
Abstract A new methodology based on mixed linear
models was developed for mapping QTLs with digenic
epistasis and QTL×environment (QE) interactions. Reli-
able estimates of QTL main effects (additive and epista-
sis effects) can be obtained by the maximum-likelihood
estimation method, while QE interaction effects (addi-
tive×environment interaction and epistasis×environment
interaction) can be predicted by the-best-linear-unbiased-
prediction (BLUP) method. Likelihood ratio and t statis-
tics were combined for testing hypotheses about QTL ef-
fects and QE interactions. Monte Carlo simulations were
conducted for evaluating the unbiasedness, accuracy, and
power for parameter estimation in QTL mapping. The
results indicated that the mixed-model approaches could
provide unbiased estimates for both positions and effects
of QTLs, as well as unbiased predicted values for QE in-
teractions. Additionally, the mixed-model approaches
also showed high accuracy and power in mapping QTLs
with epistatic effects and QE interactions. Based on the
models and the methodology, a computer software pro-
gram (QTLMapper version 1.0) was developed, which is
suitable for interval mapping of QTLs with additive, ad-
ditive×additive epistasis, and their environment interac-
tions.
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Monte Carlo simulations

Introduction

Recent technical advances in DNA marker technology
has triggered the “molecular dissection” of complex
traits. As a result, many marker-based statistical methods
have been developed for mapping quantitative trait loci
(QTLs) (Weller 1986; Lander and Botstein 1989; Haley
and Knott 1992; Moreno-Gonzalez 1992; Jansen 1992,
1993; Zeng 1993, 1994; Jansen and Stam 1994). QTLs
affecting a wide range of quantitative traits have been
mapped in plants and animals (Stuber et al. 1987;
Paterson et al. 1988, 1991; Bradshaw and Stettler 1995;
Neale and Sederoff 1996; Tanksley and Hewitt 1996).
However, two important issues, epistasis and QTL×envi-
ronment interaction (QE), in QTL mapping methodology
remain largely unsolved.

The importance of epistasis has been suggested from
numerous classic quantitative genetic studies (Spickett
and Thoday 1966; Falconer 1981; Mather and Jinks 1982;
Pooni et al. 1987; Allard 1988). Epistasis as an important
genetic basis of complex phenotypes has also been re-
vealed in several recent QTL mapping studies (Doebley
et al. 1995; Lark et al. 1995; Wu et al. 1995; Fu and Rit-
land 1996; Li et al. 1997a, b; Routman and Cheverud
1997; Yu et al. 1997). However, current marker-based an-
alyses for dissecting QTL effects usually assume absence
of epistasis among QTLs (Weller 1986; Lander and Bot-
stein 1989; Jansen 1993; Zeng 1993, 1994). This assump-
tion was made largely for simplification of the statistical
models, but violation of this assumption may result in bi-
ased estimates of the positions and effects of QTLs and a
lower precision and power for QTL detection.

Statistical approaches of two-way ANOVA and multi-
ple regression have been applied to analyzing epistasis
for quantitative traits based on genetic markers (Wu et
al. 1995; Xiao et al. 1995; Li et al. 1997a, b; Yu et al.
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1997; Holland 1998). These methods, however, are only
capable of detecting interaction between markers, by
which epistasis between QTLs could be indicated but not
reliably estimated. Therefore, some statistical models
and methods based on marker linkage maps have been
suggested for analyzing QTLs with epistatic effects
(Haley and Knott 1992; Jansen 1992; Moreno-Gonzalez
1992; Jansen and Stam 1994; Cockerham and Zeng
1996; Fijneman et al. 1996; Chase et al. 1997). However,
the accurate quantification and characterization of epi-
stasis in the presence of genotype×environment (GE) in-
teraction still remains unsolved.

GE interactions have been a very important issue for
breeders and quantitative geneticists. With DNA markers
and appropriate experimental designs, GE interactions
can be further dissected into components of QE interac-
tions, which are of great importance for marker-assisted
selection in crop improvement. QE interactions have
been considered in mapping QTLs without epistasis
(Jansen 1992; Jansen et al. 1995; Tinker and Mather
1995; Jiang and Zeng 1995; Cockerham and Zeng 1996;
Utz and Melchinger 1996; Sari-Gorla et al. 1997; Yan et
al. 1998), but these methods do not allow reliable and ef-
ficient dissection of GE interactions into their contribut-
ing QE components in the presence of epistasis.

Mixed-linear-model approaches have been extensive-
ly used in animal breeding for estimating polygenic
breeding values, and recently also for QTL-related anal-
ysis in animals (Fernando and Grossman 1989; Goddard
1992; Meuwissen and Goddard 1997). However, these
applications of mixed-linear- model approaches have not
been intended to solve the above problems. In the pres-
ent paper, we propose a new methodology for systemati-
cally mapping QTLs involved in digenic epistasis as well
as QE interactions based on the mixed-model approaches
(Zhu 1998; Zhu and Weir 1998). The statistical models
and analysis methods are described. Simulation results
are provided for demonstrating the reliability, power and
precision of the methods. Computer software has also
been developed based on these approaches. Issues relat-
ed to the mixed model approaches are discussed.

Genetic models and analysis methodology

For simplicity, we use a doubled-haploid (DH) population from a
cross between two inbred lines to demonstrate this method. Exten-
sions can be obtained for other mapping populations derived from
line crosses (e.g., recombinant inbred lines, backcross, F2, etc.).

Genetic models

According to the definitions of genetic effects (additive, domi-
nance and digenic epistasis) given by Mather and Jinks (1982), a
mixed linear model for the simultaneous search of two interacting
QTLs (Qi between flanking markers Mi− and Mi+, and Qj between
flanking markers Mj− and Mj+), under the assumption of no QE in-
teraction, can be expressed as follows:

(1)

where yk is the phenotypic value of a quantitative trait measured
on the k-th individual (k=1, 2,…, n); µ is the population mean; ai
and aj are the additive effects (fixed) of the two putative QTLs (Qi
and Qi), respectively; aaij is the additive×additive epistatic effect
(fixed) between Qi and Qj; xAik

, xAjk
and xAAijk

are coefficients of
QTL effects derived according to the observed genotypes of the
markers (Mi−, Mi+ and Mj−, Mj+) and the test positions (rMi–Qi

and
rMi–Qi

) (Tables 1, 2); eMf
~N(0, σ2

M) is the random effect of marker f
with indicator coefficient uMfk

(1 for Mf Mf and −1 for mf mf);
eMMl

~N(0, σ2
MM) is the random effect of the l-th marker interaction

(between marker Kl and marker Ll) with indicator coefficient uMMlk

(1 for MKMKMLML or mKmKmLmL, and −1 for MKMKmLmL or
mKmKMLML); and εk~N(0, σ2

ε) the random residual effect.
The inclusion of eMf

and eMMl
in the model is intended to ab-

sorb the additive and epistatic effects of background QTLs (addi-
tional segregating QTLs other than the loci examined) for control-
ling the noise caused by these background QTLs.

Model (1) can be written as a matrix form of the mixed linear
model

(2)

∼

where y is an n×1 vector of phenotypic values; b=(µ, ai, aj, aaij)′ is
a 4×1 vector of fixed effects; e1=eM~N(0,σ2

MRM) is a random vec-
tor of main marker effects; e2=eMM~N(0,σ2

MMRMM) is a random
vector of interaction marker effects; e3=eε~N(0,σ2

εI) is an n×1 vec-
tor of random residuals. X, U1=UM and U2=UMM are known inci-
dence matrices, respectively. U3=I is an identity matrix. R1=RM
and RMM are known symmetric matrices of incidence coefficients
that can be obtained from the linkage relationships between the
main-effect markers and between the pairs of interacting markers,
respectively:

RM=[ρff ′], (3)

where ρff ′=1−2rff ′ is the correlation coefficient between eMf and
eMf ′

. rff ′ is the recombination fraction between markers f and f ′;
RMM=[ρll′], (4)

where

is the correlation coefficient between eMMl
(the interaction between

markers I and J) and eMMl ′
(the interaction between markers K and

L) under the Haldane mapping function (Haldane 1919). Markers
A, B, C and D are ordered as A…B…C…D on the genome, and at
least two of them are different. R3=I is an identity matrix.
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Table 1 Model coefficients (xAik
or xAjk

) of QTL additive effects
for a DH population

Marker Expected frequency xAxk

genotypea

QxQx qxqx

Mx−Mx+ 1 0 1
Mx−mx+ 1−px px 1−2px
mx−Mx+ px 1−px −(1−2px)
mx−mx+ 0 1 −1

a Mx− and Mx+ (x=i or j) are two flanking marker loci defining the
interval. For simplicity, only one of the two identical gamete ge-
notypes is used. The markers and the putative QTL (Qx) are lined
as Mx−→Qx→Mx+. px=rMx–Qx

/rMx–Mx+
·rMx–Mx+

is the recombination
fraction between Mx− and Mx+; rMx–Qx

is the recombination fraction
between marker Mx− and Qx. It is assumed that QxQx has a positive
effect on the trait, while qxqx has a negative effect

y a x a x aa x u e u ek i A j A ij AA M M
f

MM MM
l

kik jk ijk fk f lk l
= + + + + ∑ + ∑ +µ ε ,

y Xb U e U e e

Xb+ U e

Xb,V = U R U
=1

3

=

= + + +

= ∑

∑ ′( )
M M MM MM

u u
u

u u
u

u uN

ε

σ 2
1

3
,

ρ ρ ρ ρ ρ ρ
ρ ρll IJ KL

AB CD IJ KL

IJ KL

I J K L A B C D′ ⋅= = −
−( ) −( )

< < ⊂
1 12 2

, , ( , , , )



Model (1) can be further extended to include QTL×environ-
ment interactions for experiments conducted in multiple environ-
ments. If a DH population is used for mapping QTLs with additive
and additive×additive epistatic effects, as well as their environ-
ment interaction effects, the phenotypic value of the k-th DH line
in environment h can be expressed as the following mixed linear
model (h=1, 2,…, s; k=1, 2,…,nh):

(5)

where µ, ai, aj, aaij, xAik
, xAjk

and xAAijk
have the same meanings as in

model (1); eEh
is the random effect of environment h with coeffi-

cient uEhk
; eAiEh

(or eAjEh
) is the additive×environment interaction ef-

fect with coefficient uAiEhk
(or uAjEhk

) for Qi (or Qj); eAAijEh
is the epi-

stasis×environment interaction effect with coefficient uAAijEhk
; eMf(h)

is the effect of marker f nested within the h-th environment with
coefficient uMfk(h)

; eMMl(h)
is the effect of marker×marker interaction

nested within the h-th environment with coefficient uMMlk(h)
; and εhk

is the residual effect.
Model (5) can be expressed as the following matrix form:

(6)

~

where y is the vector of phenotypic values; b is the fixed parame-
ter vector for population mean (µ) and QTL effects (ai, aj and
aaij); X is the known incidence matrix of the fixed parameters;
e1=eE~N(0, σ2

EI) is the vector of random environment effects;
e2=eAiE~N(0, σ2

AiEI) is the vector of random Ai×E interaction ef-
fects; e3=eAjE~N(0, σ2

AjEI) is the vector of random Aj×E interaction
effects; e4=eAAijE~N(0, σ2

AAijEI) is the vector of random AAij×E
interaction effects; e5=eM~N(0, σ2

MRM) is the vector of main
marker effects; e6=eMM~N(0, σ2

MMRMM) is the vector of interaction
marker effects; e7=eε~N(0, σ2

εI) is the vector of residual effects;
U1− U6 are known incidence matrices of the random effects and
U7=I. R1−R4, and R7 are identity matrices; R5=RM and R6=RMM
are matrices with symmetric diagonal blocks RMh

and RMMh
, re-

spectively.

(7)

(8)

Parameter estimation and hypothesis test

The likelihood function (L) for the parameters of fixed effects b
and variance components [σ2

u] in model (1) or (5) is:

(9)

with the log of the likelihood function (l)

(10)

where V−1 is the inverse of V.
When variance components of the model are known, the maxi-

mum-likelihood estimates of QTL effects in b can be obtained by

b̂=(X′V−1X)−1X′V−1y.

The variance-covariance matrix of b̂ is obtained as

Var(b̂)=(X′V−1X)−1. (12)

QE interaction effects (additive×environment interaction eAiE and
eAjE, epistasis×environment interaction eAAijE) can be obtained by
the best-linear-unbiased-prediction (BLUP) method,

êu=σ2
uU′uQy, (13)

where Q=V−1−V−1X(X′V−1X)−1X′V−1. The variance-covariance
matrix of êu is obtained as

Var(êu)=σ4
uU′uQUu (14)

For searching QTLs (Qi and Qj) within intervals defined by (Mi−,
Mi+) and (Mj−, Mj+) at two prior test positions (rMi–Qj

and rMj–Qj
), the

null hypothesis for genetic parameters (QTL main effects and QE
interaction effects) can be tested by the likelihood-ratio statistic
(LR),

LR=2l1(b̂1, V1)−2l0(b̂0, V0). (15)

where the variance components in V can usually be replaced by
their unbiased estimates,

(16)

For model (1) without QE interaction, we can test QTL effects by
setting H0: ai=aj=aaij=0. In this case, LR has an approximate χ2

distribution with df=3. This hypothesis is equivalent to testing no
QTLs in the two intervals at the test positions. The alternative hy-
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Table 2 Model coefficients
(xAAijk

) of epistatic effects for a
DH population

Marker Expected frequency xAAijk

genotypesa

QiQiQjQj qiqiqjqj QiQiqjqj qiqiQjQj

Mi−Mi+Mj−Mj+ 1 0 0 0 2rij
mi−mi+mj−mj+ 0 1 0 0 2rij
Mi−mi+mj−mj+ 0 pi 1−pi 0 2(pi+rij−1)
mi−Mi+Mj−Mj+ pi 0 0 1−pi 2(pi+rij−1)
Mi−Mi+mj−mj+ 0 0 1 0 −2(1−rij)
mi−mi+Mj−Mj+ 0 0 0 1 −2(1−rij)
Mi−Mi+Mj−mj+ 1−pj 0 pj 0 2(rij−pj)
mi−mi+mj−Mj+ 0 1−pj 0 pj 2(rij−pj)
Mi−mi+Mj−Mj+ 1−pi 0 0 pi 2(rij−pi)
mi−Mi+mj−mj+ 0 1−pi pi 0 2(rij−pi)
Mi−mi+mj−Mj+ (1−pi)pj pi(1−pj) (1−pi)(1−pj) pipj 2(ηij+rij−1)
mi−Mi+Mj−mj+ pi(1−pj) (1−pi)pj pipj (l−pi)(1−pj) 2(ηij+rij−1)
Mi−Mi+mj−Mj+ pj 0 1−pj 0 2(pj+rij−1)
mi−mi+Mj−mj+ 0 pj 0 1−pj 2(pj+rij−1)
Mi−mi+Mj−mj+ (1−pi)(1−pj) pipj (1−pi)pj pi(1−pj) 2(rij−ηij)
mi−Mi+mj−Mj+ pipj (1−pi)(1−pj) pi(1−pj) (1−pi)pj 2(rif−ηij)

a Only one of the two identical
gamete genotypes is used. The
arrangement of markers and
QTLs is Mi−→Qi→Mi+…Mj−
→Qj→Mj+ is the recombination
fraction between the two puta-
tive QTLs i and j; ηij=pi+pj−
2pipj; pi and pj are calculated in
the same way as in Table 1

y a x a x aa x
u e u e u e u e
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pothesis, H1, is that not all of the QTL main effects are equal to
zero. For model (5) with QE interaction, we can test both QTL
main effects and QE interaction effects by setting H0: ai=aj=aaij=0
and σ2

AiE=σ2
AjE=σ2

AijE=0 . This hypothesis is equivalent to testing
no QTLs in the two intervals across all the environments involved.
The alternative hypothesis, H1, is that not all of the QTL main ef-
fects and QE interaction effects are equal to zero. Therefore, the
LR has an approximate χ2 distribution with df=6. Additional hy-
pothesis tests for other combinations of the genetic parameters can
also be conducted.

The rejection of H0 indicates that at least one of the QTL ef-
fects is not equal to zero. Then the estimates of QTL main effects
can be obtained by equation (11). An hypothesis test for the devia-
tion of QTL main effects from zero can be conducted by a t-test:

tcal=b̂i/SE(b̂i) with degrees of freedom df=n–rank (X), (17)

where b̂i is the estimate of a specific QTL main effect (ai, aj, or

aaij) to be tested; SE(b̂i)= is the standard error

for b̂i, rank (X)=4 for models (1) and (5).
An hypothesis test for deviation of QE interaction effects from

zero can be conducted by a z-test based on the standard normal
distribution:

zcal=[êu]h/SE([êu]h), (18)

where [êu]h is the predicted QE interaction effect (eAiEh
, eAjEh

, or

eAAijEh
) to be tested; is the standard error for [êu]h.

Estimates of putative QTL positions can be obtained based on
the above significance tests at peak points of the statistics (LR
and/or t) along chromosomes. For a significant aaij and/or σ2

AAijE,
the two prior test positions (rMi–Qj

and rMj–Qj
) are taken as the esti-

mates of the positions of Qi and Qj. When ai (or aj) and/or σ2
AiE (or

σ2
AjE) are significant, rMi–Qi

(or rMj–Qj
)) is taken as the estimate of the

position of Qi (or Qj).

Results

Simulation results for mapping QTLs
in one environment

Monte Carlo simulations for a DH population under one
environment were conducted to study the properties of the
mixed-model approaches described above. In all simula-
tions, we employed three genomes sharing the same mark-
er linkage map with four chromosomes and a total of 64
evenly distributed (10 cM between two adjacent markers)
markers. Each of the genomes has four QTLs with a dif-
ferent linkage relationship among the QTLs. In genome A,
all QTLs are independently inherited at 7.8, 123.7, 78.7,
and 99.4 cM on chromosomes I–IV (from the left ends of
the chromosomes), respectively. In genome B, two QTLs
are independent on chromosome I (7.8 cM) and chromo-
some III (78.7 cM), while the other two are loosely linked
on chromosome II at 55.3 and 123.7 cM, respectively. In
genome C, all four QTLs are linked on chromosome III at
10.2, 48.7, 80.8, and 120.4 cM, respectively. In all geno-
mes, the QTLs, according to their locations, were num-
bered as 1, 2, 3, and 4 from chromosomes I to IV and/or
from left to right on the chromosomes (Tables 3, 4). The
additive effects of the QTLs range from −1.21 to 4.07
units, and the digenic additive×additive epistatic effects
from −1.71 to 1.31 units (Table 4).

For generating each data set based on the above ge-
nomic information, the expected genetic variance VG was
calculated first:
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σu u u hh
2 ′[ ]U QU

[( ) ]′ − −X V X1 1
ii

Table 3 Simulation results for studying the properties of the mixed-model approaches in determining QTL positions

Genome QTL i QTL j Site i (cM) Site j (cM)

Para a Est. (SE) b Para Est. (SE)

A 1 2 7.8 8.3 (0.35) 123.7 123.6 (0.33)
1 3 7.8 8.2 (0.45) 78.7 78.5 (0.26)
1 4 7.8 5.4 (1.40) 99.4 105.1 (2.43)
2 3 123.7 123.2 (0.58) 78.7 78.4 (1.13)
2 4 123.7 123.6 (0.20) 99.4 100.8 (0.17)
3 4 78.7 77.6 (0.22) 99.4 101.7 (1.03)

B 1 2 7.8 7.7 (0.38) 55.3 55.1 (0.54)
1 3 7.8 7.7 (0.31) 123.7 123.4 (0.13)
1 4 7.8 4.8 (1.70) 78.7 80.1 (2.11)
2 3 55.3 60.9 (0.97) 123.7 121.7 (0.95)
2 4 55.3 54.7 (0.36) 78.7 78.6 (0.30)
3 4 123.7 122.2 (0.36) 78.7 79.6 (1.37)

C 1 2 10.2 9.3 (0.37) 48.7 50.4 (0.48)
1 3 10.2 8.7 (0.52) 80.8 79.1 (0.35)
1 4 10.2 13.9 (3.03) 120.4 126.2 (2.85)
2 3 48.7 44.9 (3.51) 80.8 77.4 (1.97)
2 4 48.7 50.2 (0.36) 120.4 121.6 (0.30)
3 4 80.8 79.6 (0.57) 120.4 119.1 (1.04)

a Parameter of QTL positions on the genome
b Estimated means and standard errors for positions of QTLs in-
volved in epistasis detected in 300 simulations. The estimates of

QTL positions were obtained within the pair-wise marker intervals
each having at least one marker flanking the QTLs. Sample
size=200; heritability=0.50

V a a aa aa

f f i i j j

G ff f
ff

f ij i j
jiji

ij i j= ∑∑ + ∑∑∑∑

′ = ′ = ′ =
′′ ′ ⋅ ′ ′′′<< ′ ′ρ ω ,

, , ; , , , ; , , , ),1 4 1 2 3 2 3 4L



where ρff′ =1−2rff ′, ωij·i′j′ =ρabρcd−ρijρi′j′, [a…b…c…d are
ordered as a…b…c…d on the genome; i, i′, j, j′⊂ (a, b, c,
d)] under the Haldane mapping function (Haldane 1919).
rij is the recombination fraction between Qi and Qj.
Then, the random error variance is calculated based on
VG and a given heritability h2:

Vε=VG(1−h2)/h2.

The genotypic value Gk of the k-th individual was ob-
tained by summing all genetic effects (Mather and Jinks
1982). The phenotypic value of the k-th individual was
calculated as Gk+εk, where εk was obtained by generating
a pseudo-random normal deviate with zero mean and
variance Vε.

We compared the power and efficiencies of two-way
ANOVA and stepwise regression in the selection of the
markers. It was shown that stepwise regression was
much more powerful than the ANOVA method, not only
in the selection of individual markers as indicated by
Hackett (1994), but also in the selection of interaction
markers (data not shown). Moreover, stepwise regression
is also a relatively quick method and is suitable for the
analyses of large genomes and large data sets. Therefore,
stepwise regression was used for selecting both main-ef-
fect and interaction markers in the model. The selection
of interaction markers by stepwise regression was con-
ducted after main-effect markers had been selected. The
probability for entering and dropping markers (or marker
pairs) was 0.005. Restricted maximum-likelihood esti-
mation (REML) (Patterson and Thompson 1971, 1974)
was used to obtain unbiased estimates of variance com-

ponents for replacing parameters in equation (16). The
methods of two-dimensional searches for digenic epistat-
ic QTLs are described in the following relevant sections,
separately.

Simulations for determining QTL positions

To test the unbiasedness and accuracy of QTL positions
determined by the mixed model-approaches, we con-
ducted a genome-wide search for QTLs with digenic epi-
static effects. The test positions were set in pairwise
marker intervals that were separated by at least one other
marker interval; the distance between adjacent test posi-
tions (or walking speed) in each marker interval is
2.0 cM. The results from 300 simulations are summa-
rized in Table 3.

It was shown that the mixed-model approaches pro-
vided basically unbiased and accurate estimates for the
positions of QTLs with relatively large additive and/or
epistatic effects (Table 3). Considerable biases and stan-
dard errors in estimated QTL positions were associated
with QTLs of small additive and epistatic effects (e.g.
QTL #1 and QTL #4), which were almost undetectable
(Table 4) under the threshold probability (α=0.005,
equivalent to LOD=2.79 here). Significant epistasis
could improve the unbiasedness and accuracy of the esti-
mated positions of both QTLs involved. For instance, the
SE of the estimated position of QTL #1 was 2.4 cM
when it was involved in a non-significant epistasis with
QTL #4 in genome A. However, this deviation became
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Table 4 Simulation results for studying the properties of the mixed model approach in the dissection of QTL effects

Genome QTL i QTL j ai
a aj

b aaij
c

Para d Est. (SE)e Powerf Para Est. (SE) Power Para Est. (SE) Power

A 1 2 0.60 0.59 (0.021) 0.09 −−1.21 −−1.22 (0.022) 0.64 1.31 1.34 (0.023) 0.73
1 3 0.60 0.59 (0.021) 0.09 4.07 4.03 (0.023) 1.00 1.08 1.10 (0.023) 0.48
1 4 0.60 0.59 (0.021) 0.11 0.00 0.02 (0.021) 0.00 −−0.38 −−0.39 (0.023) 0.03
2 3 −−1.21 −−1.22 (0.022) 0.64 4.07 4.03 (0.023) 1.00 0.00 0.03 (0.022) 0.00
2 4 −−1.21 −−1.22 (0.022) 0.64 0.00 0.01 (0.021) 0.00 −−1.71 −−1.68 (0.021) 0.94
3 4 4.07 4.03 (0.023) 1.00 0.00 0.01 (0.021) 0.00 −−0.41 −−0.40 (0.022) 0.03

B 1 2 0.60 0.58 (0.022) 0.10 −−1.21 −−1.15 (0.024) 0.49 1.31 1.34 (0.024) 0.68
1 3 0.60 0.57 (0.022) 0.08 4.07 3.97 (0.022) 1.00 1.08 1.25 (0.024) 0.62
1 4 0.60 0.57 (0.022) 0.08 0.00 −−0.01 (0.022) 0.00 −−0.38 −−0.44 (0.023) 0.05
2 3 −−1.21 −−1.17 (0.024) 0.54 4.07 4.07 (0.023) 1.00 0.00 0.01 (0.024) 0.01
2 4 −−1.21 −−1.15 (0.024) 0.52 0.00 −−0.01 (0.021) 0.00 −−1.71 −−1.74 (0.022) 0.92
3 4 4.07 3.95 (0.022) 1.00 0.00 −−0.01 (0.022) 0.00 −−0.41 −−0.59 (0.024) 0.10

C 1 2 0.60 0.60 (0.025) 0.08 −−1.21 −−1.23 (0.032) 0.37 1.31 1.48 (0.029) 0.53
1 3 0.60 0.53 (0.025) 0.08 4.07 3.97 (0.026) 1.00 1.08 1.17 (0.027) 0.37
1 4 0.60 0.58 (0.025) 0.08 0.00 0.39 (0.024) 0.03 −−0.38 −−0.42 (0.028) 0.04
2 3 −−1.21 −−1.11 (0.029) 0.37 4.07 4.10 (0.026) 1.00 0.00 −−0.05 (0.030) 0.01
2 4 −−1.21 −−1.17 (0.031) 0.35 0.00 0.40 (0.024) 0.03 −−1.71 −−1.91 (0.026) 0.93
3 4 4.07 3.94 (0.028) 1.00 0.00 0.00 (0.025) 0.01 −−0.41 −−0.77 (0.031) 0.14

a Additive effect of QTL i
b additive effect of QTL j
c additive×additive epistatic effect
d parameter of QTL effects

e estimated means and standard errors of QTL effects across all
300 simulations
f power of detection (by t test) in 300 simulations. Test positions
were set exactly at the positions of QTLs. Sample size=200; heri-
tability=0.50
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Table 5 Simulation results for studying the properties of the mixed model approaches in
the prediction of QE interaction effects. E1, E2, and E3 are three environments used in the
simulations. êAiEh

(êAjEh
) and êAAijEh

are averages of additive×environment interactions and

epistasis×environment interaction effects predicted by the BLUP method across 100 sim-
ulations. The bold numbers are parameters for the corresponding predicted values; the
sets of parameters were used in 100 simulations

Genome QTL i QTL j E1 E2 E3

eAiE1
êAiE1

eAjE1
êAjE1

eAAijE1
êAAijE1

eAiE2
êAiE2

eAjE2
êAjE2

eAAijE2
êAAijE2

eAiE2
êAiE3

eAjE3
êAjE3

eAAijE3
êAAijE3

A 1 2 −−2.73 −−2.75 3.42 3.42 −−3.03 −−3.17 0.92 0.85 3.03 3.19 2.55 2.76 1.81 1.90 −−6.45 −−6.60 0.48 0.42
1 3 −−2.73 −−2.75 1.48 1.24 −−2.94 −−2.87 0.92 0.86 −−1.24 −−1.01 0.82 0.90 1.81 1.89 −−0.24 −−0.23 2.12 1.97
1 4 −−2.73 −−2.62 2.00 1.88 0.82 0.56 0.92 0.82 −−0.51 −−0.40 −−1.31 −−1.09 1.81 1.79 −−1.50 −−1.48 0.50 0.53
2 3 3.42 3.42 1.48 1.37 −−0.12 −−0.09 3.03 3.18 −−1.24 −−1.02 2.52 2.40 −−6.45 −−6.60 −−0.24 −−0.35 −−2.40 −−2.31
2 4 3.42 3.37 2.00 1.87 0.41 0.33 3.03 3.19 −−0.51 −−0.39 −−2.04 −−1.98 −−6.45 −−6.56 −−1.50 −−1.48 1.64 1.65
3 4 1.48 1.24 2.00 1.82 2.29 2.06 −−1.24 −−1.03 −−0.51 −−0.38 −−5.86 −−5.63 −−0.24 −−0.21 −−1.50 −−1.44 3.57 3.57

B 1 2 −−2.73 −−2.71 3.42 3.12 −−3.03 −−3.01 0.92 0.82 3.03 3.09 2.55 2.68 1.81 1.89 −−6.45 −−6.21 0.48 0.33
1 3 −−2.73 −−2.81 1.48 1.51 −−2.94 −−3.24 0.92 0.79 −−1.24 −−1.02 0.82 1.02 1.81 2.02 −−0.24 −−0.48 2.12 2.22
1 4 −−2.73 −−2.74 2.00 1.91 0.82 0.77 0.92 0.77 −−0.51 −−0.45 −−1.31 −−1.24 1.81 1.97 −−1.50 −−1.46 0.50 0.47
2 3 3.42 3.19 1.48 1.51 −−0.12 −−0.23 3.03 3.11 −−1.24 −−0.99 2.52 2.45 −−6.45 −−6.30 −−0.24 −−0.52 −−2.40 −−2.22
2 4 3.42 3.18 2.00 1.90 0.41 0.13 3.03 3.05 −−0.51 −−0.46 −−2.04 −−1.82 −−6.45 −−6.24 −−1.50 −−1.44 1.64 1.69
3 4 1.48 1.42 2.00 1.93 2.29 2.43 −−1.24 −−0.98 −−0.51 −−0.47 −−5.86 −−5.98 −−0.24 −−0.44 −−1.50 −−1.46 3.57 3.55

C 1 2 −−2.73 −−2.69 3.42 3.49 −−3.03 −−2.96 0.92 0.85 3.03 3.09 2.55 2.08 1.81 1.84 −−6.45 −−6.59 0.48 0.88
1 3 −−2.73 −−2.70 1.48 1.71 −−2.94 −−3.13 0.92 0.87 −−1.24 −−1.18 0.82 1.21 1.81 1.83 −−0.24 −−0.53 2.12 1.92
1 4 −−2.73 −−2.64 2.00 1.98 0.82 0.67 0.92 0.85 −−0.51 −−0.68 −−1.31 −−1.35 1.81 1.80 −−1.50 −−1.30 0.50 0.68
2 3 3.42 3.35 1.48 1.69 −−0.12 −−0.23 3.03 3.10 −−1.24 −−1.37 2.52 2.21 −−6.45 −−6.45 −−0.24 −−0.32 −−2.40 −−1.98
2 4 3.42 3.39 2.00 1.99 0.41 0.46 3.03 3.10 −−0.51 −−0.65 −−2.04 −−1.83 −−6.45 −−6.49 −−1.50 −−1.34 1.64 1.37
3 4 1.48 1.37 2.00 1.91 2.29 2.52 −−1.24 −−0.91 −−0.51 −−0.55 −−5.86 −−6.34 −−0.24 −−0.47 −−1.50 −−1.36 3.57 3.82



less than 0.5 cM when QTL #1 was involved in signifi-
cant epistasis with QTL #2 or QTL #3.

Simulations for testing QTL effects

Two key properties, the power of QTL detection and the
unbiasedness and accuracy of estimating QTL effects
(both additive and epistatic effects), of the mixed-model
approaches were also investigated by using computer sim-
ulations. The power of detecting QTL effects was ob-
tained based on t tests after the null hypothesis (H0:
ai=aj=aaij=0) was rejected by LR tests at α=0.005. The re-
sults from 300 simulations were summarized in Table 4.

Under the conditions of no linkage (genome A) or
loose linkage (genome B), the mixed-model approaches
produced unbiased and accurate (SE≤0.03) estimates of
the additive and epistatic effects for the preset QTLs.
When there are close linkages between QTLs (genome
C), the estimated QTL effects were only slightly biased
with increased SE.

Table 4 also indicated that the mixed model approach-
es were powerful in detecting QTLs with relatively large
additive and/or epistatic effects (coefficient of determi-
nation R2>3%). For instance, QTL #2 with an additive
effect of R2≈3~4% were detected 35~64% of the times.
QTL #3 having the largest additive effect of R2≈33%
was always detected in the three genomes. The epistatic
effect between QTL #2 and QTL #4 was ~6% in R2, and
was detected 92% of the time. Expectedly, small additive
or epistatic effects (R2<1%) were largely undetectable
(e.g. additive effects of QTLs #1 and #4; epistasis effects
between QTL #2 and QTL #3).

Linkage, particularly close linkage between QTLs
(genome C), had a significant impact on the detection
power in QTL mapping using the mixed-model ap-
proaches. The nature of this impact depends on the direc-
tions of QTL main effects (including epistatic effects) of
linked QTLs. When effects of the linked QTLs are in
coupling (in the same direction), the QTLs tended to be
detected with increased power. However, when in repul-
sion (having effects of opposite direction), the QTLs
tended to be detected with decreased power.

Simulations results for mapping QTLs in multiple
environments

Monte Carlo simulations were also conducted for study-
ing the properties of the mixed-model approaches in the
estimation of QTL main effects (additive effects and epi-
static effects) and in the prediction of QE interaction ef-
fects. The information for the three genomes (A, B, C)
was still used in the simulations for three environments
(s=3). The phenotypic values of individuals within envi-
ronment h included an additional environment effect (Eh)
and QE interactions (eAiEh

, eAjEh
and eAAijEh

). One-hundred
simulations were performed for each of the genomes in a
sample of 200 DH individuals and a total of 600 pheno-

typic observations at the preset positions of the QTLs.
The simulation results indicated that the mixed-model
approaches could still provide unbiased estimates of
QTL effects (additive effects and epistatic effects), as
well as unbiased predicted values for additive×environ-
ment interactions (eAiEh

and eAjEh
) and epistasis×environ-

ment interactions (eAAijEh
) (in Table 5). In the presence of

QE interaction, however, estimated QTL effects based
on models without QE interaction tended to result in bi-
ased estimates of QTL parameters.

Discussion

Epistasis, an important genetic component underlying
quantitative trait variation, has not been well character-
ized due largely to lack of an appropriate methodology
(Li 1997). One major difficulty in developing a powerful
statistical approach for mapping QTLs with epistatic ef-
fects is the treatment of many parameters for multiple
QTLs involved in the statistical model. In the present
study, we have developed the mixed-model approaches
and the corresponding computer software for simulta-
neous interval mapping of QTLs with both additive and
epistatic effects as well as QTL×environment interac-
tions. Several important properties of the methods will
be discussed below.

Background genetic variation (BGV) control

To-date, two-dimensional searches for digenic epistasis
using two-way ANOVA or regression models have been
the most common way for detecting epistatic QTLs
(Haley and Knott 1992; Li et al. 1997a, b). However, this
simple method of detecting epistasis without BGV con-
trol may suffer a high probability of false positives (Li
1997; Li et al. 1997a, b).

Marker cofactors have been successfully used for
controlling the influence of BGV in mapping QTLs ex-
cluding epistasis (Jansen 1992, 1993; Zeng 1993, 1994;
Jansen and Stam 1994). This is because the inclusion of
main-effect markers in the models can absorb a consider-
able portion of the BGV through their linkages to the un-
detected main-effect QTLs segregating in the population.
In the presence of epistasis, however, control of only
main-effect markers is insufficient, because the epistatic
effects of QTLs will also show influences, particularly
for complex phenotypes (Li et al. 1997a, b). Thus, inclu-
sion of interaction markers closely linked to epistatic
QTLs in the statistical models is expected to improve the
power and accuracy of QTL mapping, which has been
proven to be the case by our simulations. Our results in-
dicated that without BGV control, accuracy, precision
and power in mapping QTLs were significantly reduced,
and that using both main-effect markers and interaction
markers [Model (1)] was much more superior than using
main-effect markers alone in BGV control. BGV control
by this way will not cause over-parameterization since
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the mixed-model approaches could shrink the parameters
of marker cofactors to be estimated-only two additional
variance components (σ2

M and σ2
MM) need to be estimated

for marker cofactors in model (1). In the simulation and
software developed, we only used markers selected by
statistical analysis (e.g. stepwise regression) as cofactors
for BGV control, which is slightly different from other
methods. This is because only the markers closely linked
to QTLs are important sources of BGV. Irrelevant mark-
ers contributed little to BGV but could reduce the preci-
sion in estimating residual errors. Selection of important
markers, therefore, is the key for effective control of
BGV. It should be pointed out that stepwise regression
analysis may select different sets of markers when differ-
ent entering and dropping probabilities are used. In real-
data analysis, less stringent probabilities tend to produce
a larger set of selected markers, and vice versa. Appro-
priate probabilities should be decided based on the effec-
tive population size, trait heritabilities, and error control
in the experiments.

As a convention, most current methods for QTL anal-
ysis treat marker effects as fixed in the statistical models.
However, some others also take marker effects as ran-
dom (e.g. Fernando and Grossman 1989; Goddard 1992).
In the mixed-model approaches for QTL mapping, mark-
er effects are assumed to be random. There are two ma-
jor reasons why marker effects can be considered ran-
dom. First, there are almost unlimited markers in the
whole genomic region and the markers observed are only
a subset of all possible markers. Second, markers are
usually used as a tool, but not the targets, in QTL detec-
tion. When compared with the methods of interval map-
ping (Lander and Botstein 1989) and composite interval
mapping (Zeng 1994) for mapping QTLs without epista-
sis using simulation (data not shown), all three methods
produced virtually identical results under no BGV con-
trol. For detecting multiple genetic main effects of
QTLs, the mixed-model approach yielded almost the
same results, with similar power and precision, as com-
posite interval mapping with the same sets of marker co-
factors.

Power of detection, relative magnitudes
of genetic effects, and significance threshold

The simulation results indicated that the power of the
mixed model approach in detecting QTLs and epistasis is
highly correlated with the relative magnitudes (R2) of the
QTL main/epistatic effects under a given threshold. In
other words, QTLs with large additive and/or epistatic
effects (R2 >6% in the simulations) can almost always be
detected, and their positions and effects are also accu-
rately estimated. In contrast, QTLs with small addi-
tive/epistatic effects (R2<2% in the simulations) are
largely undetectable. This is consistent with the empiri-
cal results of many QTL mapping efforts that tend to
find QTLs with an R2 of 5% as having the minimum
variance detectable. The relative magnitudes (R2) of ge-

netic effects depend on the magnitudes of the effects
themselves, as well as variation caused by the experi-
mental errors, which is specific for individual traits and
experiments. This implies that the power and precision
in QTL mapping should be greatly improved by reducing
the experimental errors, which can be achieved in a num-
ber of ways such as increasing population size and repli-
cating measurements of traits, etc.

It is noted that there will be several different esti-
mates for the position/additive effect of a QTL when it is
involved in more than one epistasis. An average of these
estimates weighted by detection powers should represent
the appropriate QTL position/additive effect. But in real-
data analysis, the arithmetic mean will have to be used
since the detection powers are not available.

The LR threshold of P=0.005 (equivalent to
LOD=2.79 for df=3) used in our simulations is consid-
ered as an typical one for most QTL mapping studies,
but it gave us a consistent high power in detecting QTLs
of moderate additive/epistatic effects (R2~5%). However,
increasing the threshold to 0.001 in our simulations re-
sulted in a significantly reduced power of detecting
QTLs with moderate additive/epistatic effects. In analyz-
ing the data of five mapping populations with around
200 individuals (two BC, one RI and two test popula-
tions) using the mixed model-method, a threshold be-
tween 0.005 and 0.001 (depending on traits) was found
to produce consistent results (Li et al., unpublished data).

Detection of QTL × environment interactions

The mixed linear model (1) developed in the present
study provides a basic framework, which can be easily
extended to cover more complex experimental designs of
QTL mapping by the inclusion of additional factors
(such as environments, QE interactions, and/or random-
ized complete blocks). Model (5) represents a direct ex-
tension of model (1) to include QE interactions (eAiEh

,
and eAiEh

and eAAijEh
). Monte Carlo simulations showed

that model (5) maintained the most important property of
model (1), the unbiasedness of estimated QTL main ef-
fects (additive and epistatic effects) and predicted QE in-
teraction effects. However, the z-tests for predicted QE
interaction effects using the corresponding variance
components (σ2

AiE, σ2
AjE and σ2

AAijE) indicated a very low
power in detecting significant QE interaction effects. Al-
ternatively, use of re-sampling techniques (e.g. Jack-
knife) to obtain the sampling variances for t-tests of QE
parameters, or to estimate the variance components of
QE interactions by REML, may also be helpful in quan-
tifying specific additive and/or epistatic effects for QTLs
in different environments, which remains to be exam-
ined.

Environmental effects (e.g. soil types, day length, and
general temperature regimes, etc.) could also be taken as
fixed effects in practice. When environments are fixed in
the mixed linear model, QE interactions would also be
fixed. In this case, however, QTL effects (additive and
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epistatic effects), environmental effects and QE interac-
tions in vector b, might be confounded and unestimable
due to the singularity of the X matrix. But the estimable
linear function (c′′b) could be obtained for a general lin-
ear test of the QTL effects and QE interactions. This
needs further investigation.

Development of computer software

Computing time has not been a factor for mapping QTLs
without epistatic effects since a one-dimensional ge-
nome-wide search for several traits is within the current
capacity of most computers. However, for mapping
QTLs with epistatic effects and QE interactions, the
computing time for a genome-wide search could take
weeks. Very often, reliable mapping results may take
several runs of computation in real-data analysis. There-
fore, efficient statistical algorithms and mapping strate-
gies are important factors in developing the software.
Based on these considerations and computer simulation,
we have developed a user-friendly 32-bit PC program
(QTLMapper Version 1.0) based on the mixed-model ap-
proaches described in this paper. This software treats
missing and dominant marker data in the algorithm sug-
gested by Jiang and Zeng (1997). It can analyze data sets
from DH and RI (recombinant inbred lines) populations,
and has preliminarily been proven to be efficient by sim-
ulations and data analyses for a few real QTL mapping
studies. This software is freely available to users from
any of the co-authors.
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