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Trait and Its Components
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Abstract Methods of multivariable conditional analysis were proposed for analyzing contribution of component

traits to complex target trait based on mixed linear model approaches. The contribution ratio and the contributed

genetic effect were defined. The contribution ratio could measure the proportion of genetic variation of the given

component trait on the target trait. The contributed genetic effect could quantify genetic effect of the given com-

ponent traits contributed to the target trait. A worked example from the cotton data is given to illustrate the appli-

cation of the new methods for analyzing the contribution of three yield components to lint yield.
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In agronomy a complex quantitative trait like
yield is usually consisted of several component
traits. The components which are correlated each
other have their contribution in complicated ways
to the target complex trait. In order to efficiently
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improve the complex trait it is of importance to
understand the contribution due to the component
traits.

Up to now analysis methods of correlation
regression and path analysis have been used for
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studying relationship between a target complex
trait and its components '** . Correlation and co-
variance analysis are usually concerned with the
relationship for the complex trait with its compo-
nents rather than with the contribution of compo-
nent traits to the complex trait. The multiple linear
regression method is superior to correlation analy-
sis for studying the predictability of the complex
trait by its component traits. When using regres-
sion approaches for analyzing determination of
component traits there will be two limitations
Firstly the contribution is measured by partial re-
gression coefficient which depends on other varia-
bles in the regression model Secondly the mag-
nitude of each regression coefficients also de-
pends on the unit of independent variables. The
relative importance can not be compared by the
regression coefficients of component traits. Path
analysis was developed by Wright °° in order to
reveal the correlation relationships among several
components and their effects on a complex trait.
By path analysis simple correlation coefficient be-
tween a complex trait and its component can be
divided into direct and indirect effects on the com-
plex trait. However path coefficients are standard-
ized partial regression coefficients in multiple re-
gression model. The values of partial regression
coefficients are partially determined by the number
of independent variables included in the model.

In the 1970’ s statisticians developed some
methods for analyzing mixed linear models which
can be used for dealing with complicated genetic
problems in quantitative genetics. Zhu ’ proposed
a method for analyzing conditional genetic effects
and variance components by mixed linear model
approaches which can be applied in making infer-
ence on contribution of single component to a
complex target trait. Since there is correlation
among genetic effects of component traits due to
the pleiotropy and linkage of genes the total con-
tribution of multiple component traits is not just a
sum of their single contributions.

In the present paper statistical methods were

proposed for analyzing multivariable conditional
genetic effects and variance components based
on mixed linear models. Methods of measuring the
contribution of component traits to the complex
target trait were developed. An example of yield
traits in cotton was used to illustrate the use of
these new methodology and their applications in
plant breeding.

1 Model and Methodology

Most genetic models can be expressed by a
general form of mixed linear model

m-1

y=Xb+ > Ue, +e,
u=1

m-1

~MVN Xb V = ¥ ¢ URU’, +0,l
u=1

where y is the vector nx1 of phenotypic value
with mean Xb and variance V b is the vector p
x1 of fixed effects X is the known incidence
matrix nxp
12 m -1

random factor e, ~ 0 ¢2R, R

relating to the fixed effects e, u =
g, x1 of the u-th

is the constant

is the vector
matrix describing the relationship of e, U, is the
known coefficient matrix relating to the random
vector e, U’, is the transpose matrix of U, e, is
the vector nx1 of the residual random effects
with e, ~ 0 o2l .

For two traits covariance between observa-

tion vectors y, and y, are as follows
m-1
Covy, vy, = ;UUI/UZUURUU’U +o, |
=C ,, 2
where C, , is symmetric C,, =C ,,

The variance components in model 1 can
be estimated by mixed linear model approaches
such as maximum likelihood ML °
maximum likelihood REML °™
norm quadratic unbiased estimation MIN-
QUE "™ . The method suggested by Zhu and
Weir °7'® can be used for estimating covariance

restricted
or minimum

components between different traits.
The estimates of fixed effects b can be usual-
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ly obtained by the general least squares estima-
tion method b X’V-'X ~'X’V-'y. Random ge-
netic effects e, can be predictable without bias by
the best linear unbiased prediction BLUP meth-
Od 16
od ®" and the adjusted unbiased prediction
AUP method ™ ™" |
If a trait y . is one component of a target

the linear unbiased prediction LUP meth-

complex trait y ; conditional random variables of
y ; ly . for the phenotypic mean of the target
trait y , conditional upon the phenotypic mean of
component trait y . have conditional distribution

yrlyc =Xb ;¢ +2uueuﬂc

m-1

~MVN Xb ;o V=Yoo, UUU, +0, I.
u=1

mric

3
Since conditional y ; |y . is independent of
and condi-

Ic

contain extra

y . conditional random effects e, _
tional variance components o’ e
genetic variation without the influence of the given
component trait y ., on the target traity , . Zhu ’
proposed a mixed model approach for analyzing
conditional variance components and random
effects.

The proportion of of _ /o?

ur

might uncover
the contribution of gene effects without the influ-
ence of the given component trait y . on the tar-
=1.0-05 /

U ric

get complex traity ; and CR, _ |
o’ . defined as contribution ratio could be used for
measuring the ¢ ontribution proportion of the u-th
genetic variation of the given component trait y.

on the target traity , . e =e, -e de-

uco,r uric

fined as contributed effects could be used for
measuring the u-th vector of genetic effects of the
given component trait y . on the target traity , .

For the case of two components of a complex
Vo ls
independent of both phenotypic values y . and

trait conditional random vectory ; |y .

Y, Therefore conditional random variables can
be used for detecting conditional genetic effects
as well as conditional variance components.

Conditional phenotypic vector y; ., is de-
fined as

Yirce =Xborgo + z Ue, TIe, &
~ MVN Xb TIC, C, v TIC, C,

m-1

_ 2 ' 2
= 210“ oo, URU, +0 | 4
u=

m Tic, ¢,

where b ;. ., is the vector px1 of conditional

fixed effects e, u=12 L m is the vector

C1 C2

g, x1 of the u —th conditional random effects
2 .
€rco, 0 o ey o SinceCov e, —
e',, =Cov e, e, =0 conditional
1 TICy Cp Co

and conditional variance

U ticy ¢

genetic effect e

2
Uricy ¢y

o can be used for illuminating the effects of

gene expression without the influence of the given
component traits y, and y ., on the target traits
Y.

Estimation of conditional genetic variance
components or prediction of conditional genetic
effects can be derived indirectly for analyzing a

new random vectory ., defined as

y.. =Y, -[C,;, C,.1
Voo, Coc1'1ye -XB, 5
C.o Vo Yo —XBCZI'
with variance-covariance matrix
Vary ., =V, C,. C.,.
Ve o Coo1'1Cyq ;
Ceea Vo [cCZT

which is equivalent to the conditional variance-co-
variance matrix of two-variable conditional random
vectory ; Iy, VY -SinceCov y ., Yy
=Cov y,. Yy, =0 random vectory , s
independent to both phenotypic values y . and
Y ¢, - Unknown parameters variance matrix co-
variance matrix and fixed effect vector in Equa-
tion 6 can be replaced by their unbiased esti-
mates in practice.
Random vector y ., is then fitted to the

mixed linear model

y.. =Xb_ . +> Ue
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~MVN Xb .. V
m-1

2 T 2
= E Oy« UuRuuu to0n .. I 7
u=1

which turns out to have variance-covariance ma-
trix equivalent to the two-variable conditional vari-
ance-covariance matrix V ;. . .

1 2

Estimated conditional variance o> can be

u ok x
served as unbiased estimate of the conditional va-
2 . Since o2

riance components o, - .. s e-
1 2

quivalent to o? ne, ¢, genetic effects e, , . also

s

have an equivalency to the conditional genetic

effects e, .
Ticy Cp
The two-variable proportion of o} ¢ ¢, /
0% ; the contribution rato CR, _ ~=1.0 -
2 2 and the contributed effects

U ticy ¢ Ou T

=e T -e ;. ., are defined the same
1 2

Ucy CpnT

ways as for the one-variable conditional analysis.
2 A worked example

Yield data '° from an experiment on upland

cotton Gossypium hirsutum L. conducted in
two years were used as an example to illustrate
the application of the new analysis method for
studying the contribution to lint yield LY by
three yield components boll number per plant
BN boll size BW and lint percentage LP
Ten parents five as females and another five as
males and their 20 F,’ s and F,” s were conduc-
ted according to NC design Il with three random-
ized complete blocks carried out in the experimen-
tal station of Zhejiang Agricultural University.
Variance and covariance components were
estimated by MINQUE 1

correlation coefficients were calculated from esti-

method ® . Genetic

mated variances and covariances. Jackknifing o-
ver blocks within year was used for obtaining esti-
mates and standard errors of parameters °*° . A
-test with df =5 was employed for testing signifi-
cance of genetic parameters studied.

The estimated proportion of genetic variance
to phenotype variance was presented in Table 1

for lint yield and its components. It was suggested
that lint yield controlled by genetic main effects

additive and dominance as well as GE interac-
tion. The dominance environment variance of boll
number was larger as compared to other genetic
variance components. It was indicated that the uti-
lization of heterosis should be considered in spe-
cial environments. For boll size the proportion of
dominance variance to phenotype variance was
larger than other genetic components so that het-
erosis could be expected. Lint percentage was
mostly controlled by additive effects indicating
that selection in early generation could resulted in
apparent genetic gain. The residual effects were
the major cause for variation of lint yield and its
two components boll number and boll size .

Table 1
phenotype variance for lint yield and its components

Estimated proportion of genetic variance to

boll number boll size and lint percentage

Parameter  Lint yield Boll number Boll size Lint%
Vi’ Ve 0.193**  0.152** 0.000 0.561"*
Vp/Vp 0.233"*  0.083" 0.351** 0.026
Vae/Ve  0.110° 0.046 0.073" 0.034
Voe/Ve  0.137° 0.286" 0.079" 0.095"
Vo/Vp 0.326"* 0.432*" 0.497"* 0.284" "

= and = = significant at 0.05 and 0.01 levels respectively. Va-
riances represent V, = additive variance V, = dominance va-
riance V ,. = additive x environment interaction variance Vg =
dominance ' environment interaction variance V, = residual va-

riance V, = phenotypic variance.

The genetic correlation coefficients were esti-
mated among lint yield and its components Table
2 .Lint yield had highly significant positive pheno-
typic correlation to boll number but their additive
and dominance correlation was much larger. Al-
though there was large phenotypic correlation be-
tween lint yield and lint percentage correlation co-
efficients were positive for additive effects and DE
interaction effects but negative for dominance
effects between these two traits. Even though
there was small phenotypic correlation between
lint yield and boll size there still existed strong
positive correlation of dominance effects for these
two traits.
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There was highly positive dominance correla-
tion between boll number and boll size. Phenotyp-
ic correlation was not large between boll number
and lint percentage which could be due to the

effects and AE interaction effects but positive cor-
relation of additive effects and DE interaction
effects. There existed significantly negative corre-
lation between boll size and lint percentage for

reason of negative correlation of dominance dominance effects and AE interaction effects.
Table 2 Estimation of genetic correlation coefficients between lint yield LY and its
components boll number BN boll size BW and lint percentage LP .
Parameter LY & BN LY & BW LY & LP BN & BW BN & LP BW & LP

Ta 0.993" " — 1.000" — 0.778" " —
'p 0.721" 0.717 "~ -0.677" 0.768" " -1.000" " -0.327"
Tag 0.104 -0.544 0.272 -0.017 -1.000" " -0.928" *
I'ne 0.363 0.653 0.702° 0.333 0.684" " 0.514
Ip 0.495" " 0.205" 0.524 "~ 0.052 0.292" " 0.003

= and = * significant at 0.05 and 0. 01 levels respectively. Correlation coefficients represent r, = additive variance r, = dominance

variance r,. = additive x environment interaction variance r, = dominance x environment interaction variance re = residual variance

ro = phenotypic variance.

Contribution ratios of single yield component
trait to lint yield were presented in Table 3. The
phenotypic contribution ratios were smaller for all
the three yield component traits. However there
was very large contribution of additive effects due
to boll number and lint percentage. The contribu-
tion ratio of dominance effects was larger than that
of DE interaction effect for boll number. The contri-
bution ratios of dominance effects and DE interac-
tion effects were around 45% for boll size. For lint
percentage the contribution ratio of AE interaction
effects was positive and that of DE interaction
effects was larger and than other two cases boll

number and boll size . The contribution ratios of

two component traits to lint yield were also esti-
mated Table 3
component traits to lint yield were highly positive

. All contribution ratios of two

significant except for CR,: sy sw..y - The pheno-
typic contribution ratios of two component traits to
lint yield were all around 45% . However the addi-
>93%

for all of pairwise two component traits while
CRD BN LP—LY
were relatively small as compared with other con-

tive contribution ratios were the largest

Cl?AE BW LP—LY and C"qDE BN BW—LY

tribution ratios.

CRD BN BW—LY CRAE BN LP—LY

CRyc sn ipy @nd CR,: sw 1p..y Were larger than
50%.

Table 3 Estimated contribution ratios of one/two components to lint yield for boll number
BN boll size BW and lint percentage LP .

Parameter BN BW LP Parameter BN & BW BN & LP BW & LP
CRA o1 0.909 " * -0.090 1.000* * CR4 ¢y cot 0.931*" 1.000 * * 1.000 " *
CRp c.1 0.389 "~ 0.493** -0.176 CRp ¢, cpr 0.571** 0.277** 0.389" "
CRue cr -0.007 -0.054 0.151** CRac ¢y cpor —0.082 0.534** 0.113**
CRpe c.1 0.110*" 0.409 " * 0.645" " CRoe ¢; cpo1 0.383"* 0.541*" 0.756 " "
CRp c.7 0.342* " 0.140* * 0.284** CRp ¢, ¢yt 0.429** 0.457* * 0.426* *

#and x = significant at 0. 05 and 0. 01 levels respectively. CR ., ; represents contribution ratios of one component to lint yield

CR ¢y o7 fEPresents contribution ratio of two components to lint yield.

Predicted additive effects of lint yield and
contributed additive effects of one/two component
to lint yield were presented in Table 4. Since con-

ditional additive effects were zero for component
the ad-
ditive effects of lint yield could be wholly contribu-

trall S Ai LYILP Ai LYIBN LP and Ai LYIBW LP
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ted due to these component trait s A =

1

A oy =A avipoiy =Ai swipoy SO that these
contributed additive effects were not presented in
Table 4. There were negative additive effects of
lint yield for parents 1 3 and 10 but positive for
parents 5 7 and 8. These parents had additive
effects A,;,, very closed to the contributed ad-

ditive effects A, 5.,y and A, zyvsw..y  €xcept
for parent 7. These results were matched to the
facts that CR, 5.,y and CR, sy sw..y Were very
large. The contributed additive effects due to boll
size tended to have small magnitude revealing
less importance of A, ,, contributed to A, ,, . It
was suggested by the fact of four parents =1

5 7 8 having reverse values of A, ;, ,,, as com-
pared with A, ,, that boll size could have sup-

pressing effects on additive behavior of lint yield.

Table 4 Predicted additive effects of lint yield
as well as the contributed additive effects
of boll number BN boll size BW
and lint percentage LP to lint yield

Parent A Aot e cpor
LY BN BW BN & BW
1 -4.040" " -3.343" " 0.887 " " -3.968" "
2 -1.840 0.672" " 0.558 " * 0.543" "
3 -2.170" " -2.706" " -0.644"" -2.283" "
4 1.888" 1.453" " 0.414" " 1.110
5 1.910" 1.173** -0.906 " * 1.304" "
6 1.194 1.214*~ 1.055" " 0.582" "
7 6.160 " " 3.791"" —-1.518" " 4.317" "
8 3.904 " 3.126"* -0.017"" 3.611" "
9 -1.070 -0.631"" 0.209 " * -0.597"
10 -5.940" " -4.749" " -0.042"" -4.618" "

# and * = significant at 0. 05 and 0. 01 levels respectively.
A, .7 represents contributed additive effect of one component
to lint yield A; ¢, ¢, .r represents contributed additive effect of
two components to lint yield.

Predicted dominance effects of lint yield and
the contributed dominance effects of yield compo-
nent traits to lint yield were presented in Table 5.
The dominance effects of cross 3 x9 and 4 x 8
were positive for lint yield which could be due to
the reason of very large contributions of boll num-
ber. For cross 5 x 10 there was larger positive

effect of BW—LY . The dominance effects of lint

yield were no significant for cross 3 x10 4 x6 and
4 x 10 but the contributed dominance effects of
three component traits were negative. The contrib-
uted dominance effects of two component traits to
lint yield were also predicted Table 5 . Noticea-
bly the contributed

D D
quite large for cross 2 x8. For cross 3 x7 and 4 x

dominance effects

and D; gy 5.y Were

ij BN BW—LY ii BN LP—LY

8 the dominance effects of lint yield were resulted
BW LP—LY and
respectively. The dominance

from the contributed effects of
of BN LP—LY
effect of lint yield was so large for cross 3 x9. The
reason was that all contributed dominance effects
of two component traits were positive and there
were very large contributed effects for BN BW—
LY and BN LP—LY .For cross 3 x10 4 x6
and 4 x10 there were negative contributed domi-
nance effects of both one component trait and two
component traits indicating genetic suppression of
these component traits on the dominance behavior
of these crosses. The result of cross 5 x10 having
Dy¢ c,.r >D;; for BN BW —LY and BW
LP— LY suggested that two component traits
BN & BW BW & LP
dominance behavior for cross 5 x10.

could jointly augment the

3 Discussion

Path analysis has been extensively applied in
quantitative genetics. Since path coefficient is the
standardized partial regression coefficient in multi-
ple regression model its value is varied according
to other variables in the model. For example when
boll number and boll size are considered as cause
variables the estimated path coefficients of boll
+0.045 and
respectively. When three

number and boll size are 0. 653 "~
0.166°° =+ 0.016
component traits are selected as cause variables

the estimated path coefficient will be 0. 650" ° +
0. 042 for boll number -0.024 +0.032 for
boll size and 0. 153" +0.023 for lint percent-
age respectively. However the contribution ratio
is only concerned with the conditional variance
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Table 5 Predicted dominance effects of lint yield as well as the contributed dominance effects
of boll number BN boll size BW and lint percentage LP to lint yield
Cross D, Dyc.r D; C, C,—T
LY BN BW LP BN & BW BN & LP BW & LP
1x6 1.356 0.923 -1.792"~ 0.681 -1.702" " 0.928 -2.497" "
1x7 6.283" 3.021" -0.250" " -0.668" " 1.482" " 3.150 -0.476" "
1x9 3.891" -2.938" " 1.552* -0.904" " -0.840" " -3.785" " 0.594 "~
1x10 6.050 —-1.451"" 5.153" " -1.740" " 2.572" -2.432" " 4.172" "
2 x6 6.413" " 1.840"* 3.908" " -1.029"* 3.715" " 1.057"* 3.152* "
2x7 3.461 3.262 0.089" " 2.145 1.756"* 2.919* -0.157"*
2x8 0.006 4.149 " 3.683" " -1.113"* 5.591" " 4.087" " 3.888" "
2 x9 0.844 1.526 " * 1.704 "~ -1.446" " 2.467 " " 0.937" 1.175" "
2x10 0.699 -1.381"" -0.075 -1.614" " -0.556" -2.388" " -1.130"
3x7 4.329* -0.924" " 2.925" " 0.174" " 2.119 -0.556" * 4.010"*
3 x9 9.875" 8.335" " 4.385 -1.385" " 7.767 " " 8.498 " " 3.941"
3x10 3.713 -2.120* " -2.960" " -1.545" " -3.316 ** -2.524 ** -4.054" "
4 x6 2.629 -2.649" " -0.839" " -0.150* -2.121*" 2.667" " -0.515"*
4x8 5.372* 4.061"" -1.442% " 0.399* " 1.182** 4.205 ** -1.676"*
4 x9 -3.580 2.870" " -0.794 1.792"~ 0.550" " 3.372" " -0.524"*
4 x10 0.100 -3.287" " -2.136" " -1.283" -3.367"" -3.651" " -2.725" "
5x7 1.979 1.273 -0.032" " 0.705 1.261 1.831" 1.034
5x8 7.747" 2.423" " 3.732" -0.440" " 4.603" " 2.265" " 4.052"
5x%x9 6.163 0.763" " 1.052" -0.447" " 1.376 " * 0.333" " 0.673" "
5x10 3.713* 1.802* 7.720" " -0.915"* 6.567 " 1.508" * 7.728" "

xand x = significant at 0.05 and 0.01 levels respectively. D, C—T represents contributed dominance effect of one component to lint

yield Dj ¢, ¢, .7 represents contributed dominance effect of two components to lint yield.

components and unconditional variance compo-
nents. It will not be affected by the number of the
component traits involved.

The contribution ratio proposed by Zhu ’ is a
new concept to measure the influence of the com-
ponent trait s on a complex target trait. It can
uncover the proportion of genetic variation of the
given component trait s to a complex trait. In
some cases there could sometimes have negative
values for the contribution ratio due to the condi-
tional variance of complex trait being larger than
the unconditional variance o2 ;. >02, .It was
suggested by negative contribution that the genet-
ic effects on the complex trait could be larger
when excluding the influence of the given compo-
nent s . This implied that the expression of quan-
titative genes for the complex trait might be con-
strained by the expression of quantitative genes
. Then the

negative contribution ratio can be used for meas-

controlling the given component s

uring the proportion of interference due to genetic

effects of the given component s on the com-
plex trait.

Multivariable conditional analysis for the con-
tributions due to one or two component traits to
the complex target trait provides a new approach
for studying the complicated relationship for traits
like yield and their components. If there is no cor-
relation between two component traits the genetic
contribution ratio of two component traits will be
equal to the sum of the genetic contribution ratio
of each component trait. When the correlation co-
efficient between two components was positive

or negative the genetic contribution ratio of
these two component traits was smaller or lar-
ger than the sum of the genetic contribution ratio
of each component trait. Since there are compli-
cated relationship between genetic effects of com-
ponent traits the genetic contribution ratio of two
component traits to a complex trait is usually not
equal to the sum of the genetic contribution ratio

of each component trait and also the contributed
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genetic effects of two component traits on a com-
plex trait is not simple accumulated by that of sin-
gle component trait on complex trait.

In analyzing genetic models of conditional ge-
netic effects and variance components it is possi-
ble to extend two component traits to three or
more component traits. For example if the contri-
bution of three component traits are needed to an-
alyzed the three-variable conditional phenotypic
value can be obtained by

y... =yr_crc1 CTc2 CT03
O v Cy C Cy Ca C Cy C3 D]y ¢ -Xb c, O
“Xb 5, O

N
Eccz G CCz Ccz Cs %y C, H
c Ve Oy, -Xb, O

which can resulted in unbiased estimates of condi-

Cs Cy C C3 Cp

tional variances o? Tie, ¢, c, and predictors of con-

ditional effects e ;¢ ¢, ¢, -
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