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Abstract

DNA arrays measure the expression levels for thousands of genes simultaneously under different conditions. These measurements
reflect many aspects of the underlying biological processes. A method based on the matrix of thresholding partial correlation
coefficients (MTPCC) is proposed for network inference from expression profiles. It includes three main parts: (1) hierarchical cluster
analysis, (2) cluster boundaries establishment, and (3) regulatory network inference. The method was applied to the expression data
of 2467 genes in Saccharomyces cerevisiae measured under 79 different conditions [Eisen, M.B., Spellman, P.T., Brown, P.O.,
Botstein, D., 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863–14868].
Using hierarchical clustering and cluster boundaries establishment, the 2467 genes were grouped into 12 clusters. The expression
profiles of each cluster were expressed as a set of expression levels average over the cluster that constituted genes of each condition.
Then the expression data of these clusters were subjected to the analysis of partial correlation, and the significance of each element
in the obtained partial correlation coefficient matrix (PCCM) was examined by a permutation test. The corresponding undirected
dependency graph (UDG) was obtained as a model of the regulatory network of S. cerevisiae. The veracity of the network was
evidenced by the consistency of our results with the collected results from experimental studies.
© 2007 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

A DNA microarray, either an oligonucleotide array
(e.g. Affymetrix) or a cDNA array, can be used to
measure relative expression levels of thousands of
genes simultaneously in biological samples (cells, tis-
sues, tumors, etc.) under various conditions (DeRisi et
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al., 1997). Usually, such experiments are designed to
reflect many aspects of biological processes of interest
(Spellman et al., 1998). However, the sheer amount of
data presents a challenge in developing effective meth-
ods that are both statistically sound and computationally
tractable, in particular for inferring biological interac-
tions.

Various methods, for example, Boolean Networks
(Somogyi and Shiegoski, 1996; Akutsu et al., 1999),
Bayesian Networks (Friedman et al., 2000; Hartemink
et al., 2002) and Dynamic Bayesian Networks (Murphy
and Mian, 1999), were proposed to infer the regula-
tory network from expression profiles. These methods
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have several limitations, including the discretization for
the gene expression levels leading to loss of informa-
tion, the need for known features (e.g. gene function and
functional relationships) of the present profile data on a
genomic scale, and a reliance on assumption of directed
acyclic topology. Feedback loops are ubiquitous in bio-
logical processes and associated with many properties of
gene networks, and thus analyses based on the assump-
tion that no feedback loops exist are inappropriate.

Graphical Gaussian Model (GGM), also known as
covariance selection model, was used as a model for
the association network of genes. It can directly use the
continuous expression profiling data without requiring
other information. The partial correlation coefficients
(PCCs) were used to characterize the strength of inter-
action between pair of genes and selection of partial
correlations indicated by non-cyclic relationships among
genes (Toh and Horimoto, 2002; Wang et al., 2003; Wu
et al., 2003; Aburatani et al., 2005). However, the esti-
mation procedure for statistical inference for individual
treatments is not efficient.

Since the inferred network can be based on the par-
tial correlation, calculating the matrix inverse of Pearson
correlation coefficients is desirable. However, the num-
ber of genes to be analyzed usually far exceeds the
number of expression measurements, and a high simi-
larity in the expression pattern of some genes leads to
strong collinearity among rows or columns in the cor-
relation matrix. As a result, it is difficult to obtain the
inverse of the correlation coefficient matrix, and is inap-
propriate to infer the regulatory relationships by simply
using the partial correlation coefficient matrix (PCCM)
to the expression profiles. To resolve this discrepancy, we
propose a novel method based on a matrix of threshold-
ing partial correlation coefficients (MTPCC). The idea is
to use clusters, rather than individual genes, to eliminate
the collinearity issue. There would be no linear relation-
ship between any two clusters profiles. The regulatory
network showed dependence among clusters as undi-
rected dependency graph (UDG), its nodes and edges
correspond to the clusters under consideration and direct
interaction between clusters, respectively. The efficiency
of our method was evaluated based on biological aspects
by applying the method to the expression profiles of
Saccharomyces cerevisiae (Eisen et al., 1998).

2. Materials and Methods

2.1. Gene Expression Profiles Data

Let S = {s1, s2, . . ., sm} be the set of samples or conditions
and G = {g1, g2, . . ., gn} be the set of genes. The expres-

sion profiling data can be represented as X = {xij|i = 1, . . ., n,
j = 1, . . ., m} (n � m), where xij corresponds to the expres-
sion value of the sample sj on gene gi. In order to evaluate
our method, the gene expression data analyzed here are for
n = 2467 genes from S. cerevisiae, which were measured under
m = 79 conditions (Eisen et al., 1998) (http://www.pnas.org
or http://rana.stanford.edu/clustering/). Missing data were
estimated by using a k nearest neighbor method with an inter-
mediate (10 ≤ k ≤ 20) value of k = 14 (Troyanskaya et al.,
2001).

2.2. Procedure of MTPCC for Inferring the Regulatory
Network

This procedure consists of three parts: (1) hierarchical
cluster analysis, (2) cluster boundaries establishment, and (3)
regulatory network inference.

2.2.1. Hierarchical Cluster Analysis
Hierarchical cluster analysis was performed to the gene

expression data. The Pearson correlation coefficients of the
standardized expression profiles were used for calculating dis-
tance, and the UPGMA method was applied for grouping
genes. The (n − 1) dissimilarity scores of the nodes along
the dendrogram were obtained by the hierarchical cluster
analysis using ClusterProject (version ClusterProject1.0 from
http://ibi.zju.edu.cn/software/clusterproject/, Pan et al., 2005).

2.2.2. Cluster Boundaries Establishment

Step 1: A correlation coefficient matrix (CCM) was obtained
from the original CCM at each node along the dendro-
gram. For instance, when the dissimilarity score of the
node d̂c is set to be d̂2467−q+1 ≥ d̂c > d̂2467−q, q clus-
ters are obtained and the q × q CCM is generated by
the random selection of correlation coefficient from
the gene members of each cluster.

Step 2: A statistical property of the q × q CCM obtained in
Step 1 was evaluated along the dendrogram. The linear
relationship between the clusters was diagnosed by the
variance inflation factor (VIF), as follows:

VIFi = r−1
ii (1)

where r−1
ii is the ith diagonal element of the inverse

matrix of CCM. In a CCM for q clusters, q VIFs are
calculated (Horimoto and Toh, 2001).

Step 3: In the diagnosis of extent of the linear relationship,
the popular value of 10.0 was adopted as a threshold
(Freund and Wilson, 1998). The q VIFs were evaluated
under the following condition:

max{VIFi} < 10.0 for i = 1, 2, . . . , q (2)

If the condition (2) is satisfied, then there is no linear
relationship among the q sets of clusters. Otherwise,
the linear relationship still exists. The above steps from
Step 1 to Step 3 proceed in a descending order of
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nodes from 2466 to 1, and the last node that satisfies
the condition (2) is searched, so the maximum num-
ber of clusters with no linear relationship along the
dendrogram is obtained.

2.2.3. Regulatory Network Inference
A network between the clusters obtained by the second part

is inferred. The expression profiles of each cluster are expressed
as average expression levels for the constituting genes of the
cluster, and the number of conditions for the cluster are as
same as the number of the measurement conditions, i.e. the
expression level of the cluster k at the jth condition cluk is
calculated as follows:

clukj = 1

nk

nk∑

i ∈ cluster k

xij, 1 ≤ k ≤ n1, 1 ≤ j ≤ m (3)

where nk is the number of members in the kth cluster and n1 is
the total number of obtained clusters.

When a set of expression levels of n1 clusters is obtained
under m different conditions, a PCCM can be calculated from
the inverse of CCM for these clusters. For the PCCM � = (πij),
these coefficients describe the correlation between any two
clusters i and j conditioned on all the remainder of these clusters
and are calculated as follows:

πij = − r−1
ij√

r−1
ii

r−1
jj

(4)

where r−1
ij , r−1

ii and r−1
jj are the elements of the inverse of the

n1 × n1 correlation matrix R.
If the value of πij is statistically indistinguishable from zero,

then there is no detectable genetic link between clusters i and
j. Finally, a graph of UDG, i.e. a regulatory network structure,
which is visualized by Graphviz (Gansner and North, 2000), is
obtained with its nodes and edges corresponding to the clusters
and significant partial correlation coefficients, respectively.

In order to obtain the network, the significance of each
element in the PCCM is inferred by the permutation test.
We independently permute condition-profiles of each cluster,
which are indexed from 1 to m. The profiles are shuffled by
computing a random permutation of the indices 1, . . ., m and
assigning the ith expression data to the condition-profile whose
index is given by the ith element of the permutation for each
cluster. The shuffled sample data are then used to calculate
a PCCM. This procedure is repeated k times, thus k PCCMs
are obtained for the shuffled samples. Two types of thresh-
old values can be estimated from these results. The first are
comparison-wise thresholds that can be estimated separately
for each element in the original PCCM, for example, the val-
ues of an element πij over the k PCCMs are sorted ascendingly,
the estimated critical values are set as 100(1 − α/2) percentile
and 100(α/2) percentile. The test of using the critical values
controls the type I error rate for that element to be α or less.
The second are experiment-wise thresholds that can provide
overall critical values for all analysis elements. They can be
obtained by first finding the maximum and the minimum val-
ues over them in each PCCMs for the shuffled samples. Then

the k maximum values are ordered, and their 100(1 − α/2) per-
centile is set as one of experiment-wise critical value. Similarly,
another critical value is 100(α/2) percentile of the k ordered
minimum values. These critical values are used to control the
overall type I error rate to be α or less. So the statistical signif-
icance of each element in the original PCCM can be obtained
by comparing it with these critical values.

3. Results

3.1. Cluster Analysis

The 2467 yeast genes were classified into 12
clusters by hierarchical cluster analysis and clus-
ter boundaries establishment (http://ibi.zju.edu.cn/lab/
supplementary materials hanlide/). An unpaired t-test
shows that the differences of the genes expression within
each cluster (0.485 ± 0.199) are significantly (p < 0.05)
smaller than those between the clusters (0.893 ± 0.212).
Therefore we assumed that the genes in the same cluster
share the same expression pattern, and that the expres-
sion levels of the cluster can represent the expression
behavior of the constituted genes.

3.2. Regulatory Network Inference

The expression profiles of 12 clusters were per-
muted 1000 times. Comparison-wise thresholds were
estimated for every element of these tests (not shown).
The thresholds fluctuated across 66 elements and their
average was listed in Table 1. The maximum and mini-
mum partial correlation coefficients of all elements from
each of the 1000 permutations were used to estimate
the experiment-wise thresholds. The absolute values of
comparison-wise thresholds are smaller than those of the
corresponding experiment-wise thresholds and t critical
values (Aburatani et al., 2003). This indicates that the
comparison-wise thresholds are the least ones in terms
of the evaluation of significance. In this example, we
were interested in the comparison-wise thresholds. The
significance level α was set as 0.05, and we obtained

Table 1
Estimated threshold value for expression data of S. cerevisiae

Threshold 1 − α Experiment-
wise

Comparsion-
wisea

t critical
value

+ 0.95 0.377 0.195 0.237
− −0.378 −0.196 −0.237
+ 0.99 0.429 0.275 0.309
− −0.429 −0.276 −0.309

“+” and “–” denote the critical value of the right and left tail, respec-
tively.

a Notes: Average across all analysis elements.
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Table 2
Partial correlation coefficient matrix obtained by permutation test

Notes: The partial correlation coefficient of every pair of 12 clusters is shown. If the absolute value of the coefficients is bigger than the absolute
comparison-wise threshold value, the corresponding element was considered as significant. * and ** denote statistical significance at the 0.05 and
0.01 levels, respectively. The insignificant elements in PCCM are shaded. The rows and the columns correspond to the clusters, and the cluster
names are shown at the left and bottom of the matrix.

the symmetric PCCM (Table 2). The absolute values of
the partial correlation coefficients ranged from 0.01 to
0.81. As the expression profiles of each cluster were
expressed as a set of expression levels average over the
constituted genes of the cluster, the signs of the coef-
ficients did not always reflect the positive or negative
regulations between these genes. Out of 66 coefficients,
39 (59.1%) were statistically insignificant from zero. In
other words, 39 edges were removed from the graph of
UDG. The graph did not contain any node without edges
(Fig. 1). The maximum number of edges of a node was
9, while the minimum number was 2.

3.3. Regulatory Network Evaluation

With the inferred network through the method
mentioned, we employed the previous published exper-

Fig. 1. A graph of UDG corresponding to the obtained PCCM
(Table 2). A solid line indicates the interaction between a pair of clusters
and the number in a node shows the name of the cluster.

imental literature to evaluate its validity. As a large
amount of experimental data has been accumulated, it is
impossible to collect all of the results of gene regulation
in S. cerevisiae. We collected the related literatures and
mainly focused on the regulation of SUC2 (a gene for the
sucrose hydrolyzing enzyme called invertase) expression
as the gene has been investigated extensively. Under the
assumption that the relationships defined by these exper-
iments reflect the direct interactions about the genes
expression, we evaluated the network with the results of
the collected experimental studies. Forty-nine cases of
regulatory relationships, which describe the relationship
that Gene A affects the expression of Gene B (Table 3),
were obtained from the related references in all. When
the partial correlation coefficient between two clusters,
corresponding to a pair of genes described in the liter-
ature, was significant, the inference of the relationship
was regarded as being correct, otherwise the relationship
was considered to be wrong. The estimations of these
regulatory relationships by the MTPCC were shown in
Table 3. In 5 out of 49 cases, both Genes A and B were
present in the same cluster. The numbers of significant
or insignificant partial correlation coefficients were 36
and 8 with the higher correct percentage (73.5%) and
the lower false percentage (16.3%), respectively.

A regulatory network was obtained by a modified
sub-graph of the UDG (Fig. 2) corresponding to the rela-
tionship depicted in experimental studies (Table 3). Each
node corresponds to a cluster, and contains the genes
that appear in Table 3, although only the genes related
to SUC2 expression are shown in Fig. 2. Both correct
and incorrect relationships are included in the sub-graph.
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Table 3
The relationships between genes for the regulation of expression

Gene A CN Gene B CN MTPCC Bootstrap Reference

SNF2 7
ADH1 2

T F Peterson and Herskowitz (1992) Cell 68, 573–583
SWI1 1 T T Peterson and Herskowitz (1992) Cell 68, 573–583
SNF2 7

ADH2 2
T F Peterson and Herskowitz (1992) Cell 68, 573–583

SWI1 1 T T Peterson and Herskowitz (1992) Cell 68, 573–583
SIN3 1 BAR1 4 T F Vidal et al. (1991) Mol. Cell Biol. 11, 6306–6316
SNF1 1 MIG1 2 T T Papamichos-Chronakis et al. (2004) EMBO Rep. 5, 368–372
RGR1 4

CTS1 9
F F Jiang et al. (1995) Genetics 140, 47–54

SIN4 10 F F Jiang et al. (1995) Genetics 140, 47–54
TUP1 8 CYC1 2 T F Zhang et al. (1991) Gene 97, 153–161
GAL11 1

HIS4 2
T T Sakurai et al. (1996) FEBS Lett. 398, 113–119

SIN4 10 T T Jiang and Stillman (1995) Genetics 140, 103–114
SNF2 7 T F Jiang and Stillman (1995) Genetics 140, 103–114
SFL1 1 HSP26 2 T T Lesage et al. (1994) Nucleic Acids Res. 22, 597–603
RGR1 4

IME1 10
F T Shimizu et al. (1998) Nucleic Acids Res. 26, 2329–2336

RME1 9 F F Shimizu et al. (1998) Nucleic Acids Res. 26, 2329–2336
SIN4 10 S S Shimizu et al. (1998) Nucleic Acids Res. 26, 2329–2336
HXK2 2 MED8 10 T T De la Cera et al. (2002) J. Mol. Biol. 319, 703–714
TUP1 8 HIS2 1 T T Watson et al. (2000) Genes Dev. 14, 2737–744
GAL11 1

SUC2 2

T T Vallier and Carlson (1991) Genetics 129, 675–684
GCN5 7 T F Pollard et al. (1999) EMBO J. 18, 5622–5633
RGR1 4 T T Sakai et al. (1988) Genetics 119, 499–506
ROX3 6 T T Song and Carlson (1998) EMBO J. 17, 5757–5765
SFL1 1 T T Song and Carlson (1998) EMBO J. 17, 5757–5765
SIN4 10 T T Song and Carlson (1998) EMBO J. 17, 5757–5765
SNF1 1 T T Neigeborn and Carlson (1984) Genetics 108, 845–858
SNF5 1 T T Neigeborn and Carlson (1984) Genetics 108, 845–858
SNF6 6 T T Neigeborn and Carlson (1984) Genetics 108, 845–858
SRB8 1 T T Song and Carlson (1998) EMBO J. 17, 5757–5765
SSN8 3 T T Kuchin et al. (1995) Proc. Natl. Acad. Sci. 92, 4006–4010
SWI1 1 T T Peterson and Herskowitz (1992) Cell 68, 573–583
SWI3 7 T F Peterson and Herskowitz (1992) Cell 68, 573–583
TUP1 8 T F Zhang et al. (2002) Genetics 161, 957–969
SSN3 2 S S Kuchin et al. (1995) Proc. Natl. Acad. Sci. 92, 4006–4010
SNF11 2 S S Peterson and Herskowitz (1992) Cell 68, 573–583
SNF2 7 T F Carlson and Laurent (1994) Curr. Opin. Cell Biol. 6, 396–402
MIG1 2 S S Trumbly (1992) Mol. Microbiol. 6, 15–21
HXK2 2 MIG1 2 S S Ahuatzi et al. (2007) J. Biol. Chem. 282, 4485–4493
MOT3 1 ANB1 8 T T Klinkenberg et al. (2005) Eukaryot. Cell 4, 649–660
MOT3 1 HEM13 6 T F Klinkenberg et al. (2005) Eukaryot. Cell 4, 649–660
TUP1 8 RME1 9 F F Mukai et al. (1991) Mol. Cell. Biol. 11, 3773–3779
SIN3 1 RME1 9 F T Vidal et al. (1991) Mol. Cell. Biol. 11, 6306–6316
TUP1 8 SRB7 6 T T Gromoller and Lehming (2000) EMBO J. 19, 6845–6852
HEM13 6 ROX1 1 T F Zhang et al. (2002) Genetics 161, 957–969
CYC8 10 TUP1 8 F F Zhang et al. (2002) Genetics 161, 957–969
TUP1 8 RNR1 7 T F Zhang et al. (2002) Genetics 161, 957–969
TUP1 8 ROX1 1 T T Mizuno et al. (1998) Curr. Genet. 33, 239–247
SIP3 3 SNF1 1 F F Conlan and Tzamarias (2001) J. Mol. Biol. 309, 1007–1015
CYC8 10 SUC2 2 T T Trumbly (1992) Mol. Microbiol. 6, 15–21
SNF4 2 SNF1 1 T T Shirra and Arndt (1999) Genetics 152, 73–87

Notes: The gene written in the first column (Gene A) is known to regulate the expression of the gene written in the third column of the same line (Gene
B). The second and the fourth columns in the same line indicate the cluster names (CN), to which Genes A and B belong, respectively. The fifth and
sixth columns include three symbols, ‘T’, ‘F’ and ‘S’. A significant partial correlation coefficient between the corresponding clusters is regarded as
accord with the experimental result, and ‘T’ is put in the column. An insignificant partial correlation coefficient between the corresponding clusters
is regarded as being inconsistent with the experimental result, and ‘F’ is placed in the column. ‘S’ in the fifth and sixth columns indicate that both
Genes A and B belong to the same cluster. The seventh column indicates the references for the experimental studies.
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Fig. 2. A sub-graph of UDG corresponding to the relationship depicted
in experimental studies (Table 3). A solid line indicates the interaction
between a pair of clusters, which is also suggested by PCCM. Each
node indicates a cluster. A dashed line indicates the regulatory rela-
tionship, which is not consistent with our inference. The arrows and
the undirected edges indicate the cause and effect, feedback relation-
ships suggested by the experimental results, respectively. The number
in a node indicates the cluster name. The gene names within a cluster
are written when they involved in the regulation of SUC2 expression.
1: SFL1, SNF1, SNF5, SRB8, SWI1, GAL11; 2: SUC2, SSN3, SNF11,
MIG1, SNF4; 3: SSN8; 4: RGR1, 6: ROX3, SNF6; 7: GCN5, SNF2,
SWI3; 8: TUP1; 10: SIN4, CYC8.

SUC2 is included in cluster 2, its transcription activation
depends upon both the SNF1/SNF4 kinase complex and
the SWI/SNF nucleosome complex (Zhou and Winston,
2001). SNF1 and SNF4 constitute the former, the later
has 11 units, such as SWI1, SWI2 (alias SNF2), SWI3,
SNF5, SNF6, SNF11, etc. (Biggar and Crabtree, 1999;
Carlson and Laurent, 1994). SWI1, SNF4 and SNF5 are
included in cluster 1, cluster 2 contains SNF11, SNF6
belongs to cluster 6 while cluster 7 includes SNF2 and
SWI3. As shown in Fig. 2, there are edges between clus-
ter 2 and cluster 1, 6 and 7. SUC2 expression is activated
by GCN5 (Pollard et al., 1999), and regulated negatively
by SSN3 and SSN8 (Kuchin et al., 1995). GCN5, SSN3
and SSN8 belong to clusters 7, 2 and 3, respectively. The
edges between clusters 2 and 3, 7 are present. Muta-
tions of SRB8, SIN4 or ROX3 cause SUC2 the defect in
transcriptional repression, which can be suppressed by
SFL1 gene (Song and Carlson, 1998). SRB8 and SFL1
belong to cluster 1, SIN4 is included in cluster 10, and
ROX3 is involved in cluster 6. The presence of edges
between cluster 2 and clusters 1, 10 and 6 supports this
observation. SIN4, RGR1, GAL11 and p50 form a reg-
ulatory sub-complex to control transcription (Li et al.,
1995). In addition, TUP1, CYC8 and MIG1 are regarded
as a complex for regulation of glucose repression related
genes (Tzamarias and Struhl, 1994), GAL11 is included
in cluster 1, cluster 10 contains SIN4 and CYC8, RGR1
belongs to cluster 4, TUP1 is involved in cluster 8, MIG1
and SUC2 are in same cluster. These interactions were
indicated by the edges between clusters 1, 4, 8, 10 and
cluster 2. Thus, the collected experimental studies results
regarding SUC2 regulation are consistent with the edges
in the UDG. Similarity, most of the remaining edges

also accord with the other collected expression regula-
tory relationships. The coincidence of our results with
reported experimental studies indicated that our method
was effective.

The obtained graph of UDG is basically undirected.
According to the causality relationships obtained from
the literatures, the edges were replaced with arrows
indicating the causes and effects. Each arrow in the
graph indicated plural of regulatory relationships
(Fig. 2). For example, the arrow which connecting
cluster 7 with cluster 2 corresponds to the relationships
between six gene pairs. A loop relationship was also
observed between two clusters, such as the edges
connected cluster 1 with cluster 2 correspond to the
feedback relationships, which implied that a subset of
genes within cluster 2 directly affected the expression
of ones within cluster 1 and vice versa. For example,
SNF4 (cluster 2) regulates SNF1 (cluster 1), while SWI1
(cluster 1) affects SUC2 (cluster 2).

4. Discussions

The statistical parametric tests for network infer-
ence, such as a t-test, are very powerful tools when
the data follow a particular distribution. But they are
less suitable than some other methods, for instance
GGM, when applied to expression data (Aburatani et al.,
2003). In contrast, nonparametric tests make less strin-
gent demands of the data. Therefore, a permutation test is
an appropriate method for distinguishing the significant
regulatory relationship of genes. The sufficient shuffling
replications of sample are also important for the test, and
shuffling 1000 times is considered to be appropriate to
give some critical values with α = 0.05. The permuta-
tion tests are much more powerful than bootstrapping
when they are used to construct a test of a hypothe-
sis of edges. We found 28 edges (http://ibi.zju.edu.cn/
lab/supplementary materials hanlide/) when bootstrap-
ping was applied to the expression profiles of S.
cerevisiae, while only 18 of these matched those found
by a permutation test. Moreover, the bootstrap method
suffered a lower correct percentage (53.1%) and a higher
false percentage (36.7%) from the biological viewpoint
(Table 3). In addition, the method of combining bootstrap
sample with GGM was not sufficiently effective because
relatively high bootstrap probabilities were sometimes
observed even at the insignificant elements in the original
PCCM (Toh and Horimoto, 2002).

In this paper we presented an effective approach for
inferring regulatory network from gene expression pro-
files, and the approach can be regarded as an extension
of the works of some researcher (Toh and Horimoto,
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Fig. 3. Situation that the literature fits network inferred by MTPCC
under different cluster number. ‘T’, ‘F’ and ‘S’ were defined as in
Table 3.

2002; Wang et al., 2003; Wu et al., 2003; Aburatani
et al., 2005). GGM is a suitable method for network
inference, but it assumes the observed data following a
multivariate normal distribution. In fact, the gene expres-
sion levels are often non-normally distributed and do not
match the assumption. The estimation of the method is
most likely obtained by chance but not reflecting the
truth. MTPCC method does not require the data fol-
lowing any specific statistical distribution. It is valid
under very mild conditions and easy to apply in prac-
tice. When applying GGM to expression data of S.
cerevisiae, 29 edges were found (http://ibi.zju.edu.cn/
lab/supplementary materials hanlide/), while 25 were
also detected by MTPCC. From biological aspect, the
network inferred by MTPCC explained some regula-
tion relationships about SUC2 and other genes of S.
cerevisiae with high correct percentage and low false
percentage. As seen in Fig. 3, cluster number influences
the power of our method. Under the condition of 12 clus-
ters (VIF = 10.0), MTPCC infers the network with higher
correct percentage and lower false percentage. The cor-
rectness demonstrated its accuracy and efficiency, thus
MTPCC is a valid statistical approach for inferring the
regulatory network.
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