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Analysis of epistasis: A genetic model for triploid endosperm traits
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Abstract: A genetic model for triploid endosperm traits was proposed on the basis of diallel cross system to
analyze additive by additive epistasis of direct effect (AA) and maternal effect (AmAm) along with direct
additive effect, dominance effect, cytoplasm effect, as well as maternal additive and dominance effects. Monte
Carlo simulations were conducted to test the estimation of genetic parameters and robust of this genetic model.
Unbiased estimation of the variance components for single trait and covariance components between two traits
can be obtained by using minimum norm quadratic unbiased estimation ( MINQUE) method for both balanced
design and unbalanced design without significant difference. A worked example was used to illuminate the

application of analyzing additive by additive epistatic variation.
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Bateson''!  described  ©epistasis’ as  the one gene masking the effects of another. Fisher'”
distortions of mendelian segregation ratios due to defined the epistasis in statistical point of view to
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illuminate the deviations from additive effect in a
linear statistical model. Lou and Zhu"”' found that
the major gene effects could be influenced by the
genetic background. Modifier genes in human and
mouse have provided evidence of the importance of
epistasis: the genetic background often influences
the phenotypes of the susceptible genotype of major
genes, for example, by affecting the penetrance of

the gene'".

Other evidences such as substantial
epistasis between QTL were found by genome-wide
scanning in the populations that are derived from
crosses between artificially selected lines™'.

In genetic breeding program, both additive
effects and additive by additive epistatic effects can

be inherited stably from one generation to the next

1 ], 12-13]

generation' "', Liu et a pointed out the
importance of epistatic effect in mark-assisted
selection by constructing the selection index in
genetic improvements. Many genes with small
effects have minor variants present in the base

which could

population or on new mutations,
generate little epistasis''* .

Diallel mating design based on classical
statistical and quantitative genetics provided a way
to analyze the genetic effects for diploid seed and
triploid endosperm traits. Cockerham and Weir !
proposed a bio-model to analyze the direct additive
and dominance effects, as well as maternal and
paternal effects for diploid seeds traits. Zhu and
Weirl "' proposed seed models for analyzing
direct additive and dominance effects, extranuclear
effects including cytoplasm effect, maternal
additive and dominance effects for diploid seed and
triploid endosperm traits.

In the present study, we proposed a diallel
mating genetic model to estimate the direct and
maternal additive by additive epistasis, direct and
maternal additive and dominance effects, the
cytoplasm effect, as well as their interaction effects

with environments. Monte Carlo simulations were

conducted to evaluate the procedures for estimating
variance components for single trait and covariance

And a worked

example in rice seeds was used to demonstrate the

components between two traits.

analysis for additive by additive epistasis variation
with the none-variation of the main additive

effects.

1 Model and method

The genetic model is based on the following
assumptions: (1) no paternal effect; (1) no
covariance between direct genetic effects and
maternal genes effect, as well as their interaction
effects with environments; (iii) no interaction

between direct genetic effects and cytoplasm
effect, as well as their interaction effects with
environments. The genetic model can be written as
a linear mixed model for the mean observation in
the hth environment and in the /th block of the kth
type of genetic entry from line i and j:

Y hijet. = M +E, +6G, + GEhijk +B, + €

ik
where u is population mean, E is environment
effects, G is the total genetic effect, GE is the total
genotype by environment interaction effects, B is
block effect, and e is residual. The total genetic
effect G, depends on the specific genetic entry:
for F,; from maternal line i x paternal line j (£ =
1).

Gij1 =24, +Aj +D; + 2Dij + 4AA; +AA}.]. +
4AAL.j +C, +2Am; + Dm; +4AmAm,,.
for F,; from maternal F; x paternal F, (k =2).

Gp, = L.5SA, + 1.54; + D; + D, + D; +
2.25AA; +2.25AA; +4.5AA; + C; + Am; + Am; +
Dmy; + AmAm;; + AmAm;; +2AmAm,.
for reciprocal backcross RBC; from maternal line i
x paternal F;(k=5).

Gys =2.5A; +0.54; +2D;; + D;; +6.254A,; +
0.25A4A; +2. 5AA;; + C; +2Am; + Dm,; +4AmAm,;.

for reciprocal backcross RBC; from maternal line j



X paternal F,;(k=6).

Gy =0.54;, +2.5A; +2D; + D; +0.254A, +
6.254A; +2.5AA; + C; +2Am; + Dm; +4AmAm,.
where A is additive effect, D is dominance effect,
AA is additive by additive epistatic effect, C is
cytoplasm effect, Am is maternal additive effect,
Dm is maternal dominance effect, AmAm is
maternal additive by additive epistatic effect.

The total genotype by environment effect
GE,; also depends on the specific genetic entry in
different environment:
for F\; from maternal line ¢ x paternal line j (k =
1).
GE,; =2AE,, +AE, + DE,, +2DE, +4AAE

hij hii

+AAE,; + 4AAE,; + CE,; + 2AmE,;, + DmE,; +

4AmAmE,;,.

for F,; from maternal F; x paternal F,,(k =2).
GE,, = 1.5AE,, + 1.5AE,; + DE,, + DE, +

DE,; +2.25AAE,; +2.25AAE,; +4.5AAE,; + CE),
+AmE,; + AmE,; + DmE,; + AmAmE,; + AmAmkE,;
+2AmAmE

hij*
for reciprocal backcross RBC; from maternal line i
x paternal F,;(k=5).

GE,;s =2.5AE,; +0.5AE,, +2DE,; + DE,; +
6. 25AAE,; + 0.25AAE,; + 2.5AAE,; + CE, +

2AmE,, + DmE,; +4AmAmE,...

hii

hij

for reciprocal backcross RBC; from maternal line j
x paternal F,;(k =6).

GE,; =0.5AE,; +2.5AE,; +2DE,; + DE
0.254AE,; + 6.25AAE,; + 2.5AAE
2AmE,; + DmkE,; +4AmAmkE,;.
where AE is additive by environment interaction
effect, DE is

interaction effect, AAE is AA by environment

wj t

+ CE,; +

hij

dominance by environment
interaction effect, CE is cytoplasm by environment
interaction effect, AmE is Am by environment
interaction effect, DmE is Dm by environment
AmAmE is  AmAm by

environment interaction effect.

interaction  effect,

The phenotypic variance for single trait and

covariance between two traits can be partitioned as

Vo= (Vi+Vy + V) + Ve +(V,, + V), +
VAmAm) + ( V4E + VI)E + VAAE) + VCE + ( VAmE + VDmE +
Viwtnz) + V.

C,=(C,+C,+C,) +C. +(C,, +C,,, +
CAmAm) + (CAI! + CI)E + CAAE) + CCE + (CAmE +
Cpur + Ciuanp) +C..

The estimates of the parameters can be
obtained by MINQUE ( 1)!"”, the sampling
variances of the estimates can be obtained by
jackknife procedure, and a i-test can be conducted

to test the zero variant for genetic effects!'*"”.

2  Monte Carlo simulations

The simulations were based on modified
diallel crosses with three randomized complete
blocks in two environments. The balanced design
included F, s, F,s, backecross from eight inbred
lines, as well as their reciprocal backcrosses. The
unbalanced design, with the same generations and
experimental sizes as the balanced design,
consisted of eleven inbred lines groups (lines one
through seven as group 1, and lines eight to eleven
as group 2).

The unbiasedness and efficiency of estimation
of varlance components for single trait and
covariance components between two traits were

obtained by MINQUE (1), and sampling variances
of the estimates were obtained by the jackknife
procedure by resampling genetic entry. And a i-
test was conducted to test the null hypotheses of no
variation for genetic effects. The simulation results
are summarized in Table 1 for single trait and two
traits with a correlation (p =0.5).

There is no difference for bias and power
value between the balanced design and unbalanced
design. For both balanced and unbalanced design,
direct additive by additive epistasis (o,) can be

detected significantly with minor bias and higher
power, which is almost equal to one like the

estimation of residue. And the interaction effect
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between direct epistasis and environment ¢,
could be significantly detected with power values
100% .

Robustness of estimation can be tested by
simulation under the conditions of no specific
variation. If cytoplasm effect and interaction effect
between cytoplasm and environments are excluded
(0w =0, =0), other parameters can be estimated
with similar bias, MSE, and power value. Non-
significance of the cytoplasm and its interaction
effect with environments can be detected with a
and 96%

genetic

probability over 99%
Without

cytoplasm variation, and their interaction variations

respectively.
maternal background  and
; : . 2 2 2
with different environments (o, = 0, = Clhim =
2 2 2 .
= Opimp = O¢ = 0¢y = 0), direct
their

and error

2 2
O umg = O pnk
additive,  dominance,

interaction effects with environments,

epistasis  and

variance can be detected with a similar probability

when these effects exits. When there are no
maternal additive, dominance, epistasis and their
interaction effects with environments variations
= 0-/211m’lmE =0),

other parameters are better estimated for bias and

(O = O = Tt = O = T
power value. The genetic model is robust for
estimating variance components even though there
are no cytoplasm and/or maternal effects and their
interaction effects with environments.

There is no considerable difference of bias,
MSE in estimating covariance components for two
traits (Table 1) . But the power values tended to be
smaller for covariance estimation. It is indicated
that MINQUE (1) is also efficient in estimating
covariance  components  for  balanced  and
unbalanced modified diallel crosses with the same

experimental sizes.

Table 1 Bias, MSE and power value from simulations by MINQUE (1) with the jackknife procedure followed #-test

for modified diallel crosses under 500 simulation runs

Balanced design

Unbalanced design

Parameter True value - .

Bias MSE Power Bias MSE Power
One trait
o 40 0.67 862.04 0.84 2.14 874.45 0.83
a5 20 0.04 192.33 0.65 -1.06 202.91 0.58
ol 30 -0.14 106.31 1.00 0.12 134.25 1.00
o 20 -0.88 285.63 0.89 0.42 207.62 0.91
i 40 1.80 4620. 85 0.80 -2.02 5492.92 0.84
T 20 1.34 477.82 0.43 -1.23 508.73 0.87
it 30 -0.49 190. 39 0.97 -0.45 265.57 0.91
g 30 -1.00 350.26 0.88 -0.28 330. 18 0.83
o 20 0.59 169.62 0.70 0.86 217.79 0.59
e 20 -0.004 35.90 1.00 0.02 42.31 1.00
oty 20 0.63 129. 86 0.99 -0.54 85.29 1.00
i 30 -1.49 1078.28 0.76 -0.98 1507. 31 0.82
Tt 20 -1.00 294.39 0.38 4.01 340.22 0.80
Tt 20 0.34 54.55 0.97 -0.96 385.38 0.88
o? 20 -0.01 0.29 1.00 0.002 0.49 1.00

'''' Two traits

Ta/n 20 0.90 588.19 0.54 0.41 871.18 0.73
T/ 10 0.23 120. 89 0.22 -0.31 121.55 0.21
T pa/an 15 -0.24 64.52 0.91 0.10 83.54 0.88
T 10 -0.34 167.87 0.72 0.71 127.75 0.69
T fom/Am 20 2.81 2860. 61 0.71 0.50 3537.37 0.77
T Do/ D 10 1.30 336.16 0.13 -1.80 366.95 0.79
T fmdm/ AmAm 15 -0.97 113.13 0.74 0.46 192.12 0.82
T /AL 15 -0.61 196. 40 0.38 -0.92 696.01 0.70
T p/pE 10 0.13 93.11 0.18 0.25 114.75 0.14




Continuation of Table 1

Bias, MSE and power value from simulations by MINQUE (1) with the jackknife

procedure followed ¢-test for modified diallel crosses under 500 simulation runs

Balanced design

Unbalanced design

Parameter —True value Bias MSE Power Bias MSE Power
O A Ak 10 0. 10 20.93 0.93 0.03 23.98 0.92
Tesrcs 10 ~0.03 84.84 0.73 ~0.10 57. 64 0.72
O s AmE 15 ~0.06 769. 14 0.61 ~1.08 999, 58 0.61
T ot o 10 ~0.53 177.57 0.03 2.125 3449, 44 0.68
Ot A 10 0.23 34.71 0.71 ~0.59 218.73 0.70
oo 10 ~0.01 0.18 1.00 ~0.04 0.27 1.00

3  Worked example of diallel cross
for rice seed traits: WBR and WMR

The mating design used in this experiment was
a North Carolina II design with 9 females mated to
5 males. The nine cytoplasm male sterile lines and
their maintainer lines used as females were Zhexie
2 (Pl), Xieqgingzao ( P2), Zhenan ( P3),
Gangchao 1 (P4), Yinchao 1 (P5), Erjiuqing
(P6), V20 (P7), Zuo 5 (P8) and Zhenshan 97
(P9). The five restorer lines were T49 ( P10),
Cezao 2-2 (P11), 26725 (P12), 102 (P13) and
1391 (P14)1"*>,

by crossing all female parents with male parents in

The F, generation was obtained

1994. The seeds of parents and F, were sown on
April 2 in both 1995 and 1996. Single 30 days old
seedlings were transplanted at spaces of 20 cm x 20
cm in the field of the experimental farm at Zhejiang
University. The experiment was laid out in a

randomized block design with three-fold replication
in each block. There were 24 plants in each plot
for parents and F,. Seed samples of parents and F,
from F, plants were collected at maturity from eight

plants in the middle of each plot. The seeds of F,s
were obtained by crossing females to males during

the florescence. The generations also include

backcross of P; xF; and P; x F,.

The diallel crosses data set was used to
estimate variance components for single trait and
covariance components between two traits and to
predict the random effect vectors for two traits in
indica rice ( Oryza stiva 1..). The quantitative traits
include weight of brown rice (WBR) and weight of
milled rice ( WMR).

for single

The estimates of variance

components trait and covariance
components between two traits as well as their

standard errors are summarized in Table 2.

Table 2 Estimates of variance and covariance components for WBR and WMR in rice

Variance WEBR WMR Covariance WBR/WMR
Estimate = SE Estimate + SE Estimate = SE
Ve 0.64 £0.08* * 3.52£0.41** Cp 1.55 +5.07
v, 00 00 C, -2.36 +4.23
Vb 3.76 +0.50 * * 0.031 0. 002 * * Cp 1.43+1.48
Via 6.39£1.13** 6.01 £1.11** Ciy 6.07 £2.84**
Ve 6.26+1.02% " 5.07 £0.66* * Ce 5.63 £4.48
Vi 00 00 Cin -3.31 +17. 11
Vom 0+0 0+0 Chm —-5.88 +4.93
V smam 7.79 £1.18* 5.92£0.77* " C tomtm 7.05 £4.09*
Vie 00 00 Car ~0.24£0.14" "
Vg 512113 5.86£1.32* " Cpi 4.73 £5.52
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Continuation of Table 2 Estimates of variance and covariance components for WBR and WMR in rice

Variance WEBR Covariance WBR/WMR
Estimate + SE Estimate + SE Estimate + SE

Vare 00 Ciig -3.32£190.79

Ver 5.98+1.00* 3.99 £0.57** Ce 4.13 £2.77

Vime 00 Crni -4.89 £5.15

Vome 00 Cpmi —3.06 +47. 82

Vpmame 4.66+0.73** 2.79+0.35* " Cpmtmis 2.64 7.6l

V. 0.59 £0.09 * * 0.61 £0.075* * C, 0.42 +0.071**

Note: #0. 05 significant level; # # 0.01 significant level.
From the zero variance estimates, it was
suggested that there is no direct additive, maternal
additive, dominance and their interaction effects
with environment, as well as direct epistasis by
environment interaction effect for traits WBR and
WMR. This similar conclusion also could be
obtained from the covariance components estimates
listed in Table 2.
For both traits, though &7, was not significant,
o, was significantly positive. It was indicated that
the interactions between some minor genes could
increase WBR and WMR for rice.

estimation of &,,; suggested the interactions

The zero

between minor genes express stably in different

environments. It could be concluded that rice plant
genome has significantly epistatic effects on both
WBR and WMR from the term &3,,,,. In practical
breeding program, we may get better genetic
improvement if the selection was implemented on
the direct

Covariance components between two traits also gave

and maternal epistatic  effects.

the same results for epistatic effects.
The heritability due to additive and additive
by additive epistasis was 0.000 and O0.155

respectively for WBR, and 0. 000 with 0. 178 for
WMR.

4 Discussion

The variance components for single trait and
covariance components between two traits in this
paper can also be estimated by other statistical

methods. Compared to methods of maximum

likelihood ( ML)™! and restricted maximum
likelihood ( REML )™,  MINQUE has the
advantages of simple computation and spending
less computation load and time. Similarly,
compared to the prediction method of adjusted
unbiased predition method ( AUP), the method of
best linear unbiased prediction ( BLUP)'™' needs
true prior variances, and the method of linear
unbiased prediction ( LUP) decreases the variance
of the predictors for random effect vectors.

From the example data set, the diallel cross
between these parental lines could not provide the
additive effect, but detect the significant epistatic
variation which could be used to direct the
selection program and breeding program. It would
be caused by the opposite alleles effects, for
example there were two QTL to influence the trait
but have opposite effects with @ and -a
respectively on the trait. However, epistatsis could
be present between these two QTL or could be

caused by the background or the

genotype
environments. According to classical heritability
theory, the general heritability in narrow sense was
the proportion of the additive variation from the
total phenotype variation. Since the epistasis of
“locus by locus’ level could be inherited stably,

we should consider the additive by additive
epistasis with the additive effect to get the general
heritability in narrow sense, which would be higher
and accurate than only based on additive.

The genetic model proposed in this paper can

analyze the additive by additive epistatic variation



for seed traits. Monte Carlo simulations obtained

much higher power for additive by additive

epistasis than other genetic effects. It was

indicated that it would be better for breeders to
construct the genetic model including the additive
by additive epistasis. However, in order to obtain
more accurate estimates, we need more generations
which maybe difficult for breeders. In practice, it
would be better for breeders firstly to test the
reality of epistasis, and if detecting no epistatic
variation, breeders could use the reduced genetic

model to analyze the other genetic effects.
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