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Late blight (LB) is one of the most aggressive tomato diseases in California.

Accurately detecting the disease will increase the efficiency of properly

controlling the disease infestations to ensure the crop production. In this study,

we developed a method to spectrally predict late blight infections on tomatoes

based on artificial neural network (ANN). The ANN was designed as a back-

propagation (BP) neural network that used gradient-descent learning algorithm.

Through comparing different network structures, we selected a 3-25-9-1 network

structure. Two experimental samples, from field experiments and remotely sensed

image data sets, were used to train the ANN to predict healthy and diseased

tomato canopies with various infection stages for any given spectral wavelength

(mm) intervals. Results of discrete data indicated different levels of disease

infestations. The correlation coefficients of prediction values and observed data

were 0.99 and 0.82 for field data and remote sensing image data, respectively. In

addition, we predicted the field data based on the remote sensing image data and

predicted the remote sensing image data with field data using the same network

structure, and the results showed that the coefficient of determination was 0.62

and 0.66, respectively. Our study suggested an ANN with back-propagation

training could be used in spectral prediction in the study.

1. Introduction

Late blight (LB) is one of the economically most important tomato diseases that is

caused by Phytophthora infestans. Since 1990, late blight has spread widely to cause

crop economic losses across the United States and Canada (Fry and Goodwin

1997a, Goodwin et al. 1998). Late blight appears on potato or tomato leaves as pale

green, water-soaked spots, often beginning at leaf tips or edges. Late blight can also

develop on green tomato fruit and often appears on the sides or upper fruit surfaces.

Moreover, if environmental conditions were favourable for disease spread in the

production areas, it would potentially result in tremendous loss for production (Fry

and Goodwin 1997b). Therefore, it is of great economic interest to control the

spread of the late blight disease. Remote sensing offers a powerful tool for

monitoring crop growth and health conditions (Abou-Ismail et al. 2004, Qin and

Zhang 2005). For this study, the goal is to detect crop health conditions in the field
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by classifying the differentially diseased canopies as well as healthy patches using the

artificial neural network (ANN).

Neural networks are very useful tools in pattern recognition because they allow

classification without the need for explicit recognition rules (Bishop 1995). An ANN

is a system that consists of a large number of simple processing units, called neurons,

as in the nervous system. A neuron generally has a high-dimensional input vector

and a simple output signal. The function to be performed on the input vector is

hence defined by the non-linear function and the weight vector of the neuron. The

strength of an ANN is that it trains itself and operates by a pattern of recognition of

the data and arrives at a conclusion in an unbiased manner. ANN is traditionally

used in the control researches, and in recent years, it has been successfully applied

across a large range of domains such as image recognition, medicine, molecular

biology and, more recently, ecological and environmental sciences (Iglesias et al.

2004, Tutu et al. 2005).

A number of researchers have attempted to develop classification and prediction

techniques for spectral estimations (Mathers et al. 2002 Ding et al. 2005, Le et al.

2005). Zhang et al. (2002, 2004) also reported that the separation of the spectra of

healthy tomato plants from infected ones with infection stage 3 or above is reliable

due to the consistency of the results from Principle Components Analysis (PCA) and

cluster analysis as well as image analysis. Those traditional methods, such as PCA,

Discriminate Function Analysis (DFA) and Hierarchical Cluster Analysis (HCA),

using spectral data alone do not generally produce high classification accuracy (Tso

and Mather 2001). Moreover, these statistical analyses are based on the following

assumptions: normal distribution and absence of collinearity among input variables

(Johnston 1980). Hence, the objective of this study is to explore the capability of an

ANN to build a spectral prediction model for discriminating Phytophthora infestans

infection on tomatoes.

2. Materials and methods

2.1 Data collection

Spectral data were collected from tomato fields in the Salinas Valley, California. The

tomato field used for the collections was approximate 40 acres in size and the spectra

were collected at an early to middle fruit stage. A detailed description and

experimental data can be found in Zhang et al. (2004).

We measured the spectral reflectance of canopies at 1 m above the canopy using

spectrometer GER-2600. The wavelength of the measurement was in the spectral

region range of 400–2500 nm. To take the impact of soil background into account,

we also collected the soil spectra in the field. We rated late blight infection severity

into five stages (table 1).

Table 1. Late blight infection stages and symptoms.

Infections Infection Stages Symptoms

Healthy No infections No infection symptom was observed on the leaves
LB1 Infection stage one One lesion on one or two leaves
LB2 Infection stage two One lesion on more than two leaves
LB3 Infection stage three Two lesions can be seen on one or more leaves
LB4 Infection stage four Two lesions on over half the canopy leaves

1694 X. Wang et al.
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Advanced Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral images

were acquired at low flight altitude for the fields containing late blight infections in

Salinas Valley, California. The spectra had 224 bands with a band span of ,10 nm

at 400–2500 nm. However due to inadequate quality of some bands in the original

image, we conducted a preliminary image process to eliminate those low quality

bands which resulted in a hyperspectral image with 180 bands for the analysis. The

image had a spatial resolution of 4 m. The ATmospheric REMoval program

(ATREM) developed by University of Colorado (Center for the Study of Earth

From Space 1999) was used to calibrate the image before analyses. The spectra were

extracted from the pixels with known disease infection stages and these AVIRIS

spectra were then used for developing the prediction models using ANN.

2.2 The Artificial Neural Networks (ANNs)

In the early 1940s, McCulloch and Pitts (1943) explored the competitive abilities of

networks made up of theoretical mathematical models when applied to the

operation of simple artificial neurons. The structure of an ANN defines the overall

architecture of the network, including one input layer, one output layer, and usually

one or two hidden layers (figure 1). Each neuron receives a weighted sum from each

neuron in the preceding layer and provides an input to each neuron of the next layer.

Thus,

net~
Xn

i~1

WiXi ð1Þ

where net is the summation of the input signal, Wi denotes an element of the weight

vector w, and Xi is an element of the input vector x. For a given network and input

vector, the output vector is totally determined by the weights. The process of finding

Table 2. The ANN influential parameters used during training.

Layer of hidden
neurons*

Activation
function

Learning
rate

Momentum
constant

Convergence
criterion Epochs

1 Tan-sigmoid 0.05 0.9 1e-10 2000
2 Tan-sigmoid,

Linear
0.05 0.9 1e-10 2000

Note: *represents the layer number of hidden neurons, for example, 1 layer
denotes one hidden layer (i.e. 4, 8, 12 neurons) and 2 is two hidden layers (i.e.
25-12, 25-9, 12-8, 12-4 neurons).

Figure 1. Typical ANN structure.
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optimal weights is called ‘‘training’’. The training algorithm used in this study was

back-propagation. In this process, the input units and their desired output value are

set for the network. The activations of the units are then calculated, feeding forward

layer-by-layer from the inputs to the output. A logistic threshold function was used,

O~
1

1ze{net
ð2Þ

where O is the output of the network. Once the network output value has been

produced, it is compared with the target output specified in the training data set.

Following this comparison, a backwards adjustment of the weights is performed and

the training is stopped when the minimum error for test data found.

MSE~
1

n

Xn

1

P{Oð Þ2 ð3Þ

where MSE is the mean square error considering prediction (P) and observed values

(O) for n testing data vectors. The correlation coefficient (r) or determination

coefficient (R2) was used to evaluate the prediction. When r51, there is a perfect

positive linear correlation between P and O. When r521, there is a perfectly linear

negative correlation between P and O. When r50, there is no correlation between P

and O. Intermediate values present partial correlation.

In our study, the input vector consists of three values (wavelength, soil value and

spectral value). These variables were all normalized. The output values were

encoded as 0–1 [1 for healthy tomatoes, 0.75 for tomatoes with infection stage 1

(LB1), 0.5 for tomatoes with infection stage 2 (LB2), 0.25 for tomatoes with

infection stage 3 (LB3) and 0 for tomatoes with infection stage 4 (LB4), respectively]

for different levels, respectively. The field data and remote sensing image data were

divided into training and testing data sets. The ANN parameters were: learning rate

0.05, the momentum constant 0.9 and the values of MSE were 10210. The only

difference is the activation function, Tan-sigmoid for one hidden layer and Tan-

Sigmoid and Linear for two hidden layers, respectively. The success of training was

determined with the average sum square value between desired output vector and

the predicted value.

3. Results

3.1 Waveband selection

The spectra used in this study cover the full range of wavelengths, 400–2500 nm. The

Visible/Near Infrared (VNIR) portion of the spectrum (400–1050 nm) has a spectral

resolution of approximately 3 nm at 700 nm wavelength. The short-wave infrared

(SWIR) region is measured by two detectors: SWIR1 (900–185 nm) and SWIR2

(1700–2500 nm). The higher reflectance is normally seen in the NIR range than in

visible range for the vegetation. In order to find the best discriminating wavebands

between diseased and healthy spectra, we select the representative spectral

reflectance, whose wavelength is from 750 to 1350 nm for field collected data and

from 700 to 1105 nm for image extracted data in this study (figure 2(a), 2(b)). The

reflectance of the vegetation canopies in these regions shows an obvious difference

between different infection stages. Compared with field spectra, the differences in

remote sensing spectra are smaller in the full range of wavelengths. The spectra

differences of healthy plants and plants with LB1 are higher for the field collected

1696 X. Wang et al.
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data than for the image extracted data. Hence, the ultimate selection of the spectra

data is then used to build for ANN analysis.

3.2 Network selection

A neural network that uses gradient-descent error learning is designed and used in

our prediction. The neural network has one input and one output. In the training of

Figure 2. Mean spectra of the healthy and infected tomato plants at infection stages 1, 2, 3
and 4. The range of two arrows denotes sampling interval. (a) Represent the field data and (b)
denote the remote sensing data.
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a BP neural network, three inputs (wavelength, soil value and spectral value) and

one output vector sets are generated from the experiments, half of the total number

of field data points (537/1074) and of image data points (192/392) are used as the

training set. Due to the characteristic of sigmoid activation function, training data

are standardized and thus the training data are scaled to a range of 0.1¡0.9 (rather

than 0.0¡1.0). The number of neurons in the hidden layer is generally selected from

the different levels, such as one hidden layer (i.e. 4, 8, 12 layers) and two hidden

layers (i.e. 25-12, 25-9, 12-8, 12-4), and 25-9 neurons in the hidden layer were found

to be successful in the training process for both field data and image data. The

training process has been completed in approximately 2000 iterations. When the

training is completed, a neural network is designed using the obtained weights. The

logarization of MSE for the different networks are presented in figure 3(a) and

figure 3(b) for the two layers network, the log MSE is much bigger than for the three

layers. In the three layers network, a 3-25-9-1 network is chosen and it can be

successfully modelled for the current data.

3.3 ANN prediction

We conducted the prediction of field data sets and image data sets using the 3-25-9-1

ANN. Training data setting is based on the 50%–50% sampling technique. Initially,

one-half of the cases are randomly selected and used with the BP network.

Subsequently, the BP networks are trained for 2000 iterations. The root mean

squared training error achieved by the networks is approximately 10210. Determining

the training ending point for the BP network is a tricky task. After training, the

correlation coefficient between training and predictive values reaches 0.98 for field

data and 0.99 for image data, respectively. Because of large sample size (98 training

data points) of the image data, the correlation coefficient for image data was higher.

As shown in figure 4, when the output values calculated by ANN are compared

with the desired values, the correlation coefficient reached 0.99 for field data and

0.82 for image data. The correlation of r50.99 indicates a reasonable agreement

between these values. However, this model is weaker (r50.82) in predicting the

disease infection in image data. This is because, in the image extracted data, there

were two predicted values (one for healthy plants and the other for the plants with

LB4 infections) deviated from the observed values. When we remove the two values,

the correlation coefficients increased to 0.93.

The sensitivity, specificity, and area under the ROC curve across different cutoff

scores indicate that a cutoff score of 4 results in the least error of classification

(figure 5). The ROC curves rise rapidly and then reach a plateau for the two samples.

The analysis of field data area under ROC curve (0.994) did not differ from that of

image data (0.992). This indicates a high sensitivity and a low false-positive rate and,

therefore, an adequate degree of accuracy.

3.4 Using image extracted spectra data to predict the field disease conditions

Due to fewer surveyed points in image data, we divided the field data into discrete

intervals and averaged the points within each one, and two data sets therefore could

be matched, as illustrated in figure 6. As mentioned before, the data set is randomly

divided in two subsets with 196 spectral data points. Initially, the first data set is

used to train the BP network and determine the MSE value. It is found that 500

iterations are sufficient for the task. A linear regression analysis comparing the

1698 X. Wang et al.
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outputs to observed data produces a coefficient of correlation of 0.78, indicating

that approximately 61% (determination coefficient, R250.61) of the variability of
field data is explained by remote sensing image data alone (figure 7), and that only

approximately 39% of the variability is caused by other factors. However, the

Figure 3. Legalisation of training MSE curve of backpropagation neural network for field
data and remote sensing data.
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application of remote sensing is usually used for image classification based on

ground truth information. This backward approach is not often used in

applications.

3.5 Using field data to predict disease conditions in the image extracted data

When we used the same network structure, and used field spectra data to predict the

field disease conditions from the image extracted spectra data, the results were

Figure 4. Oberved versus predicted values of artificial neural network for field data and
remote sensing data.
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relatively successful. The results reveal a higher correlation coefficient (r50.81) than

prediction of field data using image data (figure 8). In other words, the accuracy of

prediction for the disease infection increased when we predicted the infection of field

disease conditions through image extracted data using the field collected data as the

training set. Figure 8 also indicates that it is possible to use remote sensing to

monitor large field disease conditions and the health of the crop growth.

4. Discussion

In our study, ANNs have been shown to be able to model and predict infection

levels of late blight on tomatoes based on the input spectral and soil data. This

approach provides quite highly accurate classification of infection for both field

collected spectra and image extracted spectra. Regarding the use of ANN method in

spectral analysis, several authors have reported its superiority in predicting infection

stage and over other statistic methodologies (Uno et al. 2005). From table 3, we can

see that the prediction for field spectra data is much better than that for the image

extracted spectra data. In this study, the correct classification rate of ANN

prediction for stage 1 are 100% for both field data and image data. Therefore, it can

be said that the ANN method can accurately classify the healthy and diseased

tomato plants. Since stage 2 contains 3.7% and 4% of spectra samples with the

healthy tomato plants, 0.9% and 28% with the infected plants of stage 3, 0.9% and

8% stage 4 for field data and image data, respectively. The stage 3 includes 2.8% and

20% of spectra samples with the infected plants of stage 4. For the image data, it is

difficult to distinguish the spectra with infection stage 4 and stage 5. The stage 5

contains only 1 stage 4 for both field data and image data, respectively.

It is also important for many applications to utilize the appropriate classification

methods. To some extent, the hierarchical cluster is limited to classifications, which

shows the drawbacks of unsupervised classification. For comparison purposes,

table 4 summarizes the results of various cluster classification methods. The

Healthy, LB1, LB2, LB3, LB4 are clustered separately under complete linkage,

unweighted average distance (UPGMA), weighted average distance (WPGMA),

Figure 5. ROC curves for ANN prediction of field and image data. The diagonal line
indicates an index that performs no better than chance.
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unweighted centre of mass distance (UPGMC), and weighted centre of mass

distance (WPGMC) methods. It is clear that the cluster effects are much smaller

than the ANN method which was described in our study.

Although spectral reflectance depended on amount of green vegetation, variation

in leaves and/or canopies alone did not explain all the variability in spectral values.

There are several possible reasons for the inconsistencies between the field spectra
and the image spectra. First of all, soil reflectance affects spectral measurements.

Second, light responses vary with different biological features, such as green leaf,

Figure 6. Sampling spectra for field data and remote sensing data.

1702 X. Wang et al.
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leaf litter, and bark optical properties. Finally, spectral collection for field and image

data was performed at different times.

Generally speaking, all modelling methods have embedded inherent strengths and

weaknesses in some aspects. ANNs act as a ‘‘black box’’ approach to the description

Figure 7. Scatter plot of remote sensing data, field data and least-squares regression line
(r50.78).

Figure 8. Scatter plot of field data, remote sensing data and least-squares regression line
(r50.81).
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of the relationship between the input variables and the output layer. Even though

ANN predicts the biological features, it will not tell us about the functional form

between the input and output variables. The weight matrices of the network do not

have any direct meaning. Namely, the performance of ANN depends on the quality

and the number of training samples, rather than its own good generalization

capability. Considering the limited number of image extracted data sets used to train

the network, additional data points would undoubtedly improve the performance of

the model for the remote sensing prediction. In our study, we only obtain 195

sample data sets in the range of 700–1130 nm which is only 1/10 of field data sets.

Accounting for the difference between field measurement and remote sensing

sampling techniques, we should concentrate more on how to improve the accuracy

remote sensing data, such as adding sampling data points. In our study, although

the ANN model showed a better predictability, we could not obtain an accuracy

greater than 90%. This may be influenced by training data, and further studies

should be conducted to improve these parameters.

The analysed results of the remote sensing image data and field spectra data

provide useful information for agricultural field management (Bryant and Moran

Table 3. Number and percentage of uncorrect classification of spectral samples.

Level Field data (107) Image data (25)

1
2 LB1:4 (3.7%) LB1:1 (4%)

LB3:1 (0.9%) LB3:7 (28%)
LB4:1 (0.9%) LB4:2 (8%)

3 LB1:1 (0.9%) LB2:2 (8%)
LB2:2 (1.9%) LB4:5 (20%)
LB4:3 (2.8%)

4 LB3:1 (0.9%) LB5:8 (32%)
LB5:1 (0.9%) LB3:1 (4%)

5 LB4:1 (0.9%) LB3:1 (4%)

Table 4. Comparison between performances of the five hierarchical cluster methods.

Cluster Cluster 1

(215)

Cluster 2

(215)

Cluster 3

(215)

Cluster 4

(215)

Cluster 5

(215)Method

complete LB1: 134 LB2: 139 LB2: 126 LB3: 79 LB3: 7
LB2: 69 LB3: 11 LB3: 11 Lb4: 136 Lb5: 208
Lb4: 12 Lb4: 65 Lb4: 78

UPGMA LB1: 134 LB2: 139 LB2: 126 LB3: 79 LB3: 7
LB2: 69 LB3: 11 LB3: 11 Lb4: 136 Lb5: 208
Lb4: 12 Lb4: 65 Lb4: 78

WPGMA LB1: 139 LB2: 202 LB2: 178 LB2: 96 LB3: 7
LB2: 64 LB3: 11 LB3: 11 LB3: 12 Lb5: 208
Lb4: 12 Lb4: 2 Lb4: 26 Lb4: 107

UPGMC LB1: 134 LB2: 127 LB2: 87 LB3: 81 LB3: 7
LB2: 69 LB3: 11 LB3: 11 Lb4: 134 Lb5: 208
Lb4: 12 Lb4: 77 Lb4: 117

WPGMC LB1: 142 LB1: 71 LB2:126 LB2:12 Lb4: 7
Lb2: 61 LB2: 71 LB3: 11 LB3: 3 Lb5: 208
Lb3: 12 LB3: 62 Lb4:78 Lb4: 200

Lb4: 11

1704 X. Wang et al.
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1999 Zhang et al. 2002, Karpouzli and Malthus 2003). This study is aimed at testing

the feasibility of looking for spectral differences between healthy and Phytophthora

infestans infected tomatoes with ANN combining remote sensing image data with

field spectra data. The fungus Phytophthora infestans caused the late blight that

spreads quickly in tomato fields. Once the tomatoes are infected, the symptoms of

late blight first appear on leaves, which will gradually change colour from green to

yellow, then the fungus will infect the stems and fruits. The spectral reflectance of
green vegetation in the red band (0.6–0.7 mm) is most sensitive to leaf chlorophyll

and pigment contents while the near infrared (NIR) band (0.7–0.9 mm) is most

sensitive to biomass (Kurschner et al. 1984, Blakeman 1990). The sampling strategy

is affected by the leaf canopy of healthy and diseased plants (Barker and Pinard

2001). The reflection of incident energy depends on both the properties of tomatoes

leaves and the structure of its cover. If the cover is less than 100%, then the

reflectance properties of the underlying soil will also be captured in the remotely

sensed data. Therefore, future work is necessary to validate these findings for
canopy reflectance with greater variability before this method will be ready for

adoption by the farmers. Understanding the impact of disease on levels of pigments

will also assist in future studies. In this study, our results showed that the ANN

method is successful for discriminating between healthy and unhealthy tomatoes

with high accuracy. Farmers will be able to use the predicted disease result from

hyperspectral remote sensing images to prevent the spread of disease before

significant economic loss occurs. Our study provides a means for precise disease

management for tomatoes.
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