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The proof of Theorem 4 is complete.

4 Concluding Remarks

In this paper we have generalized the idea on the net reproductive number and
used it to discuss the asymptotic behavior and the periodic solutions of some
age structured population models. Some very natural conclusions have been
presented and proved. The results and ideas are on the non-autonomous and
non-linear age structured population models. Many criteria can be obtained
based on the average net reproductive number.
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Cockerham’s general genetic model was extended to seed models including direct,
cytoplasm and maternal effects as well as genotypeXenvironment interaction ef-
fects. The mixed linear model approaches for estimating variances apd covariances
and for predicting random effects were presented. A mixed model, with quantita-
tive trait loci (QTL) effects being fixed and molecular marker effects being random,
was suggested for searching QTLs. The appropriate mixed model approaches were
proposed for searching QTLs with genetic main effects and GE interaction effects.

1 Introduction

After Fisher (1925) proposed methods for analysis of variance (ANOVA), many
genetic models have been developed based on the ANOVA approaches. Some
of these models, e.g. NC design I and II (Comstock et al., 1952; Hallauer and
Miranda, 1981), diallel models (Griffing, 1956; Gardner and Eberhart, 1966),
are still widely used by plant and animal breeders. But ANOVA approaches
have some deficiencies in analyzing genetic models with unbalanced data, or
non-integer values of coeflicients, or correlated random factors. The further
development of quantitative genetics has been restrained in some ways by its
prevailing dependency on ANOVA approaches.

In 1970s statisticians developed some new methods for analyzing mixed
linear models which can be applied in quantitative genetics. Mixed linear
model approaches overcome the shortcomings of ANOVA methods for han-
dling unbalanced data and complicated models. Development of mixed linear
model approaches and its application in quantitative genetics will create enor-
mous challenges for quantitative geneticists in dealing with complicated genetic
problems. In this paper we will present some of our recent work in extending
Cockerham’s general genetic model methodology (1980) and the mixed linear
model approaches for quantitative genetics. Several genetic models, which can
not be analyzed by ANOVA, will be presented. Recently developed methods
for mixed linear models with their applications will be illustrated to show the
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ways of solving the real complicated problems in quantitative genetics.

2 General Genetic Models and Its Extensions

When a genetic experiment is conducted in one environment, the average phe-
notypic performance (y) of a genetic population can be expressed in a simple
linear model,

y=pu+G+e,

where p is population mean, G is total genotypic effect, and e is residual effect.

Cockerham (1980) proposed a general genetic model for partitioning total
genetic effect G. If there are only additive and dominance effects, G can be
partitioned into two components

G:ZaiA,'—{-ZZ(s,'jD,‘j, (l)

14>

where A4; = additive effect with coefficient a;(}°; a; = 2), D;; = dominance
effect with coefficient 6;;(3, 3=, 6i; = 1).

Zhu and Weir (1994a) extended Cockerham’s general genetic model by in-
cluding seed direct gene effect (Go), cytoplasm gene effect (G¢), and maternal
nuclear gene effect (Gm)(G = Go + Gc + Gum). Further partitioning was also

proposed:
Go = X;mdi+ 33505 Dij,
Ge = 2%G, _ (2)
GMm = 3 TmiAm; + 3235 0m,; D,y

where A; = direct additive effect, D;; = direct dominance effect, C; =cytoplasm
gene effect, A, = maternal additive effect, Dy, ; = maternal dominance effect.

Genetic models were proposed for quantitative traits of diploid seeds and
animals (Zhu and Weir, 1994a) and of triploid endosperm (Zhu and Weir,
1994b). Usually means of only three generations (P’s, Fy’s and F3’s) are re-
quired for analyzing seed traits. In these models, some coefficients are non-
integer, and direct genetic effects are correlated with maternal genetic effects.
Therefore they can be appropriately handled only by mixed linear model ap-
proaches.

Genotype x environment (GE) interactions have been detected for quanti-
tative traits of many plants and animals. With genetic experiments conducted
in multiple environments, the average phenotypic performance of a genetic pop-
ulation in one environment can be expressed by the following genetic model,

Yy=p+E+G+GE +e,
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where p = population mean, E = environment effect, G = total genotypic
effect, GE = genotypexenvironment interaction effect, e = residual effect.
Cockerham’s (1980) general genetic model can be extended by including
G + GE interaction (Zhu, 1994). The total genotypic effect G is defined the
same as in Equation (1), the partitioning of GE interaction for interaction of
additive and dominance effects is
GE = ZZah,-AEh,- +ZZZﬂhijDEhij, (3)
i hooi i
where AE,; = A;x E}, interaction effect, DE}yi; = D;px E}p, 'interaction effect.
The general genetic model for seeds (Zhu and Weir, 1994a) can also be
extended by including genotype by environment terms (Zhu, 1994),

GE =Go + GecE +GuE. (4)

The G'E interaction terms can be further partitioned into its components:
direct interaction

GoE=) Y anAEn+> Y > Brij DEnij,
Ao Rooi i
cytoplasm interaction
GcF = Z Z ApiC Epi, (5)
Ao
maternal interaction
GumE = Z Z Ay Am Eni + Z Z Z Brni; Dim Ehij-
R hooi g>i
Based on this extension of general genetic model for seeds, experiments of
a diallel cross with three generations (P’s, F;’s and F3’s) in multiple environ-

ments can be appropriately analyzed (Zhu, 1996). For dicot seeds the partition
of total G+ GE effect for three generations is,

G(P)+GE(P) = 24;+ Dii+Ci+2Am, + Dy,
+2AEp; + DEyi; + CER;
+2AmEhi + DmEhiiv

G(Fij) + GE(Fij) = Ai+ Aj+ Dij + Ci + 2Apm, + D,
+AEwi + AEhj + DEp;; (6)
+CEpi + 24m Eni + Dy By

G(Fuij) + GE(Fa5) = Ai+ Aj+ 3Dis + 1Dj5+ 1Di; + C;

+Am, + Am,; + D, + AEp; + AEy;
+4DEwii + $DEyj; + 1 DEnij + CEy,
+AmEni + AmEnj + Dp Epj.
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For endosperm the partition of total GE interaction effect for three generations
is,

G(P)+GE(R) 3A; + 3D+ Ci + 24, + Dy,
+3AFEL; +3DEL; + CEy;

+2Am Epi + Dy Eps,

G(Fl,'j) + GE(F]ij) = Ai + Aj + Dij + Cz’ + 2Am, + Dm,.
+2AEp; + AEp; + DEnii + 2D Eyi; (7)
+CEi +2AmEni + Dy Egii,

G(Fz,'j) + GE(Fz,‘j) = %Ai + %AJ’ + Dy + Dj; + Di; + C;

+Am, + Amj + Dm,j + %AE}“' + %AEhJ
+DEni; + DEyj; + DEgi; + CEp;
+Am Eni + A Enj + Do Enij.

In the general genetic model and its extensions, genetic effects can be de-
fined as random effects or fixed effects. Since genetic experiments are usually
conducted in small number of environments {e.g. years, locations, or treat-
ments), environment effects could be treated as fixed. If experiments use ge-
netic parents as a sample from a reference population and need to infer the
genetic variation for the population, genetic effects and G'E interaction effects
are all defined as random effects. If genetic entries are selected specifically for
evaluating their merit, genetic effects could be treated as fixed.

3 Mixed Linear Model Approaches
Any general genetic models can be expressed by a form of mixed linear model,

y - X1b1+X2b2+---+ann+U1e1+U2e2+---+Umem
= Xb+ ) Ue,, (8)

u=1

where y is the vector of phenotypic mean for all entries of the mating design;
b is the vector of fixed environment effects; X is the known incidence matrix
with coefficients | or 0 relating to the fixed environment effects; e, is the vector
of random effects; U, is the known coefficient matrix relating to the random
vector e,.

The parameters in Equation (8) can be analyzed by mixed linear model ap-
proaches such as maximum likelihood (ML) method (Hartley and Rao, 1967),
restricted maximum likelihood (REML) method (Patterson and Thompsom,
1971), or minimum norm quadratic unbiased estimation (MINQUE) method
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(Rao, 1971). Estimated variances obtained by ML method tend to be influ-
enced by the fixed effects, therefore ML is rare in use. Monte Carlo simulations
(Zhu and Weir, 1994a, 1994b, 1996) showed that MINQUE has advantages over
REML for its (1) simple computation without iterations, (2) no requirement
for normality distribution, and (3) unbiased estimation.

For seed models (6) and (7), the phenotypic mean can be expressed as

y = Xb + Upep + Upep + Ucec + UAmeAm + UDmeDm
+Uageae + Upgepke + Ucgeck
+Ua,eea.E + Up, eep,.E + Upes + €.
12

= Xb+ ZUueu

u=1
with variance-covariance matrix

Var(y) = 0'12\V1 + O'IZ)Vz + O'E,Vg + crimV4 + O'%mV5+
025 Ve + s Vr+ 0Ly Vs + UimEVQ + U%mEVIO + o3 Vit
oAAnVi2+ 00D, Viza+ 0aEALEV14 + 0DEDLEV15 + 02 V56

16
= Z ouvua
u=1

where Vu = UMUZ(U = 1, 2, ey 11),V12 = (U]UZ‘ +U4U’{'), V13: (Ung
+ UsUY), Vi = (UgUT + UgUT), Vi5 = (U7UT; + UoUY), Vig = I;
01 = ok, 02 = 0, 03 = 0%, 04 = 0% _, 05 = o} _, 06 = 0%, Os = o,
O = 0tg, 010 =04 g, 011 = 0D g, 012 =03 o, 013= 0P p_, 014 = 0p 4 b
615 = obE p,,Er P16 = 02

MINQUE(0/1), which is a MINQUE method with 0 for all the prior covari-
ances and 1 for all the prior variances, was suggested by Zhu and Weir (1994a)
for unbiased estimation of variances for one traits and covariances between
two traits. variances and covariances for one trait (y, = ys), and covariances
between two traits (y, # ys) can be estimated by the following MINQUE(0/1)

equations,

[6r(Q(0/1) VuQ(o/1) V)] [6u] = [¥2 Q(o/1) Vu Qo/1)¥e)s (9)
where
—1 - - —
Qo = Vg = Vo X(XT Vg X)XV,
15
V(O/l) = Z UuUZ + 1

u=1
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Monte Carlo simulation showed that both variances and covariances of seed
traits can be unbiasedly estimated by the MINQUE(0/1) procedure (Zhu and
Weir, 1994a, 1994Db).

Prediction of genetic merits in the mixed linear models can be obtained by:
(1) the best linear unbiased prediction (BLUP) (Henderson, 1963), (2) linear
unbiased prediction (LUP) (Zhu and Weir, 1994a), and (3) adjusted unbiased
prediction (AUP) (Zhu, 1993; Zhu and Weir, 1996).

For seed models having multivariate normal distribution with correlated
random variables Cov(e,, e!) = oy,1, the BLUP for random effects e, is given
by,

éu(t9) = (UZUS + Uu.vUZ)QY» (10)
where Q = V™! - V-IX(XTV-IX)*XTV-1.

Since the true variances and covariances are always unknown in practice,
estimated variances are usually used in prediction:

€. = (62UT +6..,U7)Qy, (11)

where Q = V-1 — V_IX(XTV_IX)"'XTV_I.

With such prediction by using estimates, only a so-called “BLUP” is ob-
tainable, and the linearity and unbiasedness of BLUP may be lost. Instead of
using parameters or their estimates for predicting random effects, Zhu and Weir
(1994a, 1996) suggested choosing prior values «a, as in the case of MINQUE
method. When MINQUE(0/1) is used for estimating variances and covariances
for seed traits, LUP can be used for predicting random genetic effects e,.

éu(o/1) = UL Qo/1)y, (12)

- - — -1 .
where Q(o/1) = Vg1 = Vioyuy X(X" Vg X)*XTVigi,). And AUP is ob-
tainable by

€u(0/1) = kUL Qo/1)y, (13)

where k = \/(nu —1)62/(y"Q(o/1)VuQ(o/1)Y-

Monte Carlo simulation revealed that both BLUP and LUP will give pre-
diction with unbiased mean but under estimated variance (E(e”é) < o) for
random variables (Zhu and Weir, 1996), and that AUP can give both unbiased
mean and estimated variance (Zhu, 1993; Zhu and Weir, 1996).

4 Mixed Model Approaches for Mapping QTLs

Quantitative trait loci (QTLs) have been searched by several methods, such as
interval mapping method (Lander and Botstein, 1989) and composite interval
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mapping method (Zeng, 1994), which are based on the regression approaches.
In the present paper we proposed a new method for mapping QTLs based on
the mixed model approaches. When a genetic analysis is conducted to search
QTLs using information of genetic markers, only QTL position and effects are
especially interested and markers can be treated as a random sample from all
potential markers. Therefore a mixed model can be employed with effects of
the searching QTL being fixed and marker effects being random.

If a putative QTL is within two flanking codominant genetic markers M;_
and M;4, the phenotypic value of quantitative trait measured on the jth indi-
vidual can be expressed as a mixed linear model,

Yi = ptaza; +dep+3 i i eMozM,; FE;

= elb+zl ey +e¢; (14)

] M; I

where ¢ is the population mean; a and d are the additive and dominance effects
for the QTL searched; x4, and zp;are coefficients for genetic effects; ey, is
the random effect for the kth marker genotype with its coefficient zM,; taking
the value of 1 for My1Mk1, 0 for My Mgz, or -1 for My Mys; and €; is the
random residual effect; b is a vector of fixed parameters including u, @ and d;
ey is a random vector of marker effects; z},}j is a row vector of the coefficients
for epr of the jth individual; x;.r is a row vector of the coefficients for b of the
jth individual.

Since QTL genotype of the jth individual is unknown and model (14) is
a mixture model, the second and third elements of x] = [I, z4;, zp,] can
only be inferred by the probability of QTL genotype given observed flanking
marker genotype.

If QTL mapping is conducted in several environments (years or locations)
for individuals sampled from the same reference population, QTL genetic main
effects as well as GE interaction effects can be evaluated. The phenotypic value
of quantitative trait measured on the jth individual in the Ath environment
can be expressed as

Ynj = p+aza;+ de]. + E €M ZM, + €E, ZE,,
ki—it (15)
+€AE, 2AE,; + €DE, ZDE,; + E €MEn. ZMEny; + €hjy
k#i—,it

where p is the population mean; a and d are the additive and dominance main
effects for the searching QTL; z4,and zp;are coefficients for genetic main
effects; eps, is the random main effect over environments for the kth marker
genotype with its coefficient 2y, ;; ep, is the hth environment effect with its
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coefficient 2g,;; eap, is the additive by environment interaction effect with
its coefficient z4p,;; epE, is the dominance by environment interaction effect
with its coefficient zpg,;; emE,, is the marker by environment interaction
effect with its coefficient zprg,,,; and €; is the random residual effect.

Model (14) and (15) can be expressed as a matrix form of general mixed
model,

y = Xb-{-ZZueu

u 16
~ N(Xb, V=) 022,F,Z]), (16)
U

where y is a vector of phenotypic values of quantitative trait studied; b is a

vector of the fixed effects; X is the coefficient matrix with row vectors x;r;

ew ~ N(0, 02Z,F,ZT) is a vector of random effects, F, is a constant matrix
describing the relationship of e,; Z,, is the coefficient matrix for e,, and ZZ is
the transpose matrix of Z,. Phenotypic vector y has mean Xb and variance
vV=y,0Z,F,ZY.

The likelihood function (L) for the parameters of fixed effects b and vari-
ance components [02] is

n 1 1 -
L(b, V) = (2m)3[V| > exp[-5(y - Xb)TV7i(y - Xb)]  (17)
with the log of the likelihood function (L) is
1 1 -
I(b, V) = —g In(27) - 5 In[V] = 5(y — Xb)TV™}(y ~ Xb). (18)

If variance components of the model are known, the maximum likelihood
estimates of QTL effects in b can be obtained by

b=XTvIX)"1XTv-ly
with sampling variance matrix
Var(b) = (XTV~IX)~.

We can search QTL within two flanking markers M;_ and M;, for the
whole genome by setting a prior value for recombination fraction rps,_¢ be-
tween mater M;_ and locus Q. For each prior value rp,_¢, the likelihood ratio
statistic (LR) can be calculated by

LR = 211(5, V, "’"M,-_Q) - 2[0(};, V, ™. Q = 0.5),
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where variance components in V can be replaced by their unbiased estimates,
V=> 4'2,F,Z.
u

The likelihood ratio statistic can also be used for testing the null hypothesis
Ho : rm,_¢ = 0.5 vs. the alternative hypothesis Hy : rp,_g < 0.5. LR
approximately has a x? distribution with df = 1.

When the null presentation of non QTL within two flanking markers M;_
and M, is rejected, rp,_¢ infers the position of the QTL while b gives the es-
timates of additive and dominance effects of this QTL. Hypothesis for additive
and dominance effects can be conducted by a t-test in a general way for

Ho: c<Tb =muvs. Hy: cTb # m.

If the statistic |7 (b — b)/1/cT (XZv—1X)c| > ta, the null hypothesis is

then rejected.
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