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Abstract One of the essential issues in microarray data
analysis is to identify differentially expressed genes (DEGs)
under different experimental treatments. In this article, a
statistical procedure was proposed to identify the DEGs for
gene expression data with or without missing observations
from microarray experiment with one- or two-treatment
factors. An F statistic based on Henderson method III was
constructed to test the significance of differential expression
for each gene under different treatment(s) levels. The cutoff
P value was adjusted to control the experimental-wise false
discovery rate. A human acute leukemia dataset corrected
from 38 leukemia patients was reanalyzed by the proposed
method. In comparison to the results from significant
analysis of microarray (SAM) and microarray analysis of
variance (MAANOVA), it was indicated that the proposed
method has similar performance with MAANOVA for data
with one-treatment factor, but MAANOVA cannot directly
handle missing data. In addition, a mouse brain dataset
collected from six brain regions of two inbred strains (two-
treatment factors) was reanalyzed to identify genes with
distinct regional-specific expression patterns. The results
showed that the proposed method could identify more
distinct regional-specific expression patterns than the
previous analysis of the same dataset. Moreover, a

computer program was developed and incorporated in the
software QTModel, which is freely available at http://ibi.
zju.edu.cn/software/qtmodel.
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Introduction

Microarray experiments usually involve a large number of
complex procedures, including RNA preparation, hybrid-
ization, scanning, etc., which may bring various random
variations into the raw intensities (Brown and Botstein
1999). Moreover, microarray experiments generate large
and complex multivariate datasets with thousands of
interrelated variables (genes), small sample sizes (some-
times less than ten arrays) from unbalanced design, little or
no replication, and missing values. The essential problem of
gene expression microarray data analysis is to identify
differentially expressed genes (DEGs) under different
treatment levels. Various statistical methods have been
proposed and applied for detecting genes with differential
expression, of which, MAANOVA (microarray analysis of
variance; Kerr et al. 2000) and SAM (significance analysis
of microarray; Tusher et al. 2001) are two of the most
prevalent methods. The MAANOVA method is the first to
employ the fixed-effects ANOVA (analysis of variance)
model to identify DEGs, and SAM uses a modified t test
and permutation test to assess significance. The mixed
model is a general and powerful approach for microarray
experiments with several sources of random variation. The
most commonly used method for mixed model analysis of
microarray is the gene-specific modeling first proposed by
Wolfinger et al. (2001). This method uses t test to assess the
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significance of each gene based on the variance component
estimates obtained by restricted maximum likelihood
(REML) algorithm. Lu et al. (2005) modified the method
of Wolfinger et al. using minimum norm quadratic unbiased
estimation (MINQUE) algorithm for variance component
estimation and Jackknife resampling technique for signifi-
cane test. In addition, Cui et al. (2005) extended the
ANOVA approach of Kerr et al. by employing the gene-
specific model using mixed model.

Most of the previous studies focused on monitoring gene
expression changes across a single-treatment factor of
interest. The treatment factor can be of two levels such as
normal vs. disease samples, wild-type vs. mutant organism,
or multiple levels such as different types of tissues or
tumors, different time points in a biological process, or
different drug treatments. However, many experimenters
are increasingly interested in studying complex systems and
generate large datasets with more than one treatment factor
(Jin et al. 2001), e.g. the experiment investigating gene
expression profile in multiple tissues of different mouse
strains (Sandberg et al. 2000) or investigating the gene
expression changes for different tumor subtypes under
different drug treatments (Lamb et al. 2006). However,
most of the prevalent software packages are not able to
handle data with two-treatment factors. Although, the
MAANOVA package can deal with such kind of data, but
it cannot directly handle missing observations.

In the present study, a statistical procedure was intro-
duced for identification of DEGs as biomarkers for
classifying treatment subtypes (Zou et al. 2006). Moreover,
the method was extended to identify DEGs for microarray
data with two-treatment factors. In addition, two real
datasets were reanalyzed to illustrate the efficacy and
reliability of the proposed method.

Models and statistical methods

Currently, different types of expression microarray systems
are available, such as the spotted two-color complementary
DNA (cDNA) microarray (DeRisi et al. 1996) and the
single-color oligonucleotide microarray (Gunderson et al.
2004; Lockhart et al. 1996). The two-color cDNA micro-
array has two different dyes and relatively large variability
between arrays; therefore, four basic experimental effects,
i.e., treatment of primary interest, genes, dyes, and arrays,
should be considered (Kerr et al. 2000). For single-color
microarray platforms (e.g., Affymetrix and Illumina), as to
only one dye designed in technology scenario, and high
reproducibility of different arrays as well, the effects due to
arrays and dyes can be ignored. In the present study, two-
color microarray experiment by loop design was considered
as an example to illustrate the proposed method. The

proposed method can also be used to deal with the single-
color microarray data by removing the effects relevant to
arrays and dyes in the following models.

Identification of DEGs for one-factor microarray design

Let yijkl be the logarithm of measurement from the i-th
gene, the j-th array, the k-th dye, and the l-th treatment. A
full model can be expressed as:

yijkl ¼ mþ Gi þ Aj þ Dk þ Tl þ GAij þ GDik þ GTil

þ "ijkl ð1Þ
where μ is the overall mean expression level; Gi is the
effect of the i-th gene; Aj is the effect of the j-th array,
Aj � N 0; s2

A

� �
; Dk is the effect of the k-th dye,

Dk � N 0; s2
D

� �
; Tl is the effect of the l-th treatment level,

Tl � N 0; s2
T

� �
; GAij is the interaction effect between the i-

th gene and the j-th array, GAij � N 0; s2
GA

� �
; GDik is the

interaction between gene i and dye k, GDik � N 0; s2
GD

� �
;

GTil is the interaction between the i-th gene and the l-th
treatment, GTil � N 0; s2

GT

� �
; and ɛijkl is the residual effect

accounting for the uncontrollable random errors,
"ijkl � N 0; s2

"

� �
. All the terms in model 1 have been

clearly interpreted by Kerr et al. (2000).
For the two-color cDNA microarray experiment, a

normalization procedure is performed to minimize the
global systematical variations involved in the experiment
from the raw fluorescence measurements. The raw fluores-
cence measurements are normalized by gijkl ¼ yijkl ��
bmþ bAi þ bDk þ bTl

�
using least-square estimation (LSE)

method. The normalized data (γijkl) can be regarded as a
variable for each gene after removing the global biological
and technical variations. After that, it can be fitted by the
following gene-specific model (Lu et al. 2005; Wolfinger et
al. 2001):

gijkl ¼ mi þ Aij þ Dik þ Til þ "ijkl ð2Þ
where μi is the mean expression level of gene i; Aij, Dik,
and Til are equivalent to GAij, GDik, and GTil in model 1
and are assumed to be normally distributed random
variables with zero means and variance components s2

GA,
s2
GT , and s2

GD, respectively; ɛijkl is the residual error of gene
l, "ijkl � N 0; s2

"

� �
.

Model 2 can be rewritten in matrix notations as:

g ¼ WBVbBV þWGTbGT þ " ð3Þ
whe r e bGT ¼ Ti1 Ti2 � � �½ �0 ; bBV ¼ mi Ai1 Ai2 � � � Di1 Di2 � � �½ �0 ;
WBV and WGT are the design matrices corresponding to bBV
and bGT, respectively; γ is the vector of the normalized data; ɛ
is the vector of residual effects.

Under the null hypothesis H0: bGT=0, we could have an
F statistic based on Henderson method III (Searle et al.
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1992) to test the significance of differential expression for
each gene:

F ¼ SSR bGT bBVjð Þ= rW � rWBVð Þ
SSE= n� rWð Þ ð4Þ

where W ¼ �
WBV

..

.
WGT

�
; rw and rWBV are the ranks of W

and WBV, respectively. The F statistic is used to test each of
all the genes step-by-step to screen out the DEGs under the
treatment of interest. The cutoff P value is adjusted at a
certain level (say α) to control the experimental-wise false
discovery rate (Storey and Tibshirani 2003).

Identification of DEGs by two-factor microarray design

For the microarray design with two treatment factors,
model 1 can be extended to:

yijklm ¼ mþ Gi þ Aj þ Dk þ Tl þ Sm þ TSlm þ GAij

þ GDik þ GTil þ GSim þ GTSilm þ "ijklm ð5Þ
where Tl is the effect of the l-th level of the first treatment,
Tl � N 0; s2

T

� �
; Sm is the effect of the m-th level of the

second treatment, Sm � N 0; s2
S

� �
; TSlm is the interaction

effect between the l-th level of the first treatment and the m-th
level of the second treatment, TSlm � N 0; s2

TS

� �
; GTil is the

interaction between the i-th gene and the l-th level of the first
treatment, GTil � N 0; s2

GT

� �
; GSim is the interaction be-

tween the i-th gene and the m-th level of the second
treatment, GSim � N 0; s2

GS

� �
; GTSilm is the interaction

between the i-th gene, the l-th level of the first treatment,
and the m-th level of the second treatment, GTSilm � N
0; s2

GTS

� �
; the remaining variables and parameters have the

same definition as those in model 1.
Analogue to that of single-treatment design, a normaliza-

tion process is conducted to eliminate the effects of global
biological and technical variations from the raw intensity
measurements by gijklm ¼ yijklm � �

bmþ bAj þ bDk þ bTlþ bSm þ
TSlm

�
using LSE method. Then, the normalized data (γijklm)

is fitted by the following gene-specific model for discerning
the significant gene,

gijklm ¼ mi þ Aij þ Dik þ Til þ Sim þ TSilm þ "ijklm: ð6Þ
Using model 6, we can test whether a gene is

differentially expressed under the first treatment (T), the
second treatment (S), or the combination of the two
treatments (T×S). Therefore, model 3 can be expressed in
three different matrix forms for each of the aforementioned
treatments and treatment interaction as

g ¼ WBVbBV þWGTbGT þ " ð7Þ
g ¼ W1

BVb
1
BV þWGSbGS þ " ð8Þ

g ¼ W2
BVb

2
BV þWGTSbGTS þ " ð9Þ

w h e r e bGT ¼ Ti1 Ti2 � � �½ �0 , bGS ¼ Si1 Si2 � � �½ �0 , a n d bGTS ¼
TSil1 TSil2 � � � TSilm � � �½ �0 ; bBV ¼ mi Ai1 Ai2 � � � Di1 Di2 � � �½
Si1 Si2 � � ��0 , b1BV ¼ mi Ai1 Ai2 � � � Di1 Di2 � � � Ti1 Ti2 � � �½ �0 ,
and b2BV ¼ mi Ai1 Ai2 � � � Di1 Di2 � � � Ti1 Ti2 � � � Si1 Si2 � � �½ �0 ; γ is
the vector of the normalized data; ɛ is the vector of residual
effects.

Under each of the null hypothesis H0 : bGT=0, H0: bGS=
0 or H0 : bGTS=0, the significance of T, S, or T×S-specific
differentially expressed genes can be tested by the F
statistic analog to that in Eq. 4. The adjusted cutoff P
value is used to control the experimental-wise false
discovery rate.

Software development

Based on the proposed method, a computer program written
by C++ language has been developed for gene expression
data analysis and incorporated in the software package
QTModel (http://ibi.zju.edu.cn/software/qtmodel). This
software provides the access for the selection of DEGs
ranked by their statistic scores, with data either from simple
designs or from complex designs involving more than one
experimental factor. In addition, various statistical algo-
rithms are available in this software to estimate the variance
components, fixed effects, and random effects of the factors
involved in the experiment.

Results

Analysis of human acute leukemia data (one-treatment
factor)

A dataset of human acute leukemia collected by Golub et
al. (1999) was reanalyzed in the present study to illustrate
the proposed method. In this dataset, the messenger RNA
samples obtained from 38 leukemia patients with clinically
defined 27 acute lymphoblastic leukemia (ALL) (19 B cell
ALL and eight T cell ALL) samples and 11 acute myeloid
leukemia (AML) samples were assayed by Affymetrix
Hu6800 Genechips (Golub et al. 1999). The essential
objective of this experiment was to find out the differen-
tially expressed genes which are highly correlated with
class distinction of B cell ALL, T cell ALL, and AML for
establishing an efficient molecular diagnosis system of
human acute leukemia. The raw fluorescence measurements
were log-transformed and normalized by Affymetrix soft-
ware, and the normalized data were reanalyzed by the
proposed method.

In addition, the dataset is also reanalyzed by the SAM
package (Tusher et al. 2001) and the MAANOVA package
(Kerr et al. 2000). The SAM method uses a modified t test
by adding a small positive constant to the denominator of
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the conventional gene-specific t test. Permutation test is
used to generate an empirical distribution of the t statistics
for hypothesis test. On the other hand, the MAANOVA
uses ANOVA model to fit the data and constructs F statistic
based on the methods of variance component estimation,
such as ML, REML, and MINQUE in which REML is used
as the default configuration in the MAANOVA package.
Since the methods of SAM and MAANOVA are not able to
handle missing data, the K-nearest neighbors imputation
(KNNimpute) method (Troyanskaya et al. 2001) was
adopted to estimate the missing values. In each of the three
analysis procedures, the cutoff P value was adjusted to
control the false discovery rate at 0.05.

The results showed that MAANOVA identified 188
DEGs, SAM identified 163 DEGs, and the proposed
method detected 194 DEGs. All the DEGs detected by
SAM can be identified by both MAANOVA method and
our method, while other 34 genes which could not be
declared as significant DEGs were identified by MAA-
NOVA or the proposed method (Table 1). Of these 34
genes, 26 of which were detected by MAANOVA, and 31
of them can be identified by our method.

After that, we used the DEGs identified by the three
methods to classify the samples by hierarchical cluster with
Euclidian distance and unweighted pair group method with
arithmetic mean linkage criterion using the software
ClusterProject (http://ibi.zju.edu.cn/software/clusterproject).
These samples have been clinically characterized. There-
fore, we can compare the classes obtained by cluster
analysis with those by clinical diagnosis to examine the
reliability of those DEGs detected by three different
methods. The results showed that in all the three cases,
ALL and AML could be classified by cluster analysis of
DEGs (Fig. 1). Moreover, both MAANOVA method and

our method could exactly distinguish the B cell ALL and T
cell ALL, but SAM method confounded one B cell ALL
sample into the class of T cell ALL.

Analysis of mouse brain data (two-treatment factors)

A mouse brain dataset collected by Sandberg and his
colleagues was reanalyzed in the present study. In this
dataset, the expression of 13,069 probe sets corresponding
to approximately 10,000 genes and expressed sequence tags
is assayed using two different oligonucleotide arrays
(Mu11KsubA and Mu11KsubB; Sandberg et al. 2000).
The experimental samples are collected from six brain
regions, i.e., cortex (Cx), cerebellum (Cb), midbrain (Mb),
hippocampus (Hp), amygdale (Ag), and entorhinal cortex
(Ec) which were prepared in duplicates from two common-
ly used inbred strains, C57BL/6 and 129SvEv. This dataset
provides abundant source of targets for surveying behav-
ioral and neurophysiological differences between the mouse
strains, as well as structural and functional differences
among the brain regions. The raw fluorescence measure-
ments were log-transformed and normalized by Affymetrix
software, and the normalized data were reanalyzed by the
proposed method. The cutoff P value was adjusted to
control the false discovery rate at 0.01.

The results showed that 124 genes were identified to be
differentially expressed between the two inbred strains
(adjusted cutoff P=0.000172). Of these strain-specific
genes, 63 of them having P value less than 10−5 were
analyzed by hierarchical cluster by the software Cluster
(Eisen et al. 1998; Fig. 2). It was observed that all samples
collected from C57BL/6 strain were grouped together, and
those from 129SvEv were classified as one group using the
63 strain-specific genes.

Table 1 The DEGs that can
not be identified by SAM but
are detected by MANOAVA
and the proposed method

“√” and “×” represent “detec-
tion” and “not detection”

Gene ID Our method MAANOVA Gene ID Our method MAANOVA

D26156_s_at √ √ M83221_at √ ×
D30758_at √ √ M95678_at √ ×
D43682_s_at √ √ M98399_s_at √ √
D49950_at √ √ M98833_at √ √
D50310_at √ √ S82470_at √ ×
D63479_s_at √ × U12471_cds1_at √ √
D83032_at √ √ U15085_at √ √
HG2788-HT2896_at √ × U61734_s_at √ ×
HG627-HT5097_s_at √ √ U62136_at √ √
HG688-HT688_f_at √ √ U73960_at √ √
L38696_at √ √ X58431_rna2_s_at √ ×
M12959_s_at √ √ X69398_at √ ×
M16336_s_at × √ X70394_at √ √
M21119_s_at × √ X76061_at √ √
M26311_s_at × √ X77584_at √ √
M37815_cds1_at √ √ X89985_at √ ×
M63379_at √ √ X99584_at √ √
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Fig. 1 Classification of human
acute leukemia subtypes by clus-
ter analysis of differentially
expressed genes detected by the
proposed method (a), the MAA-
NOVA method (b), and the SAM
method (c), respectively
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Moreover, 1,333 genes were identified having differen-
tial expression among different brain regions (adjusted
cutoff P=0.003765). Of these regional-specific genes, 411
having P values less than 10−5 were filtered for hierarchical
cluster analysis and classified those regional-specific genes
(RSGs) into 11 groups (Fig. 3). It was observed that a large
number of these regional-specific genes were independently
up- (Fig. 3b) or down- (Fig. 3a) regulated in cerebellum,
which is in agreement with the results in previous analysis
utilizing the same dataset (Pavlidis and Noble 2001). Most
of RSGs which had differential expression in midbrain
were positively or negatively co-expressed in cerebellum
(Fig. 3d,e, and g), and only ten of them were independently
up- or down-regulated in midbrain (Fig. 3i). For those genes
presented in Fig. 3d, they were down-regulated in both
cerebellum and midbrain, but were up-regulated in fore-
brain (represented by cortex, amygdala, hippocampus, and
entorhinal cortex), while for those genes presented in
Fig. 3e, they were up-regulated in cerebellum and mid-
brain and down-regulated in forebrain. A few genes were
identified with differential expression in hippocampus,
and they were mostly positively or negatively co-expressed
in cerebellum (Fig. 3c,j). For those genes presented in
Fig. 3f, they were enriched in entorhinal cortex and cortex,
but were deficient in cerebellum and/or midbrain. Fur-
thermore, 22 were down-regulated in both amygdale and
entorhinal cortex, but were enriched in midbrain. Only
two genes were identified having distinct up-regulating
pattern in this study (Fig. 3h).

Discussion

With the advent of microarray technology, a number of
tools have been developed to identify DEGs for various
kinds of microarray designs. However, some of the
problems such as dealing with data from design with two-
treatment factors and missing observations still remain
unsolved. In the present study, a new statistical method and
its corresponding software are developed to identify DEGs,
which has the merits of being able to analyze the micro-
array data from experiments with one- or two-treatment

Fig. 2 Classification of two mouse inbred strains, C57BL/6 and
129SvEv, using strain-specific genes identified by the proposed method.
Of all the 164 strain-specific genes, 63 of which with P values less than
10−5 are visualized in this figure (for space consideration)

R

Fig. 3 Regional-specific genes (RSGs) identified by the proposed
method. The RGSs with cutoff P value less than 10−5 are selected for
cluster analysis. These genes are classified into 11 groups with each
group being presented by one sub-figure. The other RGSs without
distinct pattern are not shown

b

64 Funct Integr Genomics (2009) 9:59–66



Funct Integr Genomics (2009) 9:59–66 65



factors and deal with the problem of missing observations.
In the present method, we use the F test based on
Henderson method III to test the significance of treatment
effects of each gene. As compared with the mixed model
methods of Wolfinger et al. and Lu et al. using t test based
on variance component estimates, the present method has
much lower computational load because both the methods
of Wolfinger et al. and Lu et al require to iteratively
calculate the inverse of an n×n matrix in each test (where n
is the number of observations). In addition, the MAA-
NOVA method can also handle the data from design with
two-treatment factors; however, it still has the difficulty in
dealing with missing data. In ANOVA approach, the
number of replicates for each condition/treatment should
be equal; therefore, it is not feasible to handle missing
values. Take the human acute leukemia dataset for an
example; the samples were assayed by Affymetrix gene-
chips and all the absent calls were treated as missing
observation in identification of DEGs. When applying the
MAANOVA method to analyze this dataset, it is required to
fill up the missing values using the methods such as the
KNNimpute method, which may bring extra artificial
errors. In the present investigation, an F statistic is
constructed in the framework of mixed linear model based
on Henderson method III, providing a general form to deal
with both the balanced and unbalanced data, thus could
overcome the drawback of ANOVA method.

Pavlidis and Noble (2001) also analyzed the same
dataset of mouse brain by two-way ANOVA method. In
general, our result is consistent with that of Pavlidis and
Noble. For example, both studies revealed that cerebellum
is the most distinct of brain regions (Fig. 3a,b), and there
are many genes that could distinguish forebrain from
cerebellum and midbrain (Fig. 3d–g). However, we do not
agree that midbrain was the second most distinct of brain
regions. We found that the majority of genes differentially
expressed in midbrain were also co-expressed in cerebel-
lum. There is no evidence in the present analysis that cortex
has the least distinct expression pattern. It is indicated that
hippocampus has the least distinct expression pattern, and
most of DEGs in cortex are co-expressed in entorhinal
cortex. In addition, more regional-specific gene expression
patterns are identified in the present analysis as compared
to those of Pavlidis and Noble.
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