £und
u=1

B, =£U,81 EREv-£B, 1 EB; ET-£EBy £Y
And let
—£Us o E-£02_ £

£Y

T

2
V_u

u+1

£'i1—£02

m—1

be v’ without variance component wu. Then the
joint posterior density is in the normal-gamma

fornE "Macedo and GianolaE-1987£E°
B BEvEo?, | yEafofCy

m-1
zgilgn[(y _‘% - %}]Uueu)T

io(y - Xb - N Use,) + van] )
u=1
m-1

x |EBo2E8 R egl E0elR e,
u=1 Gu

+ vy, ERY £°27£0

Inference about each of the unknownsfE BE-vE-
02, ECare based on their marginal densitiesE-re-
spectively .

Gibbs sampling can be implemented for con-
structing the fully conditional posterior densities
of all unknowns irE 27£0

The conditional posterior densities of each of
the location parameters in B is normalE-with
mean Bi and variance 5£°

B: | yEB_£vEo) Lafo ~ jﬂuﬁi£§'%£@ﬂ

i = 1E2E9-£EA £ 28£0

N
where 3; = (di - Z} wijﬁj)/wii and 5% = %,/
jolEei
is the element of ith row and jth column

i
of matrix W in the left hand side of normal
equations£” 12ECind d; is the ith element of vec-
tor d in the right hand side of normal equation

£712£0

w;; E_VW
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The conditional posterior density of residual
varianceis o2, is in the scaled inverted chi-square
form£®

B 62 | yEBEVEaEVEC,

m-1

£"a%n£©-””’m +2E@exp[ (y - Xb - Z Uueu)T
u=1

- 271%[
m-1

ic(y - Xb - E Uue,t) + v,an, }
u=1

or

Umam

X df=v £0

o2 | yEBEvEafv ~

with parameters v,, = n + v, and gzm :Eﬁuy E£B. £y, anE 6., ECEGH = 1£2E4-Es

- Xb-> Ue 8y - Xb -

m—1
y=1 u=1

uvu
+ vya,EX0,

The conditional posterior density of the wth
variance o~ is also in the scaled inverted chi-
square form£®

PrE" 62 | yE-BE-v_ E-olEaf-v £0
£762EC 4t R e £0- #0 elR;'e, + v,a,ERY
Gu

or
2 2 v,Q, .
oy | yEBEw _ E£o, Lafv ~ — £°30£0
X dr=4£0
with parameters v, = ¢, + v, and a, =

£elR'e, + v,a,ED, .

A set of the NV + m conditional posterior dis-
tributions£ 28E£0£ "30£Cis called the Gibbs sam-
pler. Flat priors for all variance components Pr

£ vEw2 £&c constant can be set for the Gibbs

sampler. The degree of belief parameters can be
set as v, = — 2 for u = 1E2E5-£Em .

Bayesian inference can be obtained for the

marginal distributions through Gibbs sampling
£ Gelfan and Smith£E-1990£0 Generating random

samples from the joint posterior distributiorE 27£0

can be achieved through successively drawing
samples from and updating the Gibbs sampler
£ 728£0£ 30£0

Gibbs sampling works as followsE®

A. set unbiased predictors and estimates as
initial values for BEw and o2 E»

B. generate 3; fronE" 28£Cand update (3£~
= 1E2E4-£NE»

£29£0

C. generate o2, fronf 29£Cand update o2, £»
D. generate o2 fronf "30£Cnd update ¢%£n
= 1£2E4-£Em — 1E£»
Repeat B. — D. for k£ length of the chainf£O®
As k— o E-this will create a Markov

chain with equilibrium distribution. After run-

times.

ning initial iterations as "warm-up”’£-samples are
stored every d iterations with the total number of
samples saved to be s.

If the Gibbs sampler converges to the equi-
librium distributionf-the s samples are randomly
drawn from the joint posterior distribution with

densityf 27£0 The kth sample
£731£0

U e £0 is then an N + m vectorE-each elements of

which is a drawing from the appropriate marginal
distribution. The s samples inf  31£0is called
Gibbs samples for reference. The features of the
posterior distribution 2 x£Can be estimated by

6 = %Z g'-xk £©
k=1
where £ x,£Can be any feature of B x£E-such

as its mean or variance.
Bayesian inference can also be made on the
functions of the original parameters.

GENETIC MODELS

Animal genetic models

Genotype x environmenf  GEE£Cinteractions
have been detected for quantitative traits of many
plants and animals. With genetic experiments
conducted in multiple environmentsE-the average
phenotypic performance of a genetic entriy in one
environment can be expressed by the following
genetic model£-

y:p+E+G+GE+€ £H32£©

where ;« = population meanf~E = environment
effectE~G = total genotypic effectE~GE = geno-
type X environment interaction effectE-e = re-
sidual effect.

But most animal models£  or reduced animal
modelsECconsist of only simple genetic effectsE-
such as additiveE~dominanceE-and/or maternal
effectsE" Lynch and WalshE-1998£0 Recently
Zhu and Weif 1996E£Cproposed an animal mod-

elE-which is a modification of Eisen’s model
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£ Eisen et al.£E1966£0 The genetic model for the
phenotypic meanf”" y;, £0of sex s in block k

within environment h from the cross between
maternal line ¢ and paternal line j is

yhijxk = p + Eh + Gt]s + GEhijx + Bﬁ"h£©+ € hijsk
£°33£0

where £z is the population meanf-E), is the en-
vironment effectE-Bg-0is the block effectE~e,,;
~£70£52£GCis the residual effect. The total geno-

type effect is further partitioned into three com-
ponent£” G = additive effect A + dominance ef-
fect D + sex-linked effect L + maternal effect
MEB-the same as in the partitioning of the geno-
type X environment interaction effecE’ GE = AE
+ DE + LE + MLEOfor heterogametic progeny
£7°XY or ZWE-s = 1£€Gind for homogametic proge-
nE XX or ZZE~s = 28 Zhu and WeirE-1996£E°

Gz)ﬁ/ + GEi(;/l = Ai + A] + Dl] + Lil + Mi
+ AEhi + AEh] + DEhij
+ LE,; + ME),

or G&V + GEIY = A, + A + Dy + Ly
+ Mi + AE}”' + AEhj

+ DE,”']‘ + LE/zjl + ME/H-

Ai + Aj + Dlj + %LQ
+ %Lﬂ + ML‘ + AEhi

+ AEh] + DEth +

XX/ ZZ XX/ 727
G£j2 + GEh[jZ =

1
E LEhi2

+ %LE}UZ + MEhi £“34£©

The phenotypic mean of this animal model

with sex-linked and maternal effects can be ex-
pressed by a mixed linear model as

y

Xb + U4eA =+ UDeD + ULeL + UMeM
+ Uspesr + Upgepp + Ugery + Uygey
+ Ugep + e,

10
= Xb + >, U,e, £°35£0

with variance-covariance matrix
- 2 T 2 T 2 T
vl 'yEO= 53U U,y + opUpUp + o1U U}
2 T 2 T
+ ouUyUn + c4xUspUyg

2 T 2 T
+ ooeUpeUpr + c1xUpUlg

+ GAZMEUMEU%%E + U%}UBUg + U%I
10
= 2 0V
u=1
Unbiased estimation of variances and covari-
ances can be obtained by REML or MINQUE "1£0
approaches. Random effects can be predicted by
the BLUPE-LUP or AUP method. Mouse body
weight and tail length of a 7 x 7 diallel cross
were analyzed by this animal model£ Zhu and

WeirE-1996E£» Atchley and ZhuE-1997£0 Silk-

worm is a heterogametic female species with 77

£736£0

sex chromosomes for males and ZW sex chromo-
somes for females. Data for cocoon weight and
fibroin content for a 5 x 5 diallel cross in two
seasons were analyzed for evaluating genetic
variance components as well as genotype X en-
vironment interaction variance components£™ Zhu

and WeirE-1996£0

Seed genetic models

One of the important breeding goals now is
improvement of crop quality. Creating seed ge-
netic models in biological meaning with applica-
ble statistical methods is of importance for effi-
cient analysis of seed quantitative traits. By ex-
model

tending Cockerham’s general genetic

£ " Cockerham£-1980£8-7Zhu and WeirE  1994a£0

partitioned the total genotype effectE” G £Ointo
seed direct gene effectE’” G, £E-cytoplasm gene

effectE’” G £8-and maternal nuclear gene effect

£°6,8°G = Gy + G; + GyEO Further partition-

ing was also proposed£®

Ge = Z')’iCi

GM = ETW-AI?’LI' +
i i j=i

where A; = direct additive effectE-D; = direct

dominance effectE~C; = cytoplasm gene effectE—

£737£0

Am; = maternal additive effectf,—'Dmij = mater-
nal dominance effect.

Genetic models were proposed for quantita-
tive traits of diploid seeds and animal£ Zhu and
WeirE=1994a£0and of triploid endosperm£™ Zhu
and WeirE~1994b£0 UsuallyE-means of only
three generations£ P’sE-F;’s and F,’s£0 are
required for analyzing seed traits.

The total genotype X environment interac-
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tionf " GE £0can also be partitioned into three
termsE GE = GoE + GoE + GuE£& Zhuf-
1994£8-which can be further partitioned into its
components£®°

direct X environment interaction GoE =

D0 D0aAE,: + D5 >0 D ByDEy;
h i h i j=i
cytoplasm X environment interaction G¢FE
= > 2 ACEy
h i
maternal X environment interaction GyE =
AR TN Y
20 e AmEy + 25 > 3B, DmEj;
h i h i j=1i
where AE),; = A; x E, interaction effectE~DE);
= D; x E, interaction effectE-AE),;, = A; x E,
interaction effectE-AmE,; = Am; x E; interaction
effectE~DmE); = Dm; x E) interaction effect.
Based on the extension of the general genetic
model for seedsE-experiments of a diallel cross
with three generationsE” P’sE-F,’s and F,’s£Qin
multiple environments can be appropriately ana-
lyzed by the mixed linear approachesf£ ™ Zhuf-

1996£0 The phenotype mean of seed models can
be expressed by a mixed linear model as

y Xb + UAeA + UDe[) + UCeC + UA,,,eA,,,

+ Upnepn + Uigesr + Upgepr + Ucrecy

+ Upglsne + Upnrepnr + Upep + e,

£739£0

12

Xb + ZUueu

with variance-covariance matrix
.- 2 2 2 2

Véﬁr‘ y£©: GAV1 + GDVZ + G(;V3 + UAmV4
2 2 2 2

+ 0onVs + cugVe + opeV7 + o Vs
2 V 2 V 2 V

+ Oame Vo + OpmeVio + OpV1i

+ 04 anVi2 + 0p.ou Vi3 + 0 ameVa

2
+ opp.pmeVis + 0eVie
16

2 eu‘/u
u=1

where V, = UUE v = 1£2E4-£41£8V, =
£'U,U, + U U £8V,; £ U, U} + UsU; £8~
V. =£° U, U} + U UL £EB-~V,s =£ U, U},
+ U UEBYV s =1.

Unbiased estimation of variances and covari-

ances can be obtained by MINQUEE "0/1£Oap-
proaches. Random effects can be predicted by

LUP or AUP method. Quantitative traits of seed

nutrition were studied by using the seed models
for riceE "Shi et al. 1997£8-cottorE” Zhu et al.£-
1997£€8-barleyE” Yan X. F.E-et al.E-1998£E8-
and corrE Lou et al.E-1998£0

QTL mapping models

Mixed linear model approaches were often
used for mapping QTLs of animal populations
based on animal model or reduced animal model

£738£0L " Grignola £-et. al.£-1997£8-

y = Xb + U46’A + er() + e,
~ BXbEV = GAUR,UL + o9UyR, U,
+ o’R._£0 £740£0

where y is the phenotype vectorE» is a vector of
fixed effectsE»X is the design/covariate matrix
relating to bE»e, ~ B O£0%R,£Gs the vector of
additive effectsE»e, ~ £ OE£o,R,£Cis the vec-
tor of QTL allelic effectsE»e, ~ £ OEw2R. £Cis
the vector of residual effects.

Until now there is no appropriate animal
model for analyzing QTLs with genetic main ef-
GE interaction effects. The
mixed linear model approaches can be used indi-
rectly for searching QTLs with genetic main ef-
fects and QTL x environment interaction effects

fects as well as

£ 7ZhuE-1998E£»1999E£»Y anf—et al. £-1998£0

If QTL mapping experiments are conducted
in several environments £ years and/or loca-
tionsE€-the phenotype means of genetic entries
can be fitted by linear modelE "32ECwith random
effects for environment effectsE™™ E £8-genotype
effect£”” GEEgenotype X environment interac-
tion effect£ " GEE£8-und residual errors. The ma-
trix form of the mixed linear model is

y = I/l + UEeE + U(;e(; + UGEeGE + e,

~ B IuEV = LU UL + o%UUL
+ 0% UgUly + o2 IEO £741£0

The random effects EE~G and GE are pre-
dicted by the AUP methodf™ ZhuE£~1993£»Zhu
and WeirE1996£0 and then used to predict main
effect data y5-¢e0= ¢« + G; on the genotype j
across environmentsE—and genotype X environ-
ment interaction data yj-cpee= ¢ + K, + GEj; on
the genotype j in environment h£-vespectively.

The composite interval mapping £ CIM £0
methodE  ZengE-1994£Cis then applied to analyze
the predicted 5 ¢gofor searching QTLs with ge-
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netic main effectsE-

V5 cee = Boceo+ B ceeX; + ZBE"GE@XL'/ + & ceo
£7°42£0

where Bg-¢eois the population meanf—3-¢eois the
QTL main effectE»X ;" is the coefficient for QTL
effectE»3; ceeis the main effect for the i-th mark-
erE»X;; is the coefficient for the i-th marker ef-
fectE»and & ceois the residual error of the j-th
genotype .

The predicted 75 gpgoare analyzed also by the
CIM methodE™ ZengE-~1994£C0for dissecting QTLs

with QTL x FE interaction effects in the h-th
environment£-

A * * A

Vig-crgo = Pocreo+ (B o eeXy + LBE"GE,ﬁ@Xhij

— £743£0

where Sg-¢p gois the population mean of environ-
ment h£73-¢p gois the QTL x K interaction ef-

fect of environment h with coefficient X £»
(Gicr gois the effect for the i-th marker x envir-
onment h with coefficient X;;E»and & cE, £01S the

residual error of the j-th genotype in environment

h.

tion effect with coefficient wp £>>eDEI ~ NEOE~
y .

o5;ECis the dominance X environment interac-

tion effect with coefficient upy £>>eM/ ~ NTOE-
hj

0%E0is the marker main effect with coefficient

wy, £>>eME” ~ B 0E53,;,ECs the marker x envir-

onment interaction with coefficient Wy, Eve); ~
Ihj

B 0E£52£Cis the random residual effects.
This modeE "44£Ccan be expressed in matrix

formE-

y

Xb + Ugeyp + Uygeyy + Upgepp + Uyey

+ UMEeME + e,

6
Xb + >, Uy,
u=1

£745£0

l

6
B XbEV = > 62U,R,ULEOQ
u=1

where y is the phenotype vectorE»b is the fixed
parameter vector for population mean and QTL
effectsE»X is the known incidence matrix of the
fixed parametersE»e, = e; ~ M 0E5LIECis the
vector of environment effectsE»e, = e, ~ £ 0E-
o2 TEGis the vector of A x E interaction effectsE»
ey = ep; ~ £ 0Eo%,I£Cis the vector of D x E
interaction effectsE»e, = e, ~ £ OE£o3 R, £Cis
the vector of marker main effectsE»es = ey; ~ N

Mixed-model-based composite interval map- £ OE£0%;R,;;ECs the vector of M x E interaction

pingE” MCIM£&"" Zhu and WeirE—~1998£» Zhuf~
1998£0can be applied to directly search QTLs

with genetic main effects and QTL X environ-

ment interaction effects£ ZhuE~ 1998£» 1999£>»
Wang et al.£21999£0 When experiments for

QTL mapping are conducted in multiple environ-

mentsE-the phenotype value of the j-th genetic

entry in environment h can be expressed by a

mixed linear model£-

th = U + ax, + de + U/E) eE/ + uAE) eAEh
j J i h i

+ Upg €pE, + ZUM ey + ZUME eME
iy h 7 ¥ f 7 hij W

£744£0

+ &

where z is the population meanf£»a and d are

the fixed additive and dominance effects of QTLE-

respectivelyE»x, and x, are coefficients for ge-
J 7

netic main effects£»eE’ ~ K 0E7%LECs the effect
of environment h with coefficient ug, E»GAEh ~N
hj

£7°0£9%;£Cs the additive X environment interac-

effectsE»es = e, ~ & OEBIECis the vector of
residual effectsE»UE u = 1£E2£4-£6£Care the
known incidence matrix of the random effects
and Ug = 1.

QTLs with epistasis main effects and epista-
sis X environment interaction effects can also be
analyzed by the MCIM method£ ZhuE-1998£»
1999£0 If DH or RIL populations are used for
mapping QTLs with additive and additive x ad-
ditive epistasis effects as well as their environ-
ment interaction effectsE-the phenotype value of
the j-th genetic entry in environment h can be
expressed as the following mixed linear model£-

Y = M + alel + a,x, + aaxyy —+ uE/ eEh
Y 2 i hi
Ujs g e us g e
+ AlEhj AlEh + Ath, AzE/,
+ Uag, e, + E:uMﬁeM/ + E:UMMUGMM,
T ; !

+ ZUME eyg + EUMME eume,  + €
Iy hp hgi hy

£746£0
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where s is the population meanf»a; and a, are
the additive effects of loci Q; and Q,E-respec-
tivelyE»aa is the additive x additive epistasis
effect of loci Q, and sz.»xAU E—chZ, and Xy are

coefficients of these genetic main effectsE»eE/ are

the random effects of environment h with coeffi-
cient uy_ £>>eAl E{::"or esr, £@are the additive x
Yy 27h

environment interaction effects with coefficient

uAIEf."or uAE, £&or Qf or sz.@»e/mgh is the ep-

istasis X environment interaction effect with co-
efficient uME/vﬁ»eM/ is the marker main effect with

coefficient uy £>>eMM/ is the marker x marker in-
[
teraction effect with coefficient Uy, £>>eME/ is the
.

marker X environment interaction effect with
coefficient g, £>>eMME] is the marker x marker
P q

X environment interaction effect with coefficient
u’MMEl,E»ehj is the residual effect.
9

This modeE "46ECcan be expressed in matrix
formE-

y

Xb + Ugep + U, pe, p + U, pey

+ Uppepr + Uyey + Uyyeyy

+ Uyreve + Uyeyur + €.

9
Xb + Z Uee,

u=1

9
B XbEV = > 6 U,R,U.EOQ

u=1

l

where y is the phenotype vectorE»b is the fixed
parameter vector for population mean and QTL
effectsE»X is the known incidence matrix of the

fixed parametersE»e, = e, ~ £ OEvLI£Cis the
vector of environment effectsE»e, = e r ~ N
E"OEUiIEl £Cis the vector of A; x E interaction
effectsE»e, = € r ~ ]ﬁ"OEUzAZ pITECis the vector
of A, x E interaction effectsE»e, = ey ~ N
£ 0£0° ;R 11 ECis the vector of AA x E interac-
tion effectsE»es = ey ~ M OEw3 Ry, £0is the
vector of marker main effectsE»eq = ey, ~ N
£ 0Eo0% R, ECs the vector of interaction marker
main effectsEve; = ey, ~ £ OEo? Ry ECis the
vector of M x E interaction effectsE»es = ey
~ M OED% Ry ECis the vector of MM x E
interaction effectsE»e, = e, ~ £ OE£v’I£Cis the

vector of residual effectsEXUE v = 1£2£4-£8£0

£747£0

are the known incidence matrix of the random ef-
fects and Uy =1 .

DISCUSSION

Complex quantitative traits consist of genetic
effects more than simple additive and dominance
effects. As genetic models become more and
more complicated for fitting the biological situ-
ationsE-total phenotypic variance can be parti-
tioned into various ways. Therefore some defini-
tions of traditional quantitative parameters might
need to be updated too.

Heritability is an important parameter widely
used in quantitative genetics as well as plant and
animal breedingE-but different definitions should
be assigned in dissimilar genetic models. Quan-
titative traits can be controlled by genetic main
effects and GE interaction effects. Accordingly£-
the total heritabilitE™" h*£C:an be partitioned into
general heritabilinE h% £Cand interaction herita-
bilitgE" h%, 8D ZhuE4997£Q General heritabilityE-
which is applicable to multiple environmentsE-is
defined as the ratio of variances of accumulated
inheritable genotypic effects to phenotypic vari-
ance. Interaction heritabilityE-which is only ap-
plicable to specific environmentsE-is defined as
the ratio of variances of accumulated inheritable
GE interaction effects to phenotypic variance. In
seed genetic modelsE-variances with accumulated
effects consist of direct additive varianceE™ V, £8-
cytoplasm variance £ V; £8- maternal additive
varianceéE” V,;,, £Cas well as variances due to gene
by environment interactions. General heritability
consists of direct general heritabilinE " h% £E-cy-

toplasm general heritabilityE”” % £8-and maternal
general heritabilinE™ ™ h3, £ Zhuf-1996£E°
ht = hy + ht + hy
=£"VA + CA.Am£©Vp + I/L/Vp +£"V4m
+ Cy 1 EDV,

p
Interaction heritability includes direct interaction
heritabilityE " h%); EE-cytoplasm interaction herita-
bilitE" " h%; £8-and maternal interaction heritabili-
e hi £E°
h2GE = hz()E + hZCE + h%le

=£"Vyp + CAE.AmE£©Vp + Ver/ Vp £ Vi
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+ Cug amp £©Vp
with total phenotypic variance calculated as
Vp :£"V(;0 + VC + V(;m + 2C(;0(;m£©-I£V(;OE

+ Ver + Vour + 2Cop cupEC+ V,
:E--VA + VD + VC + ‘/Am + V[)m

+ 2C pm + 2CD.Dm£©+£"VAE + Vog
+ Veg + Vir + 2Cug ame + 2Cpr pue £0
+ V,

Heritability is often used in predicting selec-
tion response. Since heritability consists of sev-

eral components for some complicated modelsE—

the definition for selection response should also
be changed. For seed models with GE interac-

tionEtotal selection responseE” R = ih*> \/ V, £0

can be partitioned into several components

£7°7ZhufE-1997£E°

R = RG + RGE
£ Ry + R + RyEOE " Ryp + Ry + Ry £O

where R; = ih% V, is general responseE-which

consists of direct general responsef” R, = ih?
V' V,EB-cytoplasm general responsef R = ih{

/Vp £8-and maternal general responseE’ Ry =
ih3, m EEB Ry = ihzcEm £Gis interaction re-
sponseE—which consists of direct interaction re-
sponséE” Ry = ihz(;Em £8-cytoplasm interaction
responséE” Rep = ihZCEm £8-and maternal inter-
action responséE” Ry = ih%WE\/Vp £0

In order to analyze complicated genetic ef-
fects£ "such as epistasis effectsE-endosperm ef-
fectsE-etc . EB-segregating generations of £ F,£~
BCl1£-und BC2£Ccan be included in the genetic
modelsE-which have non-integer coefficients for
some effects and even correlation between fac-
tors. These kinds of genetic models are usually
analyzable not by ANOVA approaches but by
mixed linear model approaches. Most animal ge-
neticists use the REML methodE™ Patterson and
ThompsomE~1971£O0instead of MINQUE method
£7Rao£1971£Gor analyzing animal models. Mon-
te Carlo simulations £ Zhuf-1989£» Zhu and
WeirE-1994a£-1994bE£-1996£0showed that MIN-
QUE has advantages over REML due to its£UAEY
simple computation without iterationsE5U BEYno
requirement for normality distributionf—andEUCEY

unbiased estimation.

The jackknife resampling method is efficient
for calculating estimates£ or predictors £0 and
their standard errors. Resampling technique is
based on resampling unit. For genetic experim-
ents with randomized complete block design in
multiple environmentsE—blocks within environ-
ments can serve as resampling units. If there are
only replications but not blocksE—genetic entries
can serve as resampling units.
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