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New general genetic models including row and column effects and the correspond-

" ing analysis approaches were proposed. The results of Monte Carlo simulations in-
dicated that the variance components could be estlmated unbiasedly by the models
‘containing row and column effécts under’ both cases with and without systematic -
errors. A worked example will 'be given for ehmmatmg systemiﬁc errors and esti-
mating the genetic varianee components. ' g Lo Cor :

1  Introduction

One of the primary aims of most agricultural field experiments is to obtain an
unbiased and efficient estimation. To achieve this aim, it is important to control
field variation that is possibly due to experimental management, fertility trends
and other environmental factors. In general, blocking is employed to control
field variation by arranging plots in appropriate ways. These methods include
incomplete block design which were widely used 2.

When a large number of varieties are to be compared in a field trial, a lattic
square containing the whole plots is impossible because of requirement of too
many replications. Recently, there has been an increased interest in nelghbor
or “spatial” methods for. analyzmg:ﬁeld experlment.s where an_attempt is
made to estlmaée and Temove theeﬁects of the association of nqnghbormg
plots from the treatmen& gqng@ste. Examples of this work upclpde L4-610
These methods were based on regular yariation in the field. . However, there
were some lumta.tlons in use of theee m) .hods undqr general assumption.

The consideration of the pr&ent research was that the genetic materials
could be grown in random or in sequénce, and: the same check set regularly. A
general genetic model including row ‘and column effects and the corresponding
analysis methods were proposed. Monte Carlo simulations were conducted
to confirm the unbiasedsiess of the eéstimates obtained by‘the model with and
without row and column effects. ' For illustration; & worked example is presénted
that has beei ahalyved following AD model including:systematie error: =~ <«
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2 .Generdl Genetic Models =

If there does not exist the genotype by envxronment mteractlon, then the phe-
notypic performance of kth genotype in a plot can be expr&ssed as the following

linear model: S .
y= u+R+C+G+q_ o 1)

With genetnc experiments in multiple environments, the average pheno-
typic performance of genetic population in one environment can be expressed
by the following, , I s .
. " y=p+E+R4+CI+G+GE+e, (2)
where p = population mean, fixed effect, E= envu'onment effect, fixed effect,
R = row effect within environment, fixed eﬂ'ect., C = column effect w1th1n
environment, fixed effect, G = total genotype effect, random effect; GE=
genotypeXenvironment interaction effect, random effect, and ¢ = random error

effect.
Cockerham’s ® general genetic model could be extended by including ge-

netic components of G and GE interaction 2.
If these models do not include systematic effects, the row and column

effects in model (1) or model (2) can be dropped.

3 Analysis Methddology

The general genetic model can be expressed by a matrix form of mixed linear
model: : ‘ ,
’ y= Xb+EUueu_Xb+Ue,
C =y

where, y is a (n x 1) vector of phenotyplc mean for all entnes, b is the vector
of fixed effects, X is the known mcxdence matnx with coeﬂic1ents 1 or 0 related
with the fixed eﬁ'ects, €, is the vector of random eﬂ'ects, ey ~ (0 o I), U, is
the known coefficient Tatrix related with to the random vector ey.

If random effects are not correla.ted the ra.ndom vector y has a multlva.nate
dlstnbutlon with mean Xb and a variance-covariance matnx v

(Xb V= ZazU UT)
Tu=1 4
where U7 is the tra.nspose of U.‘, U,,. =1Iis an. ldentlt,y matux. :

_Variance components in the general model could be estimated by mxxed hn;
ear model approa.ches such as restricted maximum likelihood(REML) method

Table 1: The simulatien results of two models without row and column effects
: - Model(l) Model(2)
Parameter True value Bias ' CE Power Bias CE Power
Vo 50 0.51 - 0.30 0.99 0.70  0.26 1.00
Ve 10~ . <007 0.26 - -0.97 -0.08 0.21 1.00
Va 250 - 1.12 0.36 0.88 1.04 0.29 0.99
Ve 250 0.25 0.25 0.98 -0.23 0.19 1.00
Vo © 50 1.80 0.45 0.56 1.60 0.36 0.85
Ve -+ 50 ' ++0.64  0.24 099 -0.49 0.19 1.00

Note: ‘Model(1) is the model containing row and column effects, Model(2) is
the model not containing row and column effects.

or minimum norm quadratic unbiased estimation(MINQUE)®. Prediction of
genetic effects in the mixed linear model could be obtained by linear unbiased
prediction(LUP) ' or adjusted unbiased prediction(AUP) 11,

4 Simulation Results

Monte Carlo simulations were performed for an experimental design with 5
rows and 22 columns with two replications by the general model and adjusted
model. Checks were assigned for every 5 entries. The unbiasedness and effi-
ciency were compared between two cases with and without systematic errors.
For each case, 500 simulations were run to obtain sample means of estimates
&2, bias = 62 — 0%, mean square error (MSE = Bias® + var(32)) 11, coefficient

of efficiency CFE = ]ﬁ% and power value.

Simulation results-for bias, CE and power:value were summa.nzed in Ta-
bles 1 and 2 for different variance components. The estimates of genotypic
and residual variances were unbiased (E'-a&'-l < §.05) for both models for the
case without systematic errors. The power value of Vg for the models contain-
ing row and column effects was slightly less than that for the reduced model.
When systematic errors do exist, ‘the estimates for two variance components
were identical as those for the case witliout systematic errors for the adjusted
model. However, two variance components were overestimated by the model
not containing row ‘and column effects. - Therefore the adjusted models and
their analysis methods should be suggested for estimating the genetic variance
components if there exist the systematlc errors or if we do not know whether
systematic errors exist or net. : : coe



Table 2: The simulation results of two models with row and column effects

Model(1) . Model(2)
Parameter True value Bias CE Power " Bias = CE Power
Vo 50 0.51 - 0.30 099 3.77 0.31 0.99
Ve 10 -0.07 0.26 0.97 23.72- 0.72  1.00 -
Vo 50 1.12 - 0.36  0.88 4.12.0.35 0.91
Ve 25 -0.25 0.25 = 0.98 23.49 " 0.51 1.00
Vg 50 1.80 0.45 - 0.56 4.94 0.41 0.70
Ve < 50 -0.64 024 * 099 23.13 - 0.36 1.00

Note: -Model(1) is the model containing row and column effects, Model(2) is
the model not containing row and column effects..

5 Worked Example

The data of the 10 parents of the Upland cotton and their 20 Fis and Fas
planted with three replications in 1992 and 1993 were analyzed with the
additive-dominance model (AD model). The AD model and its GE interac-
tion which included row and column effect could be expressed by the following
matrix form:

y = 1u+Xgbg+Xgbr+Xche
+Ujeq +Upep + Uspear + Upgepe + Upep + e 3)
= Xb + Zu— Uueu

The row and column effects could be deleted in model 3)if the systematic
errors were not included

The variance components for lint yield and. lint percentage were estimated
for these two models. The estimates and their standard errors could be esti-
mated by l:emovmgr ane block each time w1th ihe _]ackkmfe techmques (Mlller,
1974) :
- The results in Table 3 indicated that the estmates of genetlc variance com-
ponents for lint yield and lint percentage were. different for the two models The
proportion of residual variance for lint yield in full model decreased by about
13% and that for lint percentage decreased by about 5%. This implied that
the variance components were estimated biasedly for the model not containing
row and column effects if the trait was largely influenced by systematic errors.
The results also suggested that the systematic errors could be eliminated by
the method presented in this paper if the treatments were arranged randomly
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Table 3: Estimates of variance components for lint yield and lint percentage of Upland cotton
by reduced model and full model.

Lint yield Lint percentage
Var.Comp.  Model (a) Model (b) Model (a) Model (b)
Va L3024+ 28.934** 5.252%* 5.074%*
b 83.634* 28.738*%* 0.579* 0.253+
Vag 0.840* 21.295%* 0.263* 0.474+
VoE 72.367* 13.404+ 0.527* 0.647*
Ve 119.280** 40.624** 2.175%* 1.553**

Note: +, *, **: significance at 0.10, 0.05 and 0.01 level, respectively. Model
(a), (b): AD model not containing row and column effects, containing row and
column effects, respectively.

with several replications.
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