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ABSTRACT

Under a hypothesis that the host–parasite interaction system is governed by genome-for-genome inter-
action, we propose a genetic model that integrates genetic information from both the host and parasite
genomes. The model can be used for mapping quantitative trait loci (QTL) conferring the interaction
between host and parasite and detecting interactions among these QTL. A one-dimensional genome-scan
strategy is used to map QTL in both the host and parasite genomes simultaneously conditioned on se-
lected pairs of markers controlling the background genetic variation; a two-dimensional genome-scan
procedure is conducted to search for epistasis within the host and parasite genomes and interspecific
QTL-by-QTL interactions between the host and parasite genomes. A permutation test is adopted to calculate
the empirical threshold to control the experimentwise false-positive rate of detected QTL and QTL inter-
actions. Monte Carlo simulations were conducted to examine the reliability and the efficiency of the
proposed models and methods. Simulation results illustrated that our methods could provide reasonable
estimates of the parameters and adequate powers for detecting QTL and QTL-by-QTL interactions.

THE interaction between a host and a parasite is a
ubiquitous biological phenomenon, which has a

significant impact on ecology, evolution, and agriculture.
Host–parasite interaction drives the coevolution of both
the interacting species (Hamilton 1980; Thompson

1994). It is believed that host–parasite coevolution has
generated much of the biological diversity on the earth
(Rausher 2001). Processes analogous to the host–
parasite coevolution also occur in agricultural systems.
When breeders release disease-resistant crop varieties,
new virulent pathogen strains will rapidly emerge to
overcome the resistance of the crop.

Host–parasite interaction is genetically controlled by
both the host and the parasite genomes. Most studies on
the genetic mechanisms of host–parasite interaction
and coevolution have focused on related major genes
of both the host (termed resistance genes) and the
parasite (termed infection or virulence genes). Several
models have been proposed to describe the relationship
between the host resistance gene and the parasite
infection gene. In plants, the most prevalent model is
the gene-for-gene (GFG) model, in which the disease
resistance of a host occurs only when its resistance (R)
gene is matched by the parasite avirulence (AVR) gene
(Flor 1971; Thompson and Burdon 1992). In animals,
the most prevalent model is the matching-alleles model,

in which a host can defend against any parasite whose
genotype does not match the host’s genotype (Peters

and Lively 1999; Agrawal and Lively 2001). These
two models represent two ends of a continuum (Agrawal

and Lively 2001).
The GFG model has become the theoretical basis for

plant disease-resistance breeding and has substantial
molecular evidence. It has been known that R and AVR
genes are responsible for the mutual recognition
between plants and pathogens. During the past decade,
.40 plant R genes have been cloned (Martin et al.
2003), all of which follow the GFG model. In addition,
two pairs of R and AVR genes (Pto/AVR-Pto and Pita/
AVR-Pita) have been proved to interact directly via their
encoded proteins (Scofield et al. 1996; Tanget al. 1996;
Jia et al. 2000). Although the resistance and infection
genes play the most important roles in the host–parasite
interaction, they are not the only genes involved. In fact,
host–parasite interaction is a complicated biological
process, in which many genes apart from the resistance/
infection genes in either the host or the parasite
genome are involved. In addition, many host–parasite
interactions do not rely on the resistance/infection
genes, but are presumably controlled by many genes
with minor effects. Therefore, host–parasite interaction
is actually a complex system controlled by many genes of
both species. To completely understand the genetic
basis of host–parasite interaction, it is necessary to study
not only the resistance/infection genes, but also many
related minor genes.
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With the advent of molecular marker technology,
mapping of quantitative trait loci (QTL) has become a
powerful tool for dissecting the genetic architectures of
complex traits. Systematic statistical methods for QTL
mapping have been well established (Lander and
Botstein 1989; Haley and Knott 1992; Zeng 1994;
Kao et al. 1999; Ljungberg et al. 2004). However, all the
genetic models for QTL mapping proposed to date are
limited to single species. Consequently, QTL mapping
for host–parasite interaction can be performed only
either in the host or in the parasite. In fact, most QTL
mapping studies on the plant–pathogen interaction
reported have been focused on the plant (host) side.
Since the host–parasite interaction involves the genetic
control of both the host and the parasite genomes, a
comprehensive understanding of the genetic basis of
host–parasite interaction requires knowing not only the
genes involved in host and parasite, but also the
interaction between host genes and parasite genes.
Hence, current genetic models of QTL mapping are
not adequate for the full dissection of the genetic
architecture of host–parasite interaction.

By considering host and parasite as an integrated
biological system and assuming a genome-by-genome
interaction mechanism in the system, we propose a
general quantitative genetic model for the host–parasite
interaction. The genetic model fits our current knowl-
edge on the genetic basis of host–parasite interaction
and enables us to simultaneously detect QTL and their
interactions related to host and parasite. Monte Carlo
simulations are conducted to demonstrate the applica-
tion of the host–parasite model to mapping QTL under
a special experimental design.

GENETIC MODELS

In quantitative genetics, there is a basic formula for
describing a quantitative trait,

P ¼ m 1 G 1 e; ð1Þ

where P is the phenotypic value, m is the mean of the
population, G is the genotypic effect, and e is the
environmental deviation. Although the original for-
mula is limited to a single species, it can be extended
to describe the interaction between a host and a
parasite. Suppose PHP is the phenotypic value of a trait
(e.g., disease index) reflecting the host–parasite in-
teraction. Obviously, the trait is genetically controlled
by both the host genome and the parasite genome.
Therefore, the genotypic effect (G) can be partitioned
into components due to host genotypic effect (GH),
parasite genotypic effect (GP), and genotypic interac-
tion between host and parasite (GGHP), so that the basic
formula can be rewritten as

PHP ¼ m 1 GH 1 GP 1 GGHP 1 e: ð2Þ

This extended formula provides us with a general ge-
netic model for the analysis of host–parasite interaction.

A detailed genetic model of host–parasite interaction
depends on the genetic structures of both the host and
the parasite in a specific experimental design. Without
loss of generality, we can use the plant–fungus interac-
tion as a model to address the basic principle of our
methodology. An obvious feature of this system is that
the sporophyte generation is generally dominant in the
host (plant) life cycle, while the gametophyte genera-
tion is generally dominant in the parasite (fungus) life
cycle. Therefore, the host is generally diploid and the
parasite is generally haploid. For simplicity, we consider
the situation of using a population of doubled haploid
lines (DHLs) of the host derived from a cross between
two pure lines (PH

1 and PH
2 ) and a population of haploid

strains (HSs) of the parasite derived from a cross
between two strains (PP

1 and PP
2). Suppose the number

of DHLs is nH and that of HSs is nP. Both the host
population and the parasite population have been
genotyped with molecular markers, and their corre-
sponding genetic maps have been constructed. The
host DHLs are randomly inoculated by the parasite HSs
and the symptom of each inoculation combination is
measured as an index of interaction between the host
DHL and the parasite HS. There is a constraint that each
host line or parasite strain is involved in at least one
inoculation.

On the basis of the above experimental design, we can
set up a genetic model of the plant–fungus interaction.
Suppose that there are sH QTL in the host genome
(Q H), sP QTL in the parasite genome (Q P), tH epistatic
QTL pairs in the host genome (EQ H), tP epistatic QTL
pairs in the parasite genome (EQ P), and tHP pairs of
interspecific QTL interactions between the host ge-
nome and the parasite genome (EQ HP). When trilocus
or higher-order interactions are ignored, the host–
parasite (plant–fungus) interaction can be expressed
with the genetic model

yij ¼ m 1
XsH

k¼1

aH
k jki 1

XsP

l¼1

aP
l zlj 1

XtH
m 6¼n

aaHH
mn jmijni

1
XtP

q 6¼r

aaPP
qr zqj zrj 1

XtHP

u;v

aaHP
uv juizvj 1 eij ; ð3Þ

where yij is the trait value (symptom) of the ith host
(plant) DHL and the jth parasite (fungus) HS; m is the
model mean; aH

k is the additive effect of the kth Q H; aP
l is

the additive effect of the lth Q P; aaHH
mn is the EQ H effect be-

tween the mth and the nth Q Hs; aaPP
qr is the EQ P effect be-

tween the qth and the rth Q Ps; aa HP
uv is the EQ HP effect

between the uth Q H and the vth Q P; jki (jmi , jni , or jui) is
a dummy variable taking a value of 1 or �1 when the
genotype of the kth (mth, nth, or uth) Q H in the ith DHL
is like that of PH

1 or PH
2 ; zlj (zqj , zrj , or zvj) is also a dummy

variable taking a value of 1 or �1 when the genotype of
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the lth (qth, rth, or vth) Q P in the jth HS is like that
of PP

1 or PP
2; and eij is the residual error, which is gener-

ally assumed to follow a normal distribution with zero
mean.

METHODOLOGY OF QTL MAPPING

Model (3) provides a theoretical basis for simulta-
neously mapping host (plant) and parasite (fungus)
QTL underlying the host–parasite interaction and for
estimating the intragenomic and intergenomic QTL
interactions. When fitting (3), it involves a problem of a
multidimensional search of multiple loci in two ge-
nomes. We adopt a two-step mapping strategy, by which
QTL are first searched for individual effects using a one-
dimensional (1D) scan throughout the host and para-
site genomes and then for intra- and intergenomic QTL
interactions using a two-dimensional (2D) scan with the
previously mapped individual QTL fixed in the model.
After the mapping procedure is finished, all the
detected QTL and QTL interactions are integrated into
(3) to estimate their effects.

Scanning for QTL in the host and parasite genomes:
The 1D scan is performed following the principle of
composite-interval mapping (Zeng 1994). But we select
marker intervals (pairs of adjacent markers) instead of
individual markers as cofactors in the model. This would
enable more efficient control of the effects of back-
ground QTL presumably located in the selected marker
intervals, because the effect of a QTL could be com-
pletely absorbed by its flanking markers (Zeng 1993).
Suppose vH marker intervals in the host and vP marker
intervals in the parasite are selected as cofactors, re-
spectively. Define two dummy variables, fH and fP,
which take values of 1 and 0 when the test is performed
on a putative QTL in the host genome or 0 and 1 when
in the parasite genome. Thus, according to (3), the
model for testing a putative QTL in either the host
genome or the parasite genome can be written as

yij ¼ m 1 aHxifH 1 aPzj fP 1
XvH

k

ða�k j�ki 1 a1
k j1

ki Þ

1
XvP

l

ðb�l z�lj 1 b1
l z1

lj Þ1 eij

¼ m 1 aHxifH 1 aPzj fP 1 jia 1 zj b 1 eij ; ð4Þ

where aH (or aP) is the additive effect of the putative
QTL in the host (or parasite) genome; xi (or zj) is the
expected value of the indicator variable of the putative
QTL in the ith host DHL (or jth parasite HS),
conditioned on the genotypes of its flanking markers
( Jiang and Zeng 1997); a�k and a1

k (or b�l and b1
l ) are

the additive effects of the left and the right markers of
the kth (or lth) marker interval in the host (or parasite)

genome; and j�ki and j1
ki (or z�lj and z1

lj ) are indicator
variables for the genotypes of the left and the right
markers of the kth (or lth) marker interval in the ith host
DHL (or jth parasite HS) following the similar defini-
tions of jfi (or zg j) in (3).

Model (4) can be expressed in matrix form as

y ¼ W1b1 1 W2b2 1 e; ð5Þ

where y is an n 3 1 vector of trait values; b1 ¼ ½m;a9;b9�9
and b2 ¼ ½aHfH; aPfP�9; W1 and W2 are the design
matrices corresponding to b1 and b2, respectively; and
e is an n 3 1 vector of residual errors. A general equation
for the expected reduction sum of squares of b2 can be
obtained,

E SSRðb2 jb1Þ½ � ¼ Eðy9WW1y � y9W1W1
1 yÞ

¼ tr W92M1W2Eðb2b92Þ½ �1 s2
eðr W � r W1Þ;

ð6Þ

where W ¼ ðW1
..
.

W2Þ, M1 ¼ I�W1ðW91 W1Þ�W91, rW is
the rank of W, and rW1

is the rank of W1. Accordingly,
under the null hypothesis H0: b2 ¼ 0, an F-test can be
performed on the basis of Henderson’s method III:

F ¼ SSRðb2 jb1Þ=ðrW � rW1Þ
SSE=ðn � rWÞ

ð7Þ

(Searle et al. 1992). The F-test can be performed across
the host genome (fH ¼ 1 and fP ¼ 0, for H0: aH ¼ 0)
and the parasite genome (fH ¼ 0 and fP ¼ 1, for
H0: aP ¼ 0) with a step length of 1 cM. When the F-
values in a region exceed a predefined critical thresh-
old, a QTL is indicated at the position of the maximum
F-value.

In regard to the selection of cofactor marker intervals,
we adopt a method similar to that of marker pair
selection (MPS) (Piepho and Gauch 2001) to select
cofactor marker intervals. The MPS approach has the
advantage that markers enter the model in adjacent
pairs, which reduces the number of models to be
considered, thus alleviating the problem of overfitting
and increasing the chances of detecting QTL. For the
kth marker interval of the host (M H�

k , M H1
k ) or the lth

marker interval of the parasite (M P�
l , M P1

l ), a single-
marker interval model can be written as

yij ¼ m 1 a�k j�ikfH 1 a1
k j1

ik fH 1 b�l z�jl fP 1 b1
l z1

jl fP 1 eij ;

ð8Þ

where all the parameters and variables have the same
definitions as in (4). With Equation 8, F-tests are used
for testing all marker intervals on the basis of Hender-
son’s method III. Marker intervals showing F-values
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greater than the given critical threshold are taken as
candidate marker intervals.

Detecting intra- and intergenomic interactions be-
tween QTL: Suppose sH Q H’s and sP Q P’s have been
mapped in the 1D scan. Obviously, interaction between
these QTL can be tested easily by a model selection
technique analogous to the strategy of multiple-interval
mapping (Kao et al. 1999). However, there may be
interactions involving some QTL not detected by the 1D
scan due to small or even no individual effects. To find
all possible QTL interactions, we adopt a 2D scan
procedure, which tests any possible pair of loci within
and between the host and parasite genomes, condi-
tioned on the effects of the Q H’s and Q P’s mapped by
the 1D scan. In addition, we select marker-interval pairs
that show significant interactions between them and put
them into the model as cofactors to control background
variance. Suppose we select fH and fP pairs of marker
intervals within the host and parasite genomes and fHP

pairs of marker intervals between the host and parasite
genomes. For simplicity, the interaction between two
marker intervals (A and B) is approximately repre-
sented by the interactions between the left markers
(A� and B�) and between the right markers (A1 and
B1) of the two intervals. Thus, the significance of EQ H,
EQ P, or EQ HPof any pair of loci (denoted by f and h) can
be tested with an F-statistic based on Henderson’s
method III, using the model

yij ¼ m 1 aaHH
fh xif xihfH 1 aaPP

fh zjf zjhfP 1 aaHP
fh xif zjhð1� fHÞð1� fPÞ

1
XsH

k¼1

aH
k jki 1

XsP

l¼1

aP
l bl zlj 1

XfH
l

aaA�B�

jl jA�

il jB�

il 1 aaA1B1

jl jA1

il jB1

il

h i

1
XfP

m

bbA�B�

jm zA�

im zB�

im 1 bbA1B1

jm zA1

im zB1

im

h i

1
XfHP

n

abA�B�

jn jA�

in zB�

in 1 abA1B1

jn jA1

in zB1

in

h i
1 eij ; ð9Þ

where aaHH
fh and aaPP

fh are QTL interactions within the
host and parasite genomes, respectively; aaHP

fh is QTL
interaction between the host and parasite genomes;
aaA�B�

jl and aaA1B1

jl (bbA�B�

jm and bbA1B1

jm ) are interac-
tions between the left and between the right markers of
the lth (mth) pair of marker intervals in the host
(parasite) genome; abA�B�

jn and abA1B1

jn are interactions
between the left and between the right markers of the
nth pair of marker intervals between the host and
parasite genomes; and the remaining parameters and
variables have the same definitions as above. The 2D
genome scan can be performed within the host (fH ¼ 1
and fP ¼ 0, for H0: aaHH ¼ 0) or the parasite (fH ¼ 0
and fP ¼ 1, for H0: aaPP ¼ 0) genome for intrage-
nomic QTL interactions and between these two ge-
nomes (fH ¼ 0 and fP ¼ 0, for H0: aaHP ¼ 0) for
intergenomic QTL interactions.

Selection of significant interactive marker-interval
pairs used as cofactors in (9) is performed with the

following model using an F-statistic based on Hender-
son’s method III:

yij ¼ m 1 aaA�B�jA�

i jB�

i fH 1 aaA1B1

jA1

i jB1

i fH

1 bbA�B�zA�

j zB�

j fP 1 bbA1B1

zA1

j zB1

j fP

1 abA�B�jA�

i zB�

j ð1� fHÞð1� fPÞ

1 abA1B1

jA1

i zB1

j ð1� fHÞð1� fPÞ

1
XvH

k

ða�k j�ik 1 a1
k j1

ik Þ1
XvP

l

ðb�l z�jl 1 b1
l z1

jl Þ1 eij :

ð10Þ

All the parameters and variables in (10) have been
defined above. The cofactor marker intervals used in
(4) are also fixed in (10) to reduce residual variance and
increase the power of detecting marker-interval inter-
actions. We can perform this test on all possible pairs of
marker intervals in the integrated host–parasite genetic
system and consequently get a 2D F-statistic profile,
according to which marker-interval pairs corresponding
to the peaks of F-values that exceed the predefined
significance threshold value can be selected.

Threshold determination and model selection: Every
step of the analysis discussed above (marker-interval
selection, 1D scanning for QTL, marker-interval pair
selection, or 2D scanning for QTL pairs) involves the
problem of testing multiple null hypotheses. Therefore,
multiple-test correction is needed. We can adopt the
method of permutation tests (Churchill and Doerge

1994; Doerge and Churchill 1996) to control the
experimentwise false-positive rate. For each of the steps,
we shuffle only the relationship between the trait and
the effect(s) to be tested but leave the relationships be-
tween the trait and the other effects unchanged because
if the relationships between the trait and the nontested
effects are destroyed, an artificially low empirical
threshold could be obtained from the permutation tests
and thus an enormously high false-positive rate would
be obtained (Churchill and Doerge 1994). This is
done by shuffling the row order of the design matrix of
the testing effects (e.g., W2 in Equation 5).

Furthermore, in each of the steps, the F-statistic
profile is plotted and the peaks that exceed the critical
F-value calculated by permutation tests are identified as
significant marker intervals, QTL, marker-interval pairs,
or QTL pairs. However, some of the peaks could be
ghost peaks due to the correlation of closely linked
markers and random noise, etc. So, we perform a
stepwise model selection with also the aforementioned
F-statistic as criteria to remove possible ghost peaks
(marker intervals, QTL, marker-interval pairs, or QTL
pairs). The threshold of the F-value at a significance
level of a=K is used to control the type I error rate in the
model selection, where K is the number of tests in each
forward or backward selection process in the stepwise
selection procedure.
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MONTE CARLO SIMULATIONS

Real data sets necessary to validate the concept and
method presented in this study are not yet available in
the public domain. To examine the feasibility, reliability,
and robustness of the proposed models and analysis
methods, we performed simulation studies. The genetic
maps of host and parasite were assumed to have five and
three chromosomes, respectively. Eleven markers were
evenly spread over each of the host and parasite
chromosomes with spacing of 10 cM. Assuming that
there were five Q H’s and three Q P’s (Table 1), one EQ H,
one EQ P, and two EQ HP’s (Table 2), 60% of the trait
variation was attributed to the assumed interspecific
genetic architecture. The relative contribution (RC) of
individual QTL (additive effects) and QTL pairs (in-
teraction effects) ranged from 3.22 to�9.46% and from
3.45 to�6.57%, respectively; the population size of host
DHLs and parasite HSs was 200, respectively. The
number of host–parasite inoculation combinations was
set at three cases, namely 400 (case I), 600 (case II), and
800 (case III). Every case was simulated for 200 repli-
cates. For every analysis step in every case, an empirical
threshold of F-statistic at the experimentwise significance
level of 0.05 was estimated with 1000 permutation tests.

Simulation results are shown in Tables 1 and 2. In
general, our method could provide reasonably accurate
estimates of the parameters (positions, additive effects,
and interaction effects). The precisions of parameter
estimates and the statistical powers of QTL detection
increased with the increase of sample size. The increase
was considerable for those QTL or QTL pairs with small
RCs, indicating that a large sample is desirable for
detecting QTL and QTL interactions with minor RCs.
The powers of detecting QTL with RCs .5.0% were
.90.0% in all three cases. The simulation results
demonstrated the feasibility of our method for mapping
QTL underlying the host–parasite interaction.

DISCUSSION

Host–parasite interaction is a complex system con-
trolled by many genes from the host and parasite
genomes. For understanding the genetic basis of host–
parasite interaction, it is necessary to study the un-
derlying gene effects and their interactions from both
the host genome and the parasite genome. The method
proposed in this article integrates the host genome and
the parasite genome into a genetic model so that host
QTL and parasite QTL as well as their interactions can
be simultaneously detected.

In the past, because of no suitable QTL mapping
method, studies of QTL mapping for host–parasite
interaction were limited to single species especially of
the host side (Kover and Caicedo 2001). Such a single-
species-analysis approach cannot comprehensively dis-
sect the interspecific genetic architecture underlying
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the host–parasite interaction system, because it cannot
detect the interactions between host and parasite QTL.
In addition, the separated analysis approach would
possibly decrease the statistical powers of detecting
QTL and epistasis but increase the standard errors of
the estimates of QTL positions and effects in compar-
ison with the method proposed in this article. This was
demonstrated by analyzing the aforementioned simu-
lated data on the basis of the host genome and the
parasite genome separately (results not presented).
Take case I, for example. The powers of detecting Q H

1 ,
Q H

3 , Q H
4 , and Q H

5 decreased to 73.0, 82.0, 97.0, and
97.0%, and the powers of detecting Q P

1 , Q P
2 , and Q P

3

decreased to 86.5, 55.5, and 97.0%.
Sample size is an important factor determining the

statistical power in QTL mapping. With the objective of
mapping QTL in both the host and the parasite
genomes and detecting their QTL interactions, rela-
tively large population sizes are required for both the
host and the parasite. We conducted a simulation study
with a sample size of 400 generated from 200 host DHLs
and 20 parasite HSs. In that case, each host DHL was
inoculated by 2 different parasite HLs and each parasite
HS was inoculated to 20 different host DHLs. As
compared with the result of case I, the powers of
detecting parasite QTL decreased by about half and
the precision of effect estimation of these QTL re-
markably decreased. It was not only because of the small
size of the parasite population, but also because many
data points were dependent, resulting from the multi-
ple inoculations of each parasite HS. In our opinion, an
ideal design for our method is using two large popula-
tions (at least .200) of host and parasite with the same
size and inoculating each host line by each different
parasite strain for only one time. However, in practice, it
might be quite difficult to conduct such a balanced
design. Our simulation study demonstrated that if one
host line (or parasite strain) was involved in inoculation
no more than four times, it would not generate much
independent data but still result in reasonable mapping
results. In addition, the accuracy of estimated QTL
effects is another important issue in QTL mapping. It
was shown in the simulation study that the biases of all of
the QTL-effect estimates were ,5%. However, the
genomewide scan approach tended to overestimate

the QTL effects (Goring et al. 2001). Any conclusion
based on QTL-effect estimates should take into consid-
eration the estimation bias.

In principle, the general genetic model proposed in
this article could be applicable to all sorts of host–
parasite interactions and the corresponding QTL map-
ping methodology would be suitable for all sorts of
interactions between eukaryotic hosts and parasites.
The detailed QTL mapping method presented could
be directly applied to researching the genetic architec-
ture of plant diseases caused by fungal pathogens. A
suitable example would be rice blast, the most devastat-
ing fungal disease of rice, because the genomes of both
rice and the fungal pathogen (Magnaporthe grisea) have
been sequenced.

Every species interacts with other species in the eco-
system. There are various interactions between species
such as competition and symbiosis. The host–parasite
interaction is only one case of them. The method of
QTL mapping for host–parasite interaction could be
applied to other types of between-species interaction in
principle, as long as a suitable trait could be found to
quantitatively reveal the between-species interaction.
Sometimes there might be several traits reflecting the
between-species interaction from either or both of these
species. For example, in an interaction system of food
competition between two species, the growth rate of
either species could be taken as a trait representing the
interaction between the two species. In this case, it
would be recommended to analyze the traits jointly for
QTL mapping. Several methods of joint analysis of
multiple traits for QTL mapping have been proposed
( Jiang and Zeng 1995; Wu et al. 1999). Following
similar principles, the genetic model of between-species
interaction could also be extended for QTL mapping on
the basis of multiple traits. This would probably increase
the statistical power of QTL mapping.

Genotype-by-environment interaction could also be
considered in the between-species interaction analysis.
The interaction between two species might be different
under various environments. It has been revealed that
the geographical separation may cause unique ecolog-
ical and evolutionary dynamics of host and parasites at
different locations (Benkman 1999; Burdon and Thrall

1999). The reciprocal selection between plants and

TABLE 2

Estimation of pairwise QTL for epistasis effects, and statistical powers

QTLi QTLj

True value Estimate of effecta Power (%)

Effect RC (%) Case I Case II Case III Case I Case II Case III

Q H
1 Q H

5 �2.9 3.45 �2.85 (0.53) �2.74 (0.58) �2.73 (0.54) 60.5 92.0 99.5
Q P

1 Q P
3 3.0 3.69 2.93 (0.55) 2.79 (0.59) 2.68 (0.62) 61.0 94.5 97.5

Q H
2 Q P

1 4.0 6.57 3.83 (0.59) 3.81 (0.57) 3.77 (0.53) 74.5 96.0 98.5
Q H

4 Q P
3 �3.5 5.03 �3.36 (0.68) �3.42 (0.50) �3.43 (0.48) 95.0 98.5 100.0

a Mean and standard error (in parentheses) of 200 simulation replicates.
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parasite usually occurs in a subset of locations or co-
evolutionary hotspots (Thompson 1999). Therefore, as
a prospect, a more general genetic model of between-
species interaction should not only integrate the genetic
information of both species, but also consider the
influence of the macro- and microenvironmental fac-
tors on the expression of the genes and gene interaction
to fit the interacted traits from both species.
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