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ABSTRACT  

Motivation: Mapping the antigenic and genetic evolution pathways of 

influenza A is of critical importance in the vaccine development and 

drug design of influenza virus. In this paper, we have analyzed more 

than 4,000 A/H3N2 hemagglutinin (HA) sequences from 1968 to 2008 

to model the evolutionary path of the influenza virus, which allows us to 

predict its future potential drifts with specific mutations.  

Results: The mutual information (MI) method was used to design a site 

transition network (STN) for each amino acid site in the A/H3N2 

hemagglutinin sequence. The STN network indicates that most of the 

dynamic interactions are positioned around the epitopes and the RBD 

regions, with strong preferences in both the mutation sites and amino 

acid types being mutated to. The network also shows that antigenic 

changes accumulate over time, with occasional large changes due to 

multiple co-occurring mutations at antigenic sites. Furthermore, the 

cluster analysis by subdividing the STN into several subnetworks 

reveals a more detailed view about the features of the antigenic change: 

The characteristic inner sites and the connecting inter-subnetwork sites 

are both responsible for the drifts. A novel 5-step prediction algorithm 

based on the STN shows a reasonable accuracy in reproducing historical 

HA mutations. For example, our method can reproduce the 2003-2004 

A/H3N2 mutations with ~70% accuracy. The method also predicts seven 

possible mutations for the next antigenic drift in the coming 2009-2010 

season. The site transition network approach also agrees well with the 

phylogenetic tree and antigenic maps based on HA inhibition assays. 

Availability: All code and data are available at 

http://ibi.zju.edu.cn/birdflu/ 

Contact: ruhongz@us.ibm.com 

Supplementary Information: http://ibi.zju.edu.cn/birdflu/ 
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1 INTRODUCTION  

With a wide geographic distribution and a rapid evolution rate, 

the influenza virus is one of the most emergent and fatal 

diseases of human and poultry. It causes an estimated 500,000 

deaths worldwide in humans and tens of millions in avians 

every year (Cox and Subbarao, 2000; Hilleman, 2002; Horimoto 

and Kawaoka, 2005). The main influenza antigens targeted by 

our immune system are the viral surface glycoproteins, 

hemagglutinin (HA) and neuraminidase (NA) (Horimoto and 
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Kawaoka, 2005). Based on the antigenic distinctions of the HA 

and NA proteins, the influenza A viruses have been subdivided 

into 16 HA and 9 NA subtypes, respectively (Fouchier, et al., 

2005; Webster, et al., 1992). The HA1 domain of the HA is the 

primary protein component of vaccines to provide protective 

immunity to influenza A virus infection. The accumulated 

substitutions at the antibody sites of HA1, called antigenic drifts, 

are the main factors causing the influenza virus to escape human 

immunity in A/H3N2 and other subtypes (Webster, et al., 1982). 

Therefore, a number of approaches have been applied to 

understand the antigenic evolution of HA (Huelsenbeck and 

Dyer, 2004; Nielsen and Yang, 1998; Suzuki, 2004; Yang, et al., 

2000; Yang and Swanson, 2002; Zhou, et al., 2008). These 

methods effectively identified several single mutation sites that 

are under the pressure of positive selection (also known as 

Darwinian selection, a process by which new advantageous 

genetic variants sweep a population) (Bush, et al., 1999; Fitch, 

et al., 1997; Plotkin and Dushoff, 2003; Suzuki and Gojobori, 

1999; Zhou, et al., 2008). Recently, in a pioneering work by 

Smith et al. the antigenic evolution of HA1 (A/H3N2) has been 

mapped using the hemagglutination inhibition (HI) assays, 

which provides a direct link between a viral genotype and an 

inferred phenotype (Smith, et al., 2004). Later studies suggest 

that multiple mutations at antigenic sites cumulatively enhance 

the antigenic drift of influenza virus A/H3N2 (Du, et al., 2008; 

Shih, et al., 2007). By analyzing 2,248 A/H3N2 HA1 amino 

acid sequences, Shih et al. found that positive selections are 

ongoing most of the time (i.e., not sporadic), and multiple 

mutations at antigenic sites cumulatively enhance antigenic drift 

(Shih, et al., 2007). Similarly, by examining the nucleotides over 

the entire genome of human A/H3N2 viruses, Du et al. have 

shown that the co-occurring nucleotide modules apparently 

underpin the dynamics of human A/H3N2 evolution (Du, et al., 

2008). These studies show that antigenic drift might be 

enhanced by simultaneous multi-site mutations in addition to the 

accumulation of single site mutations (Shih, et al., 2007). Given 

that the influenza A virus is under rapid mutations, with 

substitution rates estimated to be 5.7×10-3 substitutions per site 

per year for HA1 domain (Chen and Holmes, 2006), it is 

non-trivial to predict future mutations and make an efficient 

influenza vaccine before a potential variant causes epidemics or 

even pandemics. To make the situation worse, the evolutionary 

dynamics of influenza A virus can be shaped by a complex 

interplay between the aforementioned rapid mutations, frequent 
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reassortments, widespread gene flows, natural selections, 

functional interactions among gene segments, and global 

epidemiological dynamics. In particular, the frequent 

reassortments can cause sporadic jumps in antigenic space (or 

antigenic shifts) (Holmes, et al., 2005; Nelson, et al., 2006; 

Rambaut, et al., 2008). Whether new vaccines could 

effectively fight against future strains of influenza A virus still 

remains a great worldwide concern. Therefore, a better 

understanding of the evolutional direction of the influenza 

virus is critical for subsequent development of effective 

vaccines against future strains (Bush, et al., 1999; Koelle, et 

al., 2006; van Nimwegen, 2006). In this paper, we focus on 

antigenic drifts due to rapid mutations in order to understand 

the interplay between various mutations and propose a 

predictive model to describe the evolution trajectory based on 

available HA amino acid sequences (for analysis on the 

genome-wide reassortments, see excellent studies by Holmes 

and coworkers (Holmes, et al., 2005; Nelson, et al., 2006; 

Rambaut, et al., 2008)). Because of the large amount of 

available sequences and longer history of A/H3N2, the 

A/H3N2 subtype was chosen for this study instead of the 

more recent and fatal A/H5N1. However, the methodology 

developed here should be equally applicable to A/H5N1, once 

more sequence data becomes available. The varieties and time 

sequences of mutations (site substitutions) in HA were 

analyzed, especially for the sites of HA1. The mutual 

information (MI) method was used to calculate the MI score, 

or correlation, between any two residue sites, thus generating 

a MI matrix for all pairs of sites. Then a site-site transitional 

relevance network, named the Site Transition Network (STN), 

was built based on the time sequenced MI matrices (Butte and 

Kohane, 2000; Butte, et al., 2000; Margolin, et al., 2006). The 

STN network maps the genetic evolution history of the virus, 

which reveals the underlying mechanism of antigenic drifts. 

We then applied the clustering analysis to subdivide the MI 

matrix into clusters, which shows various groups of sites with 

highly correlated and co-occurring mutations. These clusters 

also reveal the hidden secrets of the antigenic changes – both 

characteristic inner sites (sites within a cluster or subnetwork) 

and connecting inter-cluster (or inter-subnetwork) sites are 

responsible for the antigenic drifts. These results suggest that 

the influenza A/H3N2 evolution is often enhanced by 

simultaneous multi-site co-mutations. Finally, we developed a 

5-step prediction algorithm to forecast the potential future 

A/H3N2 mutations in 2009~2010 season. Our current 

prediction strategy might shed light in identifying the trends 

in the HA sequence evolution, and provide guidelines for 

future vaccine development.   

2 METHODS AND MATERIALS  

2.1 Network inference algorithm: MI 

We used Mutual Information (MI) method to calculate the correlation 

(or a measure for co-mutation) between any two residue sites (Butte 

and Kohane, 2000; Butte, et al., 2000; Faith, et al., 2007; Margolin, et 

al., 2006). Mutual Information value for a pair of discrete variables, x 

and y (mutation of sites), can be defined as:  

 

I(x, y) = S(x) + S(y) - S(x,y)     (1) 

 

where S(t) is the entropy of an arbitrary variable t. Entropy for a 

discrete variable is defined as the average of the log probability of its 

states: 

( ) log ( ) ( ) log ( )
i i i

i

s t p t p t p t= −〈 〉 = −∑  (2) 

where ( )
i

p t  is the probability associated with each discrete state. 

In this case, it is the probability for each residue site to have a 

mutation at a particular year. We can compute the MI value for each 

pair of amino acid sites, and thus obtain a MI matrix for HA1 at any 

given year (see below). The evolution of this MI matrix forms the 

evolution network. For statistical significance, we also compute the P 

values using Monte Carlo simulations with one million iterations by 

defining a null-hypothesis model, in which each pair of existing sites 

is randomly shuffled. 

2.2 Data collection and preparation 

All sequences of the HA1 of A/H3N2 were downloaded from NCB I's 

Influenza Virus Resource up to November 1, 2008 (Bao Y., 2008). 

Sequences without the record of the year and sequences with a length 

less than the full length of HA1 (312 residues) were removed. A total 

of 4,064 sequences were obtained after the above cleaning. Then, all 

these sequences were aligned by the Muscle program (Edgar, 2004). A 

small number of sequences are a few residues longer than the 

conventional length, and these insertions after alignment are removed 

to be consistent with other sequences and previous literature (with the 

remaining residues mapped back to the original 312-residue 

numbering). 

 

All the remaining sequences from the above procedure were divided 

into 41 bins, with each bin representing sequences from a particular 

year (41 years for sequences from 1968 to 2008). Considering the 

large imbalance in the sequence numbers for each year (fewer 

sequences in earlier years and more sequences in recent years), a 

sampling with replacement method was used to avoid the 

overwhelming weight from those recent high-yield years. Ten 

sequences from each year were randomly selected to form one input 

sequence sample in each calculation. A total of 2,000 different 

samples were chosen to ensure that enough statistics were obtained. 

The output MI matrices from these samples are then averaged 

(arithmetic average) and normalized (with mean 0 and standard 

deviation of 1) to generate the final “MI Matrix”.  

2.3 Predicting future site mutations 

With the above mutual information matrix (MI Matrix) we can design 

a predictive model to identify potential mutations in upcoming 

seasons, which is based on the fact that there is a strong preference in 

both the mutation sites and amino acid types being mutated to (more 

below). A total of five steps are involved in this site mutation 

prediction. A general example is provided in Section 3.4.1 to illustrate 

each step in more detail. Before we start, we first define the year that 

we want to predict as the “Target Year” N, and the years N-1 and N-2 

as “Induction Years”.  

 

The following are the steps involved. Step 1: Calculate all sites that 

are under positive selection in HA1 before year N. Here, the “positive 

selection site” is defined as a site that has been mutated between 

successive years and then remains fixed in the population for at least 

1 year, similar to the definition used by Shih et al.’s (Shih, et al., 

2007).  Step 2: Find the sites that just mutated in any of the 

“Induction Years” and also belonged to the positive selection sites. 

Such sites are considered as the initial state of the present network. 

Step 3: Use all of the available sequences before year “N” as data 

source to construct the sequence input sample file described above, 

and calculate the MI matrix. Step 4: Since the MI matrix quantifies 

the interaction between any two sites by a mutual information score, 

for each site X in HA1, we sum up the scores between the site X and 

all those sites found in Step 2 (i.e., newly mutated positive selection 

sites in Induction Years). The sites with high MI scores are chosen as 
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predicted sites. Step 5: Find the most probable amino acid type for 

each predicted mutation site from Step 4 by searching the historical 

amino acid type database for each site. Historical data suggest that 

there is a strong preference for each residue site to have some specific 

amino acid types (see Results section below). We therefore use the 

most probable amino acid type other than the current one as the final 

mutated type. The time evolution of this “mutation or co-mutation 

trajectory” from the dynamic MI matrices is called the 

Site-Transition-Network (STN) in the following (see Figure 1 for one 

example). 

3 RESULTS AND DISCUSSION 

3.1 Site Transition Network for Influenza 

A/H3N2 HA1  

We calculated the two dimensional MI Matrix for each year 

using the above procedure and the time sequence of this MI 

Matrix forms the Site Transition Network (STN). Before 

showing a full scale 312-sites STN (which seems not 

necessary, more below), we identified the positive selection 

sites first. A total of 63 positive selection sites, as defined in 

the Methods section, are found from 1968 to 2008, consistent 

with previous results obtained by Shih et al. using a somewhat 

smaller data set (about half the size of ours) (Shih, et al., 

2007). Most of these positive selection sites are within the 

RBD (receptor binding domain) and other antigenic regions 

(more later), which are responsible for the most antigenic 

transitions in the evolution history o f A/H3N2 (Shih, et al., 

2007). The other sites are mostly the conserved sites, which 

host the basic skeleton structure of HA1 but have little effect 

on the antigenic transitions. They have no or little mutual 

information (interaction) with other sites (i.e., isolated nodes 

in MI Matrix or STN if plotted). Therefore, in the following 

we only show a smaller, 63-site (positive selection sites only) 

MI matrix or STN network for simplicity, unless otherwise 

explicitly stated. Figure 1 shows one such Site Transition 

Network. Each node represents a mutation site, and each 

branch represents the interaction between a pair of mutation 

sites if its normalized MI score is larger than 0.5 (this 

threshold is arbitrary, it is chosen to avoid too man y branches 

in the graph for clarity. An y nodes with no branches are 

removed fro m the graph). As shown in Figure 1, the network 

displays a clear trajectory on how the various HA1 sites shape 

the antigenic transition during the influenza evolution history. 

It should be noted that the MI Matrix is b y itself 

2-dimensional (2-D), therefore, with the inclusion of time 

series the STN becomes a 3-dimensional (3-D) plot if all 

information to be shown. In order to show key features of the 

HA1 evolution clearly, we have plotted a 2-D STN with 

“inter-linked” MI Matrices in Figure 1 (i.e., for positive 

selection sites in any given year, link to sites from previous 

years whenever possible), which covers all important 

antigenic transition periods. Therefore, some sites might occur 

more than once in Figure 1 (e.g. sites 2, 50, etc). The clusters 

of sites with the same or similar colors represent that they 

were substituted in relatively close years, and have more 

interactions and closer relationships than other sites.  

 

To evaluate the effectiveness of the network, we compared it 

with the phylogenetic tree (PT) of the HA1 sequences 

calculated by the program MEGA4 (Tamura, et al., 2007). 

Figure 2 shows the phylogenetic tree of the A/H3N2 HA1. We 

found a rough match on the influenza evolutional history 

between the STN network and the phylogenetic tree. When 

compared both under the time evolution, the STN network can 

identify, most of the time, the specific sites among the 

neighboring groups in the phylogenetic tree. In addition, the 

connections between two antigenic groups in the STN 

network can also explain the overlaps in years between 

neighboring groups in the phylogenetic tree (represented by 

different color in Figure 2). Larger genetic distance in 

phylogenetic tree usually indicates a larger difference in 

antigenic space. For example, the larger genetic distance in 

the phylogenetic tree between 93-95 and 95-97 groups 

(genetic distance 0.009, colored grass green in Figure 2) are 

consistent with many substitutions at sites 135, 145, 226, 262, 

172, 197 and 278 in our STN network (shown in a broader 

color range in Figure 1 near BE92 to WU95 antigenic change 

and also shown in Table 1). In addition, the genetic distance 

(0.0019) between 97-99 and 99-00 groups is found to be 

smaller than the distance (0.012) between 00-02 and 02-03 

groups, which is also consistent with substitutions found at 

sites of 202 and 225 for 99-00 and sites 25, 57, 186 and 189 

for 02-03 in our STN network (near SY97-FU02 antigenic 

transition in Figure 1). However, not all the cases are closely 

mapped between the phylogenetic tree and the STN network. 

For example, the EN72-VI75-TX77 successive antigenic 

transitions show different behaviors: in the phylogenetic tree: 

The TX77 strain came directly from EN72 but not VI75, 

while STN network indicates that the TX77 strain came from 

both EN72 (indicated by substitutions of sites 53, 137, 188 ) 

and TX77 (indicated by substitutions of sites 63, 83, 145, 

189). 

 

We also compared the STN network with the “antigenic 

maps” from Smith and coworkers in a recent study (Smith, et 

al., 2004). The “antigenic map” utilizes the serum HI 

(hemagglutination inhibition) assays to measure the 

cross-immunity “distance” between each strain of the 

influenza to every other strain in an “antigenic space” plot. 

The distance between any two viral strains represents the 

cross-immunity diversity of corresponding strains. We found 

that both the STN network and the antigenic map indicate 

many similar characteristic features. For example, the site 

mutations 122, 144, 155, 188, and 207 from the antigenic map 

responsible for the HK68-EN72 antigenic transition showed 

the propinquity in the STN network. However, the site 

transition network shows more connections among different 

“simultaneous mutation” groups than the antigenic map. It 

seems that the antigenic drift in A/H3N2 occurs more 

smoothly at sequence level, indicating that the mutation on 

antigenic site of HA happens all the time and some positive 

substitutions might result in a partial structural change in the 

antigenic regions. Simultaneous occurrence of several such 

substitutions and structural changes in a specific group of 

these sites may gain enough power to induce an antigenic 

change that cumulatively enhances the antigenic drift.  

3.2 Cluster analysis revealing co-evolving sites 

responsible for antigenic drift 

To further understand the site transition network and the 

relationship among multiple co-mutating sites, we performed 

a cluster analysis on the reduced MI Matrix consisting of 63 

positive selection sites obtained from all sequence data up to 

Page 3 of 13 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2008. The hierarchical cluster analysis method was used to 

clu ste r th e site s o f H A1 , with p ro gra m d Ch ip o rigin all y 

designed for DNA microchip array analysis (Li and Wong, 

2 0 0 3 ) ( h t t p : / / w w w. b i o s t a t . h a r v a r d . e d u / c o m p l a b / d c h i p /

Fig. 1: The site transition network (STN) from year 1968 to 2008. A total of 63 positive selection sites out of 312 were found, which were then chosen 

to plot the network (other sites were omitted since they are mostly conserved with little interactions with other nodes and will be seen as isolated nodes 

in the network if plotted). Each node represents a site with its residue number marked on top, and each branch represents the interaction between a pair 

of mutation sites if its normalized MI score (normalized with a mean 0 and standard deviation of 1) in Step 4 is larger than 0.5 (see text for more 

details). Sites substituted in relatively close years were drawn in the proximate color. The nodes with same color mean that they might mutate 

simultaneously to induce an antigenic change.

Table 1: Amino acid sites responsible for co-occurring mutations. A 

total of 5 clusters were obtained from the cluster analysis, with each 

cluster representing roughly one or several antigenic transitions. The 

sites shown in red color in column 2 and 3 are the identical sites 

obtained form both the real historical data and our clustering analysis 

(and the ones in gray are missed one).  

Antigenic 

Changes 

Observed Mutant Sites in 

HA1 During the 

Antigenic Transitions 

Sites in different Groups 

in Cluster Analysis 

HK6 8 -EN 72 
78 122 188 207 

242 144 155 275 

78 122 188 

207 242 276 

EN72 -VI 75  
53 137 213 145 

189 217 278 

VI 7 5 -TX 77 
2 137 213 260 

50 82 158 193 

2 53 137 213 

260 244 50 

TX 7 7 - B K79 
54 133 143 156 160 172 

197 217 53 146 162 244 

54 133 143 156 160 172 

197 217 121 

B K7 9 -SI 87  124 155 189 

SI 8 7 -B E89 145 

B E8 9 -B E92 
145 157 189 

190 276 156 

B E92 -WU95 
135 145 226 262 

172 197 278 

WU9 5 -SY97 276 196 226 62 156 158 

124 135 145 157 189  

190 196 226 262 276 

SY9 7 -F U02 

25 57 75 83 131 142 144 

155 186 222 225 227 50 

156 159 189 202 

25 57 75 83 131 142 144 

155 186 222 225 227 63 

82 94 126 192 202 299 

Fig. 2: Phylogenetic tree of the HA1 sequences. The size of 

the square is arbitrary, and is color-coded according to 

season and tree topology. Multiple trees were built using 

neighbor-joining (NJ) algorithm and with program MEGA 

version 4 (Tamura, Dudley, Nei, and Kumar 2007). 
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Fig. 3: A/H3N2 site clusters based on agglomerative hierarchical cluster analysis. The numbers in the axes represent amino acid sites of the HA1.  
The red color indicates the MI score above the mean and the green color below the mean. The red clusters represent the multiple co-occurring or 

co-evolving residue sites. This figure also shows that there are two different types of sites involved in antigenic transitions, characteristic sites and 

connection sites (see text for more details).

/clustering.htm).  Here, each site mimics a “gene”, and each 

row of the normalized MI scores with other sites represents 

the “gene expression data” (i.e., the feature vector). The idea 

behind this is that if any two sites i and j (in addition to their 

own MI score which is analyzed in above STN in Figure 1) 

have high MI scores with some other common site k or sites 

{k1, k2, k3,…}, they will show high correlations and thus be 

clustered together with those common sites. These clustered 

or grouped sites represent the highly-correlated co-occurring 

mutations in HA1. Thus, this provides another angle to 

examine the simultaneous multi-site mutations in antigenic 

drifts. The “distance” (similarity metric) between any two 

sites i and j is defined as (1-r), with r the P earson correlation 

coefficient between the ith and jth feature vectors (array of MI 

scores). The “centroid-linkage” (distance between the 

centroids of two clusters) is used for cluster merging when 

combining rows and columns (Li and Wong, 2003). Figure 3 

shows the final clusters for the HA1 sites. Each cluster 

represents a co-occurring or co-evolving substitution group, 

and such co-occurring mutations are believed to be the trigger 

that leads to one specific antigenic change. The antigenic 

maps (Smith, et al., 2004) also classify the strains of influenza 

A/H3N2 into several clusters to indicate the corresponding 

relationship among the strains between different time periods. 

Interestingly, our clusters also revealed similar antigenic drifts 

in the A/H3N2 evolutional history. For example, the mutations 

of sites 122, 207 and 188 in HA1 responsible for the 

HK68-EN72 antigenic drift were clustered together. Moreover, 

the sites 172, 217, 197, 143, 54, 160, 156, 133 were also 

clustered together that caused the TX77-BK79 drift. At the 

same time, we found one cluster (including site 124, 196, 190, 

262, 145, 189, 276 colored in orange in Table 1) comprising 5 

antigenic transitions from BK79 to SY97. For example, site 

145 mutated 4 times during BK79 to SY97 (BK79-SI87, 

BE89-BE92, BE92-WU95 and WU95-SY97). Site 124 

mutated 3 times and site 189, 262, 276 mutated twice. The 

high frequencies of mutations in these sites show strong 

connections (interactions) among related antigenic groups. 

More results are shown in Table 1.  These cluster analyses 

suggest that, even without the expensive serum HI assays for 

corresponding strains, the sequence data alone can also 

uncover most of the antigenic drifts and evolutionary 
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characteristics of influenza A/H3N2. These findings imply 

that a cluster of co-evolving sites on HA1 might have caused 

the protein surface to have large enough structural changes at 

antigenic sites that can induce the antigenic drift to a new 

strain and thus the escape of immunity.  

 

Furthermore, these sites can be classified into two types 

through the cluster analysis: one type for sites that mostly 

connect with other sites in the same cluster (the “inner cluster 

sites”, or “characteristic sites”), and the other type for sites 

that have less connections with the inner cluster but more 

connections with neighboring clusters (named as “connection 

sites”). One natural question becomes “Which type of sites, if 

exists, is more important for triggering an antigenic change?” 

Since the “connection sites” have more interactions with other 

clusters, it seems logical that such sites might first induce the 

influenza escaping of the immunity, and then the 

“characteristic sites” help settle down the escape activity in a 

new antigenic strain. However, after careful examination of 

the entire network of HA sites, we found that the problem is 

much more complicated, and it is hard to draw an 

unambiguous conclusion to the above hypothesis. There are 

evidences showing that both the “characteristic sites” and 

“connection sites” can maintain a very low mutation 

frequency before they become fixed in one antigenic group. 

Sometimes, the “connection sites” and “characteristic sites” 

played a similar role in an antigenic transition event. For 

example, in the antigenic change of BK79 to SI87, the 

mutations of “connection sites” T155H and Q189R first 

appeared in year 1968 and kept in a low frequency and never 

fixed until the “characteristic site” mutation G124D happened 

around 1984. However, in the antigenic change of BE89 to 

BE92, “characteristic site” mutations (S133D, E156K and 

E190D) first appeared in 1968. In addition, another group of 

“characteristic site” mutations (K145N and T262N) appeared 

in 1975. All of these 5 “characteristic sites” (133, 156, 190, 

145, 262) remained in low mutation frequency during the 

period before “connection sites” mutated (S157L, R189S and 

T272N) in 1989. After that, a new antigenic change of BE89 

to BE92 happened. These studies indicate that both the 

mutations of connection sites and characteristic sites are 

determining factors for influenza A to transfer form one 

antigenic cluster to another, which help A/H3N2 to 

consistently escape immunity and vaccine. 

3.3 Strong selection pressures on certain sites 

Similarly, a strong preference in mutation sites can be found 

by calculating the level of conservation (the mutation 

frequency) for each site of HA1. We used program Consurf 

(Glaser, et al., 2003; Landau, et al., 2005) to map the residue 

conservation levels on HA 3D X-ray crystal structure (PDB 

ID: 2HMG ) (Weis, et al., 1990). The conservation scores 

calculated from the 4,064 HA1 sequences are mapped onto 

the HA1 structure, as shown in Figure 4, with most variable 

residues colored in cyan and most conserved residues colored 

in magenta. These results indicate that the HA1 mutations 

have a strong preference for the positive selection sites. As 

shown in the figure, sites with high mutation rates are 

concentrated in RBD and five known antigenic regions (A, B, 

C, D and E) on the HA1 protein surface. On the contrary, the 

inner protein residues are mostly well conserved. This finding 

indicates that HA is holding its basic skeleton as an “anchor” 

to maintain its overall structure, while generating rapid 

mutations in RBD and antigenic regions (both characteristic 

and connection sites) to drive the influenza to adapt new hosts 

and vaccines. These findings are consistent with the X-ray 

crystal structures of hemagglutinin, where RBD and epitope 

regions show larger B-factors while most of the inner residues 

show very rigid structures (Gamblin, et al., 2004; Ha, et al., 

2003; Stevens, et al., 2006). 

 

Further analysis showed that HA1 also has preferences for 

particular amino acid types in addition to the positions. We 

found that a particular site almost always wants to mutate to 

some specific amino acid types. A detailed analysis of all 312 

sites’ amino acid (AA) types revealed that the average number 

of amino acid types is only ~2.36 AA/site (ranging from 1 to 8 

AA/site). Therefore, the average probability for a site to 

mutate to a new amino acid that did not appear in the history 

is quite low. For instance, in year 2005 and 2006, the 

p r o b a b i l i t y  i s  o n l y  ~ 0 . 2 4 8 %  a n d 

Fig. 4: Identification of the conserved and variable regions on HA1 

protein surface, by mapping the conservation score calculated from 

the 4,064 A/H3N2 HA1 sequences onto the HA1 structure (Glaser, et 

al., 2003; Landau, et al., 2005). The level of amino acid site’s 

conservation is represented with score 1 to 9, and colored from cyan 

(most variable) to magenta (most conserved). This figure shows that 

most of the mutations happen in the RBD and antigenic regions on the 

protein surface, while the main “skeleton” structure underneath the 

protein surface is largely unaltered. These results were calculated with 

The ConSurf Web Server (http://consurf.tau.ac.il/index.html) and 

rendered by PyMol (DeLano, 2008). 
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~0.08%, respectively. This result suggests that the mutation in 

HA1 has preference in the selection of amino acid types – 

sites prefer to choose the amino acids that have already 

appeared in the history (i.e., those can survive the natural 

selection). In addition, the selection trend for each specific 

site from 1968 to 2008 was calculated. We subdivided the 20 

amino acids into 3 subclasses. Class 1 are non-polar residues 

(including A, F, G, I, L, M, P, V, W), Class 2 are polar residues 

(including C, N, Q, S, T, Y, H), and Class 3 are charged 

residues (D, E, K, R). The trend results indicate that in general 

HA1 sites have a mild tendency in substituting within the 

same amino acid subclass, which means the mutations have a 

greater chance to stay within the same class of residues to 

keep their structural and functional characteristics at that  

specific position (Weis, et al., 1988). Of course, there are 

exceptions -- some mutations occurred from one residue 

subclass to another, like sites 133, 135, 137, 155, 225 and 227 

in the RBD region (at least substituted once from one residue 

subclass to another). It is interesting to note that, in some 

extreme cases, such cross-class mutations can cause critical 

conformational changes that can induce the switch of 

influenza virus binding specificity. For example, in the recent 

A/H5N1 strains, Wilson’s group has shown that the Q226L & 

G228S double mutation in H5N1 (A/Vietnam/1203/2004) 

could cause the virus stride over the barrier between avian and 

human (Stevens, et al., 2006). In other words, these two 

cross-class mutations might change the binding specificity 

from avian (α2,3-linkage sialic acids) to human (α2,6-linkage 

sialic acids). Similarly, Zhou and coworkers predicted another 

double mutation, V135S & A138S (also cross-class) to be 

candidates for such a binding specificity switch from avian to 

human (Das, et al., 2009). Furthermore, we found that more 

than 99.2% sequences of A/H3N2 selected residue Ser in 

position 228 (while 99.9% sequences of A/H5N1 chose 

residue Gly in position 228 up to now). This result indicates 

that site 228 has very strong preference to choose Ser as its 

fixed site to preserve the binding specificity of A/H3N2. The 

historical strong preference for mutation site positions as well 

as amino acid types makes it possible for us to predict the 

HA1 mutations. 

 

3.4 Network guided prediction o f the A/H3N2 

evolution 

The Site Transition Network, as shown in Figure 1, shows that 

the antigenic drifts can be enhanced by cumulative multi-site 

co-occurring substitutions at the epitope regions of HA protein 

surface. The co-evolutional mutations give us an opportunity 

to use present network to predict the future mutations, which 

might induce the next antigenic change to a new strain. As 

shown above, when the new mutations are generated, their 

site positions and amino acid types are not random but have 

several strong preferences. These preferences are deducted 

from the statistical analysis of the historical sequence data 

from 1968 to 2008. Obviously, the more abundant the 

sequence data (and longer history) is, the higher the prediction 

accuracy is. In this section, we first validate the prediction 

method by using previous years’ data, such as the year 

2003-2004, as an example, and then predict the possible 

mutations in the upcoming season of 2009-2010. 

3.4.1 Validation with the known historical mutation 

data 

A validation test was done to evaluate our 5-step predictive 

method based on the STN. Since extensive studies have been 

done with the FU02 antigenic change, we chose the 

2003-2004 season as an example to illustrate our method 

using sequence data from 1968 to 2002. Following the steps 

detailed in Section 2.3, we first identified 63 positive selection 

sites in HA1 from 1968 to 2002. All of these positive selection 

sites are on the protein surface of HA1, with most of them 

from antigenic epitopes (57 of 63). Then, we determined all 

the new mutation sites that appeared in Induction Years 

2001~2002. We found 18 positive selection sites mutated in 

these two years 2001~2002 (Step 2). These sites were residues 

57, 62, 121, 124, 133, 137, 142, 156, 158, 172, 190, 192, 193, 

196, 197, 226, 262 and 276. Then a new MI matrix was 

constructed using all sequence data from 1968 to 2002 by MI 

Table 2A: The prediction results of the year 2003-2004 season for the validation of the method based on the site transition network. Compared to the 

real sequence data from 2003-2004, 7 out of 11 sites were successfully predicted. 

Table 2B: The statistical results for the site mutation predictions from 1999 to 2008. The accuracy rate in line 2 is the number of successful predicted 

sites vs. the number of truly mutated sites. The mark “N/A” in year 06-07 is due the zero sites fixed in that year.  

Year 99-00 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 Average 

Accuracy rate: 4/7 3/7 7/9 8/9 5/6 7/10 3/4 N/A 2/3 39/55 

Accuracy 

Percentage 

57.1% 42.9% 77.8% 88.9% 83.3% 70.0% 75.0% N/A 66.7% 70.9%±

13.8% 

 

method in Step 3. For each site in HA1 (Step 4), a sum score 

is obtained by adding the MI scores of this site with all the 

other 18 sites identified in Step 2. We found 14 sites (2, 50, 54, 

75, 78, 94, 131, 135, 155, 156, 157, 202, 213 and 222) with 

the MI score above the threshold, i.e., at least one interaction 

link in the network. These sites were thus chosen as the 

candidates for possible mutation sites in year 2003-2004. 

Sites mutation in 2003-2004 R50G H75Q E83K A131T V144N H155T Q156H S186G V202I W222R G225D 

Sites predicted successfully √√√√ √√√√  √√√√  √√√√ √√√√  √√√√ √√√√  
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Finally, in Step 5, we assigned each predicted site the most 

probable amino acid type according to their historical 

frequency. In reality, a total of 10 mutations occurred in 

2003-2004, and 7 of these 10 mutations (mutation R50G, 

H75Q, A131T, H155T, Q156H, V202I and W222R) are 

included in our prediction. This means that our STN based 

method has a ~70% agreement rate in the prediction 

(sensitivity=0.70, positive predictive value PPV=0.50). 

Detailed results are summarized in Table 2A.  

 

For further validation, we also performed predictions for the 

site mutations in every year from 1999 to 2008 (see Table 2B). 

We found the accuracy of predicted results was fairly stable, 

around 70%, which means that the network guided method is 

a fairly reliable tool to predict the antigenic drifts due to rapid 

mutations. In some cases, a higher accuracy was obtained, for 

example, ~89% for the 2002~2003 season. Table 2B 

summarizes the statistical results (sensitivity=0.71± 0.14, 

PPV=0.65±0.12).  

 

It should be noted that in the above approach, the sites in the 

Induction Years are not repeated/included in the next season’s 

predictions, only those new sites generated from STN are 

included (i.e., those with high mutual information scores with 

the positive selection sites in Induction Years). The underlying 

assumption for this approach is the following: All of the 

positive selection sites did not mutate twice within the two 

year time window. In fact, new strains from antigenic drifts 

almost never happened in less than two years period so far. If 

one site mutates twice within two years, it means that the site 

can not fix (“site fixation”) during that time period. None of 

the 63 positive selection sites have mutated twice within the 

two year time window in the past. 

3.4.2 Identifying possible mutations which might 

become dominant in year 2009-2010  

Following same procedure for the above validation 

predictions, we used all the sequence data available up to 

2008 to predict the mutations in year 2009-2010. Similarly, in 

the “Induction Years,” four site mutations (G50E, K140I, 

S193F and D225N) were identified during 2007-2008 season. 

Our method then predicted 7 possible site mutations, G5E, 

N6S, I58V, A106T, T128A, R142k, and V166M, for the next 

antigenic drift, which may appear at the earliest in year 

2009-2010. These predictions, of course, need to be validated 

by actual antigenic drifts in the coming seasons. 

4 CONCLUSION 

In this paper, more than 4,000 influenza A/H3N2 sequences 

from 1968 to 2008 were analyzed to model the influenza A 

virus evolutional behavior. The mutual information (MI) 

method was used to draw correlation between co-occurring 

mutations and then design a site transition network (STN) for 

virus evolutionary path. The STN network indicates that the 

dynamic interactions between different sites are mainly near 

the epitopes and the RBD regions of HA1 protein. The 

network also shows that antigenic changes accumulate over 

time, with occasional large changes due to multiple 

co-occurring mutations at antigenic sites. Furthermore, the 

cluster analysis by subdividing the entire MI Matrix or 

network into several clusters reveals a more detailed view 

about the correspondence between simultaneous multi-site 

mutations and characteristics of the antigenic drift. These 

results from our STN network approach agree well with those 

from the phylogenetic tree (Fig. 2) and “antigenic map” 

(Smith, et al., 2004) analyses. The current approach provides a 

novel bridge in connecting the sequence data with 

hemagglutination inhibition (HI) assay data, and suggests that 

the A/H3N2 virus is constantly under significant selection 

pressure, and mutates rapidly but relatively smoothly at 

sequence and structure levels. Meanwhile, the occasional 

co-occurring multi-site mutations cumulatively enhance the 

antigenic drifts in generating new strains. 

 

The strong preferences in mutation sites, as well as in the 

types of final amino acids after mutation, provide us a 

promising way to predict the future site mutations. A novel 

5-step STN network based method was then designed to 

predict the future mutations using mutual information 

between different sites. The validation tests show that the 

method can reproduce the known mutations with previous 

years’ data at about 70% accuracy. We then predicted 7 

possible mutations for the next antigenic drift, which may 

appear at the earliest in the coming 2009-2010 season.  

 

Finally, it should be noted that multiple factors can influence 

the influenza evolution in reality, such as location, seasons, 

new vaccine pressure, other selection pressure, and so on. The 

influenza epidemics outbreak in different locations around the 

world, and such discontinuities in geography weaken the time 

connection between two successive antigenic transitions, in 

which our method is based on. Recently, large collections of 

New York State and New Zealand data were used to study the 

genomic and epidemiological dynamics of human influenza A 

virus, and a sink-source model was suggested to describe the 

influenza viral ecology (Rambaut, et al., 2008). Such work 

indicates that the location diversity should be taken into 

account in future prediction methods, once more geographic 

based data becomes available. 
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