
Abstract A genetic model was proposed to simulta-
neously investigate genetic effects of both polygenes and
several single genes for quantitative traits of diploid
plants and animals. Mixed linear model approaches were
employed for statistical analysis. Based on two mating
designs, a full diallel cross and a modified diallel cross
including F2, Monte Carlo simulations were conducted
to evaluate the unbiasedness and efficiency of the esti-
mation of generalized least squares (GLS) and ordinary
least squares (OLS) for fixed effects and of minimum
norm quadratic unbiased estimation (MINQUE) and
Henderson III for variance components. Estimates of
MINQUE (1) were unbiased and efficient in both re-
duced and full genetic models. Henderson III could have
a large bias when used to analyze the full genetic model.
Simulation results also showed that GLS and OLS were
good methods to estimate fixed effects in the genetic
models. Data on Drosophila melanogaster from Gilbert
were used as a worked example to demonstrate the pa-
rameter estimation.
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Introduction

Many quantitative traits are affected by one or more ma-
jor genes as well as by polygenes in some genetic mate-
rial (Falconer 1981; Mather and Jinks 1982). In these
cases separation of the effects of major genes and poly-
genes is of great importance for understanding their ex-
pression in genetics and for evaluating their utilization in

breeding. Since the inheritance of these traits is different
from that of quantitative traits in a traditional sense, the
classic analysis methods are no longer valid for them.
There need to be appropriate methods for obtaining cor-
rect genetic conclusions.

As reviewed by Gilbert (1985b), single locus effects
(e.g. additive and dominance) on quantitative traits are
often estimated by comparisons between genetic entries
with different genotypes at this locus if general genetic
differences due to residual background genotypes can be
controlled or accounted for. From those comparisons,
however, the magnitude of genetic effects resulting from
polygenes cannot be rigorously determined, and their rel-
ative importance to trait difference may remain un-
known. Mo (1993a, b) and Mo and Xu (1994) proposed
methods for identifying major gene genotypes and for
estimating the effects of a major gene and polygenes
from generation-populations derived from a cross be-
tween two pure parental lines. Mixture distribution mod-
els and the likelihood-based analysis technique have also
widely been used to estimate the genetic parameters
based on populations descended from a cross between a
pair of inbred lines (Fernando et al. 1994; Jiang et al.
1994; Loisel et al. 1994; Jiang and Liu 1995; Jiang and
Mo 1995; Jiang et al. 1995; Wang and Gai 1997; Gai and
Wang 1998). But the generality of the major gene and
polygene estimates depend on the absence of interaction
between the major genes and the polygenes, as well as
on the representiveness of the initial cross for relevant
polygenic constitutions. Furthermore, the estimates are
only relative to a specific genetic background from a
fixed set of materials, and generalized conclusions can-
not be drawn for the population of interest. Elkind and
Cahaner (1986) developed a mixed model for effects of
single gene, polygenes and their interaction on quantita-
tive traits. Nevertheless, estimation is limited to the total
genetic effects of a single gene and polygenes. The nest-
ed (Design I) and the factorial (Design II) designs (Com-
stock and Robinson 1952), and diallel mating designs
(Yates 1947, Hayman 1954a, b; Griffing 1956; Gilbert
1958; Eberhart and Gardner 1966; Gardner and Eberhart
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(1966), are most used when genetic properties of a refer-
ence population or multiple lines are studied for poly-
genic variation. Gilbert (1985a, b) suggested a diallel
method for estimating single gene effects and polygenic
background effects. This method is incapable of estimat-
ing the interaction between the single gene and poly-
genes. Moreover, it cannot deal with unbalanced data
and the genetic design required is very strict.

In general, the nested and factorial designs can be
viewed as a subset of diallel designs with some missing
entries. In the present research, a genetic model is pro-
posed for quantitative traits influenced by both major
genes and polygenes from modified diallel designs in
diploid plants or animals. In consideration of the compli-
cation of the genetic model, mixed linear model ap-
proaches are suggested for statitistical analysis. Monte
Carlo simulations are conducted to evaluate estimation
methods. Data for mating speed, copulation duration de-
velopmental time, and esterase 6 enzyme activity in Dro-
sophila melanogaster from Gilbert (1985a) are used as a
worked example.

Model and methodology

If the genetic difference of a quantitative trait is jointly controlled
by polygenes and several single genes, which refer to any identifi-
able locus not confined to a major gene with larger effect, the phe-
notypic mean (yhijkl) of mating-type k of the combination from ma-
ternal parent i and paternal parent j in block l within environment
h can be expressed by a linear model as follows:

yhijkl = µ + Eh + Gijk + GEhijk + Bl(h) + ehijkl

= µ + Eh + Gsijk + Gpijk + Gspijk + GsEhijk + GpEhijk

+ GspEhijk + Bl(h) + ehijkl, (1)

where µ is the fixed population mean; Eh is the effect of environ-
ment h (e.g. year, location, etc.), fixed or random (determined by
context of data), and is usually random in genetic experiments
since genetic expression in all environments is of interest; Bl(h)~(0,
σB

2) is the effect of block l within environment h; ehijkl~(0, σe
2) is the

residual effect; Gijk is the genotypic value or total genetic effect,
which can be further partitioned into three components with Gsijk
attributable to single nuclear genes, Gpijk to background polygenes,
and Gspijk to the interaction effect between single genes and poly-
genes; GEhijk is the total interaction effect between genotype Gijk
and environment Eh, which also consist of three components with
GsEhijk the interaction effect between Gsijk and Eh, GpEhijk the in-
teraction effect between Gpijk and Eh, and GspEhijk the interaction
effect between Gspijk and Eh. If there is no interaction between sin-
gle genes and polygenes, the phenotypic value can be expressed as
a reduced model without the terms Gspijk and GspEhijk.

Assuming (1) regular segregation, (2) autosomal inheritance
for variation attributable to nuclear genes, (3) absence of maternal

effects, (4) no epistatic effects between single genes and between
polygenes, and (5) constant transmission of cytoplasmic genes
through the maternal parent, then Cockerham’s (1980) general ge-
netic model can be extended by adding the cytoplasmic effect but
excluding epistatic effects to represent the genotypic value associ-
ated with polygenes (x, y ∈ {i, j}), i.e.:

Gpijk=α(k)i Ai+α(k)j Aj+δ(k)iiDii+δ(k)jjDjj+δ(k)ijDij+γ(k)iCi+γ(k)jCj

=∑
x

α(k)x Ax+∑
x≤y

δ(k)xy Dxy+∑
x

γ(k)xCx, (2)

where i represents the polygenic ancestry source for nuclear
genes and for cytoplasmic genes from which parent i is descend-
ed; Ai is the cumulative additive effect of polygenes from the pa-
rental source i; Dij is the cumulative dominance effect of poly-
genes from the mating of parental source i with parental source j,
and Dij=Dji; Ci is the cumulative effect of cytoplasmic polygenes
from parental source i; α(k)i, δ(k)ij and γ(k)i, which rest on the
mating type of a genetic entry, are corresponding coefficients, re-
spectively.

The genotypic value with respect to individual loci can be par-
titioned as:

Gsijk=∑
s

[τ(k)ii Ssii+τ(k)jj Ssjj+τ(kij)Ssij], (3)

where Ssii, Ssjj and Ssij are the genotypic effects at locus s from the
combination of alleles from parent i and i, j and j, i and j, respec-
tively; τ(k)ii, τ(k)jj and τ(k)ij are their coefficients, respectively.
The coefficients of genetic components for parent, F1, F2, two
backcrosses (BC1 and BC2) and two reciprocal backcrosses (RBC1
and RBC2) are shown in Table 1. In view of the generality (e.g.
multiple allelism), genotypic values are adopted. If necessary, ad-
ditive and dominance effects or other parameters at a given locus
can easily be parameterized following the traditional line.

The total interaction effect between single genes and polygenes
can be expressed as:

(4)

where x, y, w, z ∈ {i, j}; SAsxyw, SDsxywz and SCsxyw are the interac-
tion effects between the genotype at locus s made up of the allele
from parent x and the allele from parent y, and additive effects of
polygenes from parent w, dominance of polygenes from the mat-
ing of parent w and parent z, and cytoplasm of polygenes from
parent w, respectively.

Correspondingly, interaction effects between genotype and en-
vironment can be similarly decomposed. The components of inter-
action effects between polygenes and environment are:

(5)

where x, y ∈ {i, j}; AEhx, DEhxy and CEhx are the interaction ef-
fects between the environment and additive, dominance, and cyto-
plasm effects respectively. Those of interaction effects between
single genes and the environment are:

(6)

where SEhsii, SEhsjj and SEhsij are the interaction effects be-
tween genotypes at locus s and the environment. Those of inter-

Table 1 Coefficients of genetic
effects for commonly used 
mating types

ka τ(k)ii τ(k)jj τ(k)ij α(k)i α(k)j δ(k)ii δ(k)jj δ(k)ij γ(k)i γ(k)j

0 1 0 0 2 0 1 0 0 1 0
1 0 0 1 1 1 0 0 1 1 0
2 0.25 0.25 0.5 1 1 0.25 0.25 0.5 1 0
3 0.5 0 0.5 1.5 0.5 0.5 0 0.5 1 0
4 0 0.5 0.5 0.5 1.5 0 0.5 0.5 1 0
5 0.5 0 0.5 1.5 0.5 0.5 0 0.5 1 0
6 0 0.5 0.5 0.5 1.5 0 0.5 0.5 0 1

a Mating-type k designate:
0=Parent (Pi), 1=F1ij (Pi×Pj),
2=F2ij, 3=BC1 (F1ij×Pi), 4=BC2
(F1ij×Pj), 5=RBC1 (Pi×F1ij),
6=RBC2 (Pj×F1ij), respectively

Gsp
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action effects between single genes, polygenes and environment
are:

(7)

where x, y, w, z ∈ {i, j}; SAEhsxyw, SDEhsxywz and SCEhsxyw are the
interaction effects of Ssxy×Aw×Eh, Ssxy×Dwz×Eh and Ssxy×Cw×Eh, re-
spectively.

Mixed linear model approaches can be used to analyze the
above model. When the polygenic sources of parents are randomly
sampled from a reference population, and the genotypes of parents
with regard to single gene loci under consideration are known, lo-
cus effects can be treated as fixed effects and the polygenic effects
and their interaction effects as random effects. In this situation, the
genetic model can be rewritten in the following matrix form of a
mixed linear model for all observations (written as the vector y) in
a modified diallel mating design:

y = 1µ+∑
s

Xsbs+UEeE+UAeA+UDeD+UC eC

+∑
s

(USAs
eSAs

+USDs
eSDs

+USCs
eSCs

)+∑
s

USEs
eSEs

+UAE eAE +UDE eDE +UCE eCE

+∑
s

(USAEs
eSAEs

+USDEs
eSDEs

+USCEs
eSCEs

)+UB eB+Iee

= Xb + ∑
u

Uueu (8)

with the variance-covariance matrix

Var(y) = σ2
E UE UT

E +σ2
A UA RA UT

A +σ2
D UD RD UT

D +σ2
C UC RC UT

C

+∑
s

(σ2
SAs

USAs
RSAs

UT
SAs

+σ2
SDs

USDs
RSDs

UT
SDs

+σ2
SCs

USCs
RSCs

UT
SCs

)+∑
s

σ2
SEs

USEs
RSEs

UT
SEs

+σ2
AE UAE RAE UT

AE +σ2
DE UDE RDE UT

DE +σ2
CEUCERCE UT

CE

+∑
s

(σ2
SAEs

USAEs
RSAEs

UT
SAEs

+σ2
SDEs

USDEs
RSDEs

UT
SDEs

+σ2
SCEs

USCEs
RSCEs

UT
SCEs

)

+σ2
B UB UT

B +σ2
e I

= ∑
u

σ2
u Uu Ru UT

u =V (9)

where b is the vector of fixed effects consisting of the mean and
the effects of loci; X is the known incidence matrix relating to the
fixed vector; eu~(0, σu

2Ru) is the random vector for environment,
additive, dominance, cytoplasm, locus s×additive, locus s×domi-
nance, locus s×cytoplasm, locus s×environment, additive×environ-
ment, dominance×environment, cytoplasm×environment, locus
s×additive×environment, locus s×dominance×environment, locus
s×cytoplasm×environment, block and residual effects, respective-
ly; Ru is the relative matrix for random vector eu, Ru=I if the ele-
ments are independent, where I is a unit matrix; Uu is the known
incidence matrix relating to random vector eu; Uu

T is the transposi-
tion Uu; σu

2 is variance component of random effects eu.
Variance components of the mixed linear model can be esti-

mated by the methods of Henderson III (Henderson 1953; Searle
1968), minimum norm quadratic unbiased estimation (MINQUE)
(Rao 1971), restriction maximum likelihood estimation (REML)
(Paterson and Thomson 1971), and maximum likelihood estima-
tion (ML) (Hartley and Rao 1967). Among these methods MIN-
QUE possesses advantages of unbiasedness, no assumption of nor-
mal distribution, and less computation over REML and ML.

The estimates of MINQUE, REML, or ML asymptomatically
conform to normal distribution, some classic statistical test
methods (e.g. z-test, chi-square test) can be used for the signifi-
cance test. The prediction of random effects can be obtained by
the best linear unbiased prediction (BLUP) (Henderson 1963),
linear unbiased prediction (LUP) (Zhu 1992; Zhu and Weir
1994), and adjusted linear unbiased prediction (AUP) (Zhu 1993;
Zhu and Weir 1996) methods. Jackknife numerical resampling
procedure (Miller 1974; Efron 1982) can also be used for esti-
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mating the sampling variance of estimated variance components
and of predicted random effects, and Student’s t-test for the sig-
nificance test.

The fixed effects can be estimated through the Ordinary
Least Squares (OLS or LS) method or the Generalized Least
Squares (GLS) method. When the coefficient matrix of fixed ef-
fects X is degenerate, some jointly unestimatable constraints
should be placed, or fixed effects should be re-parameterized for
obtained a set of solutions with a biological sense, e.g. additive
effects and dominance effects of single genes in convention are
linear combinations of single gene genotypic values. The gener-
alized linear test can be employed to test for the significance of
parameters or estimable functions of parameters. The Jackknife
technique can also be used in the significance test for fixed ef-
fects.

Results

Monte Carlo simulation results

Monte Carlo simulations were performed for two sets
(Experiment I and Experiment II) of genetic entries in
four environments with two randomized complete
blocks from diallel designs of six parents, of which the
polygenes originated from different sources; three were
homozygous for one allele and the others were homozy-
gous for another allele at an identifiable locus. The ge-
netic mating design of Experiment I followed a com-
plete diallel design which includes all parents, F1s, and
reciprocal F1s while that of the Experiment II used a
modified diallel design into which all F2s and reciprocal
F2s are added. Since there were only two alleles at the
single gene locus, the single gene effects were ex-
pressed as an additive effect (a) and a dominance effect
(d) in accordance with conventional usage. In the case
of two alleles, the additive effect determined from the
comparison of two homozygotes and the dominance ef-
fect based on the comparison of the heterozygote with
the average homozygote value, were parameterized.
From Table 1, we can construct phenotypic values for
parents i (k=0) by:

yhii0l=µ+Eh+xii a+xii aEh+2Ai+Dii+Ci+2AEhi+DEhii+CEhi

+xii(2aAi+aDii+aCi)+xii(2aAEhi+aDEhii+aCEhi)
+Bl(h)+ehijkl,

where xii is an indicator variable which is 1 when i is a
given allele and −1 when i is the other allele. Phenotypic
values for F1ij (k=1) from maternal parent i×paternal par-
ent j are:

yhij1l=µ+Eh+xii a+xiiaEh+Ai+Aj+Dij+Ci+AEhi+AEhj+DEhij

+CEhi+xii(aAi+aAj+aDij+aCi)
+xii(aAEhi+aAEhj+aDEhij+aCEhi)+Bl(h)+ehijkl

when two parents carry the same allele, or

yhij1l=µ+Eh+d+dEh+Ai+Aj+Dij+Ci+AEhi+AEhj+DEhij+CEhi

+dAi+dAj+dDij+dCi+dAEhi+dAEhj+dDEhij+dCEhi

+Bl(h)+ehijkl

GspE

k k SAE k k SDE

k k SCEhijk
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x y
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x y
w

xy w hsxyw
x y
w
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when parents carry different alleles. And those of 
F2ij (k=2) selfed from F1ij are

yhij2l=µ+Eh+xiia+xiiaEh+Ai+Aj+0.25Dii+0.25Djj

+0.5Dij+Ci+AEhi+AEhj+0.25DEhii

+0.25DEhjj+0.5DEhij+CEhi

+xii(aAi+aAj+0.25aDii+0.25aDjj+0.5aDij+aCi)
+xii(aAEhi+aAEhj+0.25aDEhii+0.25aDEhjj

+0.5aDEhij+aCEhi)+Bl(h)+ehijkl

when two parents carry the same allele, or

yhij2l=µ+Eh+0.5d+0.5dEh+Ai+Aj+0.25Dii+0.25Djj

+0.5Dij+Ci+AEhi+AEhj+0.25DEhii

+0.25DEhjj+0.5DEhij+CEhi

+0.5(dAi+dAj+0.25dDii+0.25dDjj+0.5dDij+dCi)
+0.5(dAEhi+dAEhj+0.25dDEhii+0.25dDEhjj

+0.5dDEhij+dCEhi)+Bl(h)+ehijkl

when parents carry different alleles.
Owing to some effects (e.g. the dominance effect of

polygenes and its interaction with the single gene) are
confounded, the simulations were based on a reduced
genetic model without interaction effects between the
single gene and polygenes in Experiment I. The parame-

ter setting is shown in Tables 2, 3 and 4. Pseudo-random
normal deviates with zero mean and unit variance were
generated by the method of Kinderman and Monahan
(1977). Henderson III and MINQUE (1) were used to
estimate variance components while GLS and OLS were
used to estimate fixed effects. For each case, 500 simu-
lations were run to obtain sample means of the esti-
mates, bias and Mean Squared Error (MSE).

Simulation results of bias and MSE are summarized
in Table 2 for fixed effects and in Tables 3 and 4 for
variance components. In the absolute value of bias is
less than 5% of the parameter value, the estimate was
regarded as unbiased. The largest absolute value of bias
was 1.89% in Table 2. As indicated, fixed effects could
be unbiasedly estimated by both OLS and GLS. The
MSE of fixed effects, which reflected the variation of
estimates among different simulations, were small
while GLS had a little smaller MSE than OLS. The re-
sults in Table 2 suggested that both estimates of OLS
and GLS are unbiased and efficient for additive and
dominance effects of single genes in both experimental
designs. Although the results of simulations showed
GLS might be a little more efficient, it requires the in-
version of a variance-covariance matrix and involves
heavy computations, especially in cases with a large set
of data. Hence, it is worth employing the OLS method

Table 2 Bias and MSE of fixed
effects estimated by OLS and
GLS for Experiment I and Ex-
periment II

Experiment Parametera True value OLS GLS

Bias MSE Bias MSE

I µ 100 0.153 31.065 −0.161 30.264
a 20 0.260 30.205 −0.021 21.657
d 10 −0.025 10.157 0.171 10.483

II µ 100 −0.110 32.529 −0.277 30.182
a 20 0.214 53.825 −0.109 53.229
d 10 0.189 59.350 −0.030 33.344

a µ, a, and d are mean, additive
effect, and dominance effect,
respectively

Table 3 Bias and MSE of vari-
ance components estimated by
MINQUE (1) and Henderson
III for Experiment I

Parametera True value MINQUE (1) Henderson III

Bias MSE Bias MSE

σE
2 20 0.334 1,701.200 1.466 1,578.670

σA
2 20 −0.079 390.913 1.603 625.033

σD
2 20 0.375 98.583 −0.127 96.426

σC
2 20 0.826 334.383 0.931 262.996

σ2
aE 20 −0.236 873.103 0.257 1,008.170

σ2
dE 20 −0.098 405.255 0.722 444.107

σ2
AE 20 0.268 91.621 0.086 116.689

σ2
DE 20 0.263 27.800 −0.002 23.887

σ2
CE 20 0.486 65.252 −0.718 53.352

σB
2 20 0.066 205.690 0.695 218.977

σe
2 10 0.024 1.109 −0.074 1.192

a Parameter represents variance component which σE
2=environment, σA

2=additive, σD
2=dominance,

σC
2=cytoplasm, σ2

aE=interaction between additive of single gene and environment, σ2
dE=interaction be-

tween dominance of single gene and environment, σ2
AE=interaction between additive of polygenes

and environment, σ2
DE=interaction between dominance of polygenes and environment, σ2

CE=interac-
tion between cytoplasm of polygenes and environment, σB

2=block, and σe
2=residual effect, respec-

tively
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and losing a little precision for the sake of saving the
calculation.

All the bias of estimated variances approached to ze-
ro by using MINQUE (1), while two absolute values of
bias were larger than 5% of the true values by using
Henderson III in Experiment I (Table 3), MSE of 
Henderson III were similar to those of MINQUE (1).
Most of MSE were small enough. But a few MSE, e.g.
of σE

2 s and σ2
aEs, were larger, which might result from

small sample size (only four for the environment) and/or
complication of the genetic model, and might largely re-
duce by augmentation of sample size and simulation
replications. It was suggested that MINQUE (1) is unbi-
ased and efficient for estimating the variance component
and Henderson III is almost as good as MINQUE (1) in
Experiment I.

For Experiment II (Table 4), Henderson III estimation
resulted in several large biases (for σD

2, σ2
dE and σ2

DE) and
inestimatable parameters (of σ2

aD, σ2
dA, σ2

aDE and σ2
dAE),

which were due to completely linear dependency of the
coefficient matrix. Therefore, Henderson III is not robust
and/or is inapplicable with the model being complicated.
But MINQUE (1) could almost hold a similar estimation

precision and efficiency to those in Experiment I. From
the results of simulations, it was suggested that MIN-
QUE (1) was unbiased and efficient in both experiments,
with Henderson III only in Experiment I, for estimating
variance components.

Worked example

The data from Gilbert(1985a) were used to illustrate the
use of a reduced genetic model and corresponding meth-
ods for estimations of fixed effects and variance compo-
nents. There is an allozyme locus, i.e. esterase 6, encod-
ing an enzyme in which different migration rates for al-
leles can be detected by the electrophoretic technique in
D. melanogaster. Putative functions of the esterase 6 en-
zyme include male reproduction and larval nutrition. Six
strains derived from natural population, three of which
were homozygous for Est 6S2 and the others homozygous
for Est 6F2, were used to produce all possible progeny
following a 6×6 complete diallel design. Mating speed,
copulation duration, developmental time, and enzyme
activity were measured. An ANOVA-based analysis was

Table 4 Bias and MSE of vari-
ance components estimated by
MINQUE (1) and Henderson
III for Experiment II

Parametera True value MINQUE (1) Henderson III

Bias MSE Bias MSE

σE
2 20 −0.240 1,557.810 −0.139 1,792.960

σA
2 20 −0.1945 381.380 −1.517 906.664

σD
2 20 0.313 372.160 17.431 1,444.730

σC
2 20 0.393 266.323 0.010 383.117

σaA
2 20 −1.287 565.514 3.253 672.820

σaD
2 20 1.247 1,512.563 −20.000 400.000

σaC
2 20 0.708 442.578 1.828 828.233

σdA
2 20 0.391 1,510.360 −20.000 400.000

σdD
2 20 0.726 720.846 −2.431 738.441

σdC
2 20 −1.393 320.631 −1.327 384.140

σaE
2 20 −0.680 2,324.125 2.010 2,677.280

σdE
2 20 −0.654 1,674.890 10.014 2,852.130

σAE
2 20 −0.455 99.665 −1.035 172.502

σDE
2 20 0.009 91.115 15.002 505.266

σCE
2 20 −0.268 65.682 0.184 80.590

σaAE
2 20 1.291 154.405 5.632 277.192

σaDE
2 20 −1.057 304.670 −20.000 400.000

σaCE
2 20 0.503 135.785 −0.916 257.818

σdAE
2 20 0.732 342.910 −20.000 400.000

σdDE
2 20 −0.297 527.826 0.246 764.977

σdCE
2 20 0.924 165.566 −0.900 255.138

σB
2 20 0.864 202.227 −0.387 206.043

σe
2 10 −0.037 0.528 0.031 0.575

a Parameter represents variance component which σE
2, σA

2, σD
2, σC

2, σaE
2  , σdE

2  , σAE
2  , σDE

2  , σCE
2  , σB

2 and σe
2

are the same as Table 3; σaA
2  =additive-additive epistasis between single gene and polygenes, σ2

aD=ad-
ditive-dominance epistasis, σ2

aC=additive-cytoplasm epistasis, σ2
dA=dominance-additive epistasis be-

tween single gene and polygenes, σ2
dD=dominance-dominance epistasis, σ2

dC=dominance-cytoplasm
epistasis, σ2

aAE=interaction between additive-additive epistasis and environment, σ2
aDE=interaction be-

tween additive-dominance epistasis and environment, σ2
aCE=interaction between additive-cytoplasm

epistasis and environment, σ2
dAE=interaction between dominance-additive epistasis and environment,

σ2
dDE=interaction between dominance-dominance epistasis and environment, σ2

dCE=interaction be-
tween dominance-cytoplasm epistasis and environment, respectively
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conducted by Gilbert (1985a). The data were re-analyzed
by the present methods. Maternal effect was confounded
with cytoplasmic effect and they cannot be distinguished
in Gilbert’s diallel design. Thus, the designation of ma-
ternal effect was here retained, but it was, more perti-
nently, a maternal nuclear effect plus a cytoplasmic ef-
fect. Calculation of these was equivalent to that of cyto-
plasmic effects. The estimates of ANOVA were used to
estimate single gene effects in Gilbert’s paper, but they
are not linear and unbiased. For example, â2=(MS1−
MS2)/2m2, and |â|=√

–––––
MS1−

–––––
MS2)/

––––
2m2. This can be guar-

anteed for E(â2)=a2, but not for E(|â|)=|a|, i.e. an unbi-
ased quadric form cannot guarantee that the first oder
mean is also unbiased. Fixed effects were therefore here
estimated by GLS. As Henderson III is unbiased and ef-
ficient in the case of the reduced genetic model, this
method was employed to estimate variance components.
The results of ANOVA were the same as those of Gilbert
(see Table 5). Estimates of fixed effects and variance
components were presented in Table 6.

Results showed that the additive effect of the esterase
6 locus was significant for mating speed but non-signifi-
cant for the other traits. No significant dominance effect
of the locus was detected on all four traits. Variation
from polygenes among strains could be measured by es-
timates of variance components. Maternal effects were
significant for developmental time and esterase 6 activi-
ty. Variances of additive polygene effects on copulation
duration and esterase 6 activity and of dominant poly-
gene effects on mating time, copulation duration, and de-

velopmental time were larger than zero, but whether sig-
nificant or not could not be determined since the F test
could not be used. An approximate test based on the 
asymptotic normal distribution of estimates showed that
the dominant variance of mating time was significant at
the 0.05 level while additive variance was significant at
the 0.10 level.

Discussion

Both major genes and polygenes are responsible for the
genetic differences in many quantitative traits. In prac-
tice, the exploitation of both major genes and polygenes
was included in some breeding schemes to improve im-
portant traits, e.g. dwarfish plant, disease resistance,
grain quality, etc. The effects of major genes and poly-
genes often follow different genetic models. This is the
basis of not only expounding their gene expressions but
also developing an efficient breeding strategy to correct-
ly dissect genetic effects in terms of different variation
sources. Exact separation of them rests on the applica-
tion of proper analysis methods. It is therefore crucial to
develop methods suited to these tasks. Based on this,
those polygenes with sufficiently small effects in relation
to total variation are numerous enough to warrant the
continuous and normal distribution of the genotypic val-
ues of individuals in the population under study; some
methods were developed for simultaneously estimating
the variation components of both types of genes. If major

Table 5 ANOVA table for mating speed, copulation duration, developmental time, and esterase 6 activity in D. melanogaster

Source df Mating speed Copulation duration Developmental time Esterase 6 activity
(√ min/male) (min/male) (h-200/fly) 10−8M β-

napthol/male

SS MS SS MS SS MS SS MS

Additive locus 1 2.993 2.993 22.222 22.222 0.273 0.273 150.222 150.222
Additive strain 4 0.477 0.119 210.232 52.558 1,725.495 431.374 29,840.92 7,460.231
Dominant locus 1 0.134 0.134 0.238 0.238 129.753 129.753 186.166 186.166
Dominant strain 14 7.42 0.53 50.112 3.579 1,243.865 88.847 12,059.35 861.382
Maternal effect 5 0.322 0.064 4.834 0.967 2,193.671 438.734 30,476.72 6,095.345
Remainder 10 1.318 0.132 18.666 1.867 865.272 86.527 11,250.28 1,125.028

Table 6 Estimates of parame-
ters for mating speed, copula
duration, developmental time,
and esterase 6 activity in D.
melanogaster

Parametera Mating Copulation Developmental Esterase 6
speedb duration time activity

µ 2.77*** 19.11*** 79.43*** 131.06***
a 0.47** −1.20 3.07 −9.43
d −0.19 −0.11 3.81 −4.56
σA 0.000 2.040+ 0.000 11.619
σD 0.480* 1.000 1.162 0.000
σM 0.000 0.000 10.817* 40.743*
σe 0.361 1.367 9.301 33.615

a µ, a, and d are mean, additive effect, and dominance effect, respectively; σA, σD, σM, and σe are
standard deviations of additive effect, dominance effect, maternal effect, and residual effect, respec-
tively
b Level of significance: + P<0.10, * P<0.05, ** P<0.01, *** P<0.001 respectively



genes are identifiable or distinguishable, the ANOVA
methods of Gilbert (1985a, b) and Elkind and Cahaner
(1986), etc., can be used. Whereas, ANOVA requires da-
ta with a balanced structure, it cannot handle genetic de-
signs with irregular missing combinations and compli-
cated genetic models. The mixed linear model approach
applied in the present research is a powerful statistical
tool for tackling those difficult problems since it can al-
most deal with data with an arbitrary structure.

Usually, generalized conclusions need to be drawn on
genetic effects in the reference population studied. Dial-
lel analysis can provide much information about the ge-
netic features and properties of polygenes in parents
from a sampled population. Diallel designs were exten-
sively used in genetics and in breeding for this purpose.
If the sources of polygenes are randomly derived from a
natural population under Hardy-Weinberg equilibrium
and linkage equilibrium, diallel analysis permits a valid
estimation of genetic parameters in that population.
When, however, variation of the metric trait is contribut-
ed both by major genes and by polygenes, traditional di-
allel analysis cannot provide the right and unequivocal
information about their genetic effects. Gilbert (1985a,
b) put forward an enlightened idea to estimate single
gene effects as well as genetic effects of polygenes on
quantitative traits from a diallel design, although some
limitations existed in his method. The present genetic
model and methodology is developed mainly for diallel
designs or modified diallel designs which contain proge-
nies derived from them. Meanwhile, some improvement
have been made on Gilbert’s method, e.g. unbiasedness
for estimates of single gene effects, capability of han-
dling unbalanced data, interaction effects between single
genes and polygenes, and more than one locus, etc.
Moreover, owing to the generality of the mixed linear
model approach and flexibility of the genetic model, this
new methodology can be directly applied to, or easily
extended to, genetic entries other than those of the diallel
mating design. By making some changes it can also be
applied to the genetic analysis of other genetic materials,
e.g. RIL populations, DH populations, and progeny fam-
ilies derived from a cross between two parents.

Some widely used methods, e.g. the isogenic-lines
method and the diallel method, obtain estimates of the
genetic effects of major genes and polygenes without
considering the interaction between such genes. Thus,
reliability of those conclusions lies on the nonexistence
of the interaction. Since evidence of such an interaction
has been reported (Elkind and Cahaner 1986; Jiang et al.
1994; Jiang and Liu 1995; Jiang et al. 1995), an appro-
priate method is needed to check wheter the interaction
exists or not. The interaction effects can be analyzed if
F2, BC, and/or other subsequent generations, are added
into genetic mating designs. When an experiment in-
cludes only parents and F1, the method of estimating in-
teraction effects is to add some lines into a mating
scheme derived from the same ancestry or a shared com-
mon source of polygenes by descent, e.g. isogenic lines.
On the other hand, no interactions between single genes
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and between polygenes are taken into account in the
present research. When these really exist, the genetic
model can readily be extended following Cockerham’s
(1980) approaches for polygenic effects and directly us-
ing the aggregate genotypic effects attributable to several
given loci, or fitting digenic and/or higher-order epistasis
terms to the model for single gene effects.

The interest of the present research focused on the esti-
mation of single gene effects and the variances of poly-
genes when single genes can be scored or inferred from a
pedigree. If major-gene genotypes cannot be known, the
ML method based on mixture distribution can be used to
identify the genetic model and to estimate parameters
(Jiang et al. 1994; Jiang and Mo 1995; Jiang and Liu
1995; Jiang et al. 1995; Wang and Gai 1997; Gai and
Wang 1998). However, those methods are only applicable
to the case in which the observation is a mixture of finite
component distributions such that yi~MVN(1µi, σi

2I), but
are not applicable to the more general situation in which
yi~MVN(Xibi, Vi). Therefore, the estimation of interaction
effects between major genes and polygenes and between
polygenes and environment is an intractable problem.
Some researchers (Jiang et al. 1995) declared that the in-
equality of variances of polygenes with different major-
gene genotypes in the same families indicated the exis-
tence of interaction between major genes and polygenes.
But attention must be paid to the fact that equality of those
variances may not be due to the absence of interaction, just
like the case illustrated in Fig. 2B in Elkind and Cahaner’s
paper (1986). Appropriate analysis methods can thus be
developed through using mixed linear-model approaches.
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