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Abstract. Grain yield (GY) of rice is a complex trait consisting of several yield components. It is of great importance to
reveal the genetic relationships between GY and its yield components at the QTL (quantitative trait loci) level for multi-trait
improvement in rice. In the present study, GY per plant in rice and its 3 yield component traits, panicle number per plant
(PN), grain number per panicle (GN), and 1000-grain weight (GW), were investigated using a doubled-haploid population
derived from a cross of an indica variety IR64 and a japonica variety Azucena. The phenotypic values collected from
2 cropping seasons were analysed by QTLNetwork 2.0 for mapping QTLs with additive (a) and/or additive × environment
interaction (ae) effects. Furthermore, conditional QTL analysis was conducted to detect QTLs for GY independent of
yield components. The results showed that the general genetic variation in GY was largely influenced by GN with the
contribution ratio of 29.2%, and PN and GN contributed 10.5% and 74.6% of the genotype × environment interaction
variation in GY, respectively. Four QTLs were detected with additive and/or additive × environment interaction effects
for GY by the unconditional mapping method. However, for GY conditioned on PN, GN, and GW, 6 additional loci were
identified by the conditional mapping method. All of the detected QTLs affecting GY were associated with at least one
of the 3 yield components. The results revealed that QTL expressions of GY were contributed differently by 3 yield
component traits, and provide valuable information for effectively improving GY in rice.

Additional keywords: yield component traits, QTL, conditional mapping.

Introduction

Grain yield (GY) in cereals is one of the most important
and complex traits in plant breeding experiments. Continued
improvement of GY remains the top priority in most of the
breeding programs (Yan et al. 2002). In rice, GY depends
on various growth and component traits, and is the final
outcome of a combination of different yield components, such
as the panicle number per plant, the filled grain number per
panicle, and the weight per grain (Yoshida 1983). Therefore,
it is of significance to reveal the genetic contribution of yield
component traits to GY. Since Donald (1968), many breeders
have paid much attention to the concept of plant ideotypes
and proposed several models for high-yielding rice, such as the
‘heavy-panicle’ and the ‘multi-panicle’ types. It was suggested
that an increase in GY could be effectively achieved through
yield component improvement since yield components have
higher heritability than GY (Xiong 1992). The correlation and
path analyses have revealed the relationships between GY and
its yield components at both the phenotypic and genetic levels
(Xiong 1992). However, the implications in those studies to
breeding practice were limited due to complicated correlations
between GY and its yield components, which were disturbed
to varying degrees by numerous factors such as environmental
effects and experimental error etc. (Risch 2000; Darvasi and

Pisanté-Shalom 2002). Selection of yield components was not
highly effective in increasing GY, because of their negative
correlations to each other (Li et al. 1998). Until now, our
understanding of the genetic basis of correlation among
quantitative traits has remained unresolved.

Recent advances in molecular marker techniques and
statistical methods facilitated the analysis of quantitative trait
loci (QTLs) (Lander and Botstein 1989; Wang et al. 1999). Many
QTL mapping experiments for GY and its yield components
have been conducted based on the separate phenotypic values
(Lin et al. 1996; Lehmensiek et al. 2006; Musial et al. 2006).
Some QTLs associated with GY, coinciding with those for
yield components, were usually regarded as pleiotropic QTLs
or closely linked loci (Lin et al. 1996). It was revealed that
correlated traits often have QTL(s) at the same chromosomal
locations (Albert et al. 1991; Paterson et al. 1991; Julier et al.
2007). Yan et al. (1999) reported that pairs of traits with higher
genetic correlations would share more common QTL regions
than those with smaller genetic correlations. Zhuang et al. (1997)
suggested that pleiotropism rather than the close linkage of
different QTLs might be the major reason for the correlation
among related traits. A common problem of these analyses is that
QTL mapping for related traits was conducted by considering the
phenotypic values rather than conditioning one trait on the other
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related traits. However, to condition one trait on the other(s) can
provide statistical estimates of the effects and positions of QTLs,
and detect their genetic relationships at the QTL level (Zhu 1999;
Zhao et al. 2006). The genetic basis and relationship of GY with
its yield components at the QTL level in rice are still poorly
understood and needs to be determined.

Zhu (1995) proposed conditional analysis methods, which
can be used to exclude the contribution of a causal trait to the
variation of the resultant trait. The remaining variation of the
resultant trait is defined as conditional variation, or net variation,
which indicates the extra effects of genes that are independent
of the causal trait (Atchley and Zhu 1997). This method has
been used to study the dynamic behaviour of developmental
traits in cotton (Zhu 1995) and mice (Atchley and Zhu 1997).
Recently, this method was extended and applied to the analysis
of conditional variation of the resultant trait on multiple related
traits in cotton (Wu et al. 2004; Wen and Zhu 2005). To
investigate the genetic relationship between 2 traits at the QTL
level, a statistical procedure for analysing conditional genetic
effects combined with the QTL mapping method, namely the
conditional QTL mapping method, was proposed (Zhu 1999). It
could distinguish whether the QTL of the target trait is associated
with its component trait or not. The conditional QTL mapping
method has been used to study the net QTL effects at different
developmental stages of plant height and tiller numbers in rice
(Yan et al. 1998a, 1998b; Cao et al. 2001), and to explore the
QTLs contributed to the conditional variation of a resultant trait
on its related traits (Guo et al. 2005).

In the present study, panicle number per plant (PN), filled
grain number per panicle (GN), and 1000-grain weight (GW)
in a rice doubled-haploid (DH) population were investigated
and their genetic contribution to GY was calculated (Zhu 1995).
Then, QTLs for observed and conditional phenotypic values of
GY were obtained by the HAB method of QTL mapping (Yang
et al. 2007). Our objective was to evaluate the genetic influence
of variation in yield components on GY, and further to study the
genetic relationships between GY and its 3 yield components at
the level of an individual QTL by comparing the QTLs obtained
by the unconditional mapping method for GY and conditional
mapping methods for GY when conditioned on each of 3 yield
components.

Materials and methods
Plant materials
A population of 129 DH lines developed from the cross between
the indica variety IR64 and the japonica variety Azucena was
used in the experiment. IR64 is a semi-dwarf variety carrying
the sd1 gene, Azucena is a traditional upland variety from the
Philippines (Causse et al. 1994; Huang et al. 1994), and their DH
lines were derived from F1 anther culture following Guiderdoni
et al. (1992). The seeds of all materials were provided by the
International Rice Research Institution (IRRI), the Philippines.
In previous studies, 6 restriction enzymes (DraI, EcoRV, HindIII,
ScaI, XbaI, and EcoRI) were used for a parental polymorphism
survey, and 175 markers comprising 146 RFLP, 3 isozymes,
14 RAPD, and 12 cloned genes were selected (Causse et al.
1994; Huang et al. 1994). The linkage map established by
Huang et al. (1994), covering all 12 rice chromosomes of

2005 cM with an average spacing of 11.5 cM, was used for
QTL analyses.

Field experiments and trait evaluations
The field experiments were conducted at the experimental farm
of the South China Agricultural University, Guangzhou, China
(approx. 113◦E, 23◦N). The experiments were performed in
2 growing seasons, spring (March–August, denoted E1) and
fall (August–December, denoted E2), in the year 2002. These
2 growing seasons are different in climate, especially day length.
The same set of DH lines and the 2 parents were evaluated in
each of the 2 growing seasons by randomised complete block
design with 2 replications. The germinated seeds were sown in
a seedling bed, and then seedlings were transplanted to a paddy
field 30 days later, with a single plant per hill spaced at 0.3 m by
0.2 m. Each plot consisted of four 3-m-long rows with 16 plants.
Ten plants in the middle of the inner 2 rows of each plot were
investigated to score the following traits for each plant: panicle
number (PN, the number of panicles at maturity), grain number
(GN, the number of filled grains per main panicle at maturity),
and 1000-grain weight (GW, weight in g of 1000 grains from bulk
homogenised seeds at 12–14% moisture). Then the grain yield
per plant (GY, weight in g of total filled grains of each plant)
was calculated by GY = (PN × GN × GW)/1000. The average
measurements over 10 individuals within a plot for each of the
selected traits were used in the data analysis.

Genetic model and conditional analysis
The genetic model for agronomic traits with
genotype × environment (GE) interaction effects (Zhu 1994)
was used to study the inheritance of GY and its 3 yield
components. Unconditional genetic analysis was conducted
based on the phenotypic values (y) for each trait, which can be
partitioned by the following mixed linear model:

y = 1µ + UEeE + UGeG + UGEeGE + UBeB + eε

= 1µ +
5∑

u=1

Uueu (1)

where µ is the fixed population mean; 1 is a vector with all
elements equal to 1; eu is the uth vector of random effects,
eu ∼ N (0, σ2

uI) (I is an identity matrix); Uu is the uth known
design matrix for eu; and the capital letter subscript, i.e. E,
G, GE, and B, represents the environmental, general genotypic,
GE interaction, and the block effects, respectively. Conditional
genetic analysis was conducted based on the phenotypic values
of GY conditioned on each yield component trait, which
were obtained by the method described by Zhu (1995). The
conditional phenotypic values of GY were partitioned by the
following mixed linear model (Zhu 1994):

y(GY|YC) = 1µ(GY|YC) +
5∑

u=1

Uueu(GY|YC) (2)

where (GY|YC) denotes GY conditioned on one yield
component; and y(GY|YC) indicates the vector of conditional
values of GY without the influence of one yield component
trait. The definition of the remaining parameters and variables
in Eqn 2 is same as those in Eqn 1. Both the unconditional
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and conditional variance components were estimated by a
minimum norm quadratic unbiased estimation (MINQUE)
method in which all prior values were set to 1.0 (Zhu
1994). Then the total heritability (h2

G+GE = (VG +VGE)/VP )
was partitioned into general genetic heritability (h2

G = VG/VP )
and the interaction heritability (h2

GE = VGE/VP ) (Zhu 1994). In
addition, the contribution ratio (CR) of a casual trait (C) to a
target trait (T) was calculated by: CR(C→T ) = 1.0 − V(T |C)/V(T )

(where V(T |C), V(T ) are the conditional and the unconditional
variance, respectively). The Jack-knife re-sampling technique
(Miller 1974) was applied to calculate the t-statistic for testing
the significance of each of the parameters involved in the model.
All of the aforementioned analyses were performed by the
software QGAStation (Chen and Zhu 2003).

QTL mapping
A newly developed QTL mapping method (Yang et al. 2007) was
used to detect QTLs with additive and/or additive × environment
interaction effects. One-dimensional genome scan procedure
was conducted to generate F-statistic profiles. The critical
F-value to declare putative QTLs and to control the genome-
wise type-I error was accommodated by 1000 permutation
tests. When the F-values for a region exceed a pre-defined
critical threshold value for type I error rates of 0.05, a QTL
is indicated at that position with the regional maximum F-value.
Both the observed phenotypic values (y(GY)) and the conditional
phenotypic values (y(GY|YC)) were used for QTL mapping
analyses. The QTLs identified from the observed phenotypic
data were named as unconditional QTLs, and the QTLs detected
for the conditional phenotypic values were defined as conditional
QTLs attributed to the net genetic variation of GY independent
of yield components. The analyses for both the unconditional
and conditional QTL mapping were performed by the software
QTLNetwork 2.0 (Yang et al. 2007).

Results

Trait performance

The average performance and other descriptive statistics of the
2 parents and the DH lines in 2 growing seasons for GY and
its 3 yield components are summarised in Table 1. The results
revealed that IR64 showed greater PN and GY but smaller GN

and GW than Azucena. The phenotypic performance of these
traits coincided with the ideotypes of the 2 parents, namely
IR64 is the ‘multi-panicle’ type while Azucena is the ‘large-
panicle’ type (Guiderdoni et al. 1992). These results were also
in agreement with those of Courtois et al. (1995) and Bagali
(1997). No matter how large or small the trait difference between
2 parental lines, the variation of each trait in the DH population
was large and continuous. The standard deviation (s.d.) ranged
from 2.7 (in E2 for PN) to 37.5 (in E2 for GN). Significant
transgressive segregations were observed for all traits examined,
which might be attributed to the association of all the alleles of
similar effects, either positive or negative, at the multiple QTLs.
Environmental effects were also apparent for all 4 traits studied.
The values of PN were larger but the other traits were smaller in
E1 than in E2, with the exception that Azucena had larger GY
in E1 than in E2.

Components of variances and heritabilities

Table 2 compares the estimates of genetic variance and
heritability components of GY and its 3 component traits. The
PN and GW explained relatively large general heritabilities,
general genetic variances accounting for ∼43.3% and 40.6%
of their phenotypic variances, respectively. Grain yield had
the smallest general genetic heritability among the 4 traits
investigated. The heritability of GY for GE interaction was
larger compared with the 3 components traits. Among the
3 component traits of PN, GN, and GW, the GE interaction
variances explained 0.8%, 2.3%, and 0.3% of their phenotypic
variations, respectively. It was observed that GY and its yield
components were mainly controlled by general genetic effects,
but not much influenced by GE interaction effects. The result
revealed that the inheritance of these traits was stable across
environments.

Contribution ratios for each yield component to GY

Contribution ratios (CR) of 5 factors (phenotypic,
environmental, general genetic, genotype × environment
interaction, and residual effect) for each yield component
to GY in rice are presented in Table 3. Variations of all 5
factors in GY were associated with the phenotypic variation
of yield components. In the phenotypic variation of GY, the

Table 1. Phenotypic values of 2 parents and the DH population in 2 growing seasons for GY
and its yield components in rice

GY, PN, GN, and GW indicate grain yield per plant in rice and its 3 component traits (panicle number
per plant, grain number per panicle, and 1000-grain weight), respectively. E1 and E2 represent the

spring season and the fall season, respectively. s.d., Standard deviation

Trait Environment Parent The DH population
IR64 Azucena Mean s.d. Min. Max.

PN E1 15.7 6.2 11.8 3.0 5.5 21.4
E2 13.1 5.2 10.0 2.7 1.8 18.7

GN E1 83.3 153.6 71.1 36.1 0.3 160.5
E2 102.1 160.5 107.4 37.5 27.0 225.2

GW E1 23.3 27.4 23.5 3.2 13.0 32.7
E2 25.3 29.9 25.1 3.2 17.8 34.9

GY E1 30.4 26.1 19.8 10.2 0.2 48.7
E2 33.8 24.9 27.0 8.3 5.4 54.4
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Table 2. Estimated variance and heritability components of grain yield
and its components

GY, PN, GN, and GW indicate grain yield per plant in rice and its
3 component traits (panicle numbe per plant, grain number per panicle, and
1000-grain weight), respectively. * and ** indicate that the parameters are
significantly different from zero at P = 0.05 and 0.01, respectively. VG and
VGE are the general genetic variance and GE interaction genetic variance,
respectively. h2

G and h2
GE are the general heritability and the GE interaction

heritability, respectively

Parameters PN GN GW GY

VG 3.936** 482.247** 4.425* 14.982**
VGE 0.075 39.388 0.027 4.679*
h2

G 0.433** 0.287** 0.406** 0.160**
h2

GE 0.008 0.023 0.003 0.050

Table 3. Estimated contribution ratios of each yield component to GY
CRP , CRE , CRG, CRGE, and CRe are the contribution ratios of a given yield
component to phenotypic, environmental, general genetic, GE interaction,
and error effects on GY, respectively. PN, GN, and GW indicate the given
yield components (panicle number per plant, filled grain number per main

panicle, and 1000-grain weight), respectively

Yield CRP CRE CRG CRGE CRe

components

PN 0.042 –0.498 0.048 0.105 0.104
GN 0.610 0.981 0.292 0.746 0.626
GW 0.011 0.164 –0.089 0.001 0.015

3 yield components of PN, GN, and GW contributed 4.2%,
61.0%, and 1.1%, respectively. The GY variation derived from
environmental factors contributed by the phenotypic variation
of GN and GW was 98.1% and 16.4%, respectively. The

environmental variation of GY was decreased by 49.8% due to
the phenotypic variation of PN. It implied that environmental
factors might cause the variation in PN, which then restrained
the variation of GY. Correspondingly, 4.8% and 29.2% of
the general genetic variation of GY was associated with the
phenotypic variation of PN and GN. Since the contribution ratio
of GW to GY was negative, the general genetic variation in GY
would increase when excluding the influence of GW. It implied
that the expression of genes on GY might be constrained by
the phenotypic variation of GW. The phenotypic variations
of the 3 yield components contributed partially to the GE
interaction variation in GY, but the contributions of GN to GY
were largest in magnitude among them. So it is suggested that
improving GY with the ‘large-panicle’ type could be effective
in special environments. In addition, the error in GY largely
originated from the phenotypic variations of PN and GN, which
accounted for 10.4% and 62.6% of the total error variation
of GY, respectively. It was thus suggested that reducing the
variations of PN and GN would enhance the accuracy of genetic
analysis in GY.

Unconditional and conditional QTLs in GY

In total, 10 QTLs affecting GY were detected on chromosomes
1, 2, 3, 4, 7, 8, and 12 (Fig. 1). The estimated additive effects (a)
and predicted additive × environment interaction effects (ae) of
the detected QTLs are listed in Table 4. The results indicated
that chromosomes 4, 7, and 8 had 2 QTLs each. Each of the
remaining chromosomes (1, 2, 3, and 12) had only one QTL
(Fig. 1). Of these 10 QTLs, only 4 QTLs (1–15, 4–12, 7–5,
and 8–9) were detected by the unconditional QTL mapping
method, and the conditional QTL mapping method identified all
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Fig. 1. Genome locations of unconditional and conditional QTLs detected for GY in rice. GY, GY|PN, GY|GN, and GY|GW
indicate grain yield in rice and grain yield conditioned on one of 3 yield components (panicle number per plant, filled grain number
per main panicle, and 1000-grain weight), respectively.
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Table 4. Unconditional and conditional QTLs with significant a effects and/or ae effects for GY in rice
QTLs are nominated with the chromosomal number and the serial number of the marker interval on the
chromosome. GY, GY|PN, GY|GN, and GY|GW indicate grain yield in rice and grain yield conditioned on one
of 3 yield components (panicle number per plant, filled grain number per main panicle, and 1000-grain weight),
respectively. a and ae are the additive and the additive × environment interaction effects. All estimated values were
significant at the level of P < 0.05. The signs of QTL effects indicate the directions of IR64 alleles affecting GY.

Numerals in parentheses are the contribution ratio of the corresponding QTL effect

QTL GY GY|PN GY|GN GY|GW
a ae a ae a ae a ae

1–15 2.852 1.757 1.202 3.292
(0.062) (0.033) (0.031) (0.090)

2–7 –1.604
(0.037)

3–17 1.350
(0.034)

4–8 1.164
(0.019)

4–12 –2.050 –2.578 – –2.131
(0.050) (0.058) (0.054)

7–5 –0.769 –1.690 –0.820 –1.535 – – –0.809 –1.710
(0.008) (0.030) (0.009) (0.027) (0.009) (0.031)

7–11 0.720 –0.753
(0.011) (0.018)

8–9 –2.429 –2.065 –1.375 –2.266
(0.058) (0.051) (0.036) (0.056)

8–15 1.348
(0.031)

12–9 1.173
(0.023)

QTLs (Fig. 1 and Table 4). The number of QTLs controlling GY
conditioned on 3 component traits was different for each of the
yield components. Four unconditional QTLs affecting GY were
also detected when conditioned on PN or GW. Conditioned on
GN, however, 2 unconditional QTLs (4–12 and 7–5) were not
identified again, but 6 extra QTLs were detected for the first time.
A total number of 8 QTLs, therefore, were defined conditioned
on GN (Fig. 1 and Table 4). Comparing the effect difference
of an unconditional QTL and a conditional QTL, one can find
whether or not the QTLs for GY were associated with their yield
components. When the effect of a conditional QTL is largely
changed or unable to be detected again, the QTL is considered to
be partially or completely contributed by the given/conditioned
yield component trait. When a conditional QTL has a similar
effect to its unconditional QTL, it demonstrates that the QTL for
the unconditional trait (GY) is independent of its conditioned
trait (yield component). In Table 4, the unconditional QTLs
4–12 and 7–5 controlling GY failed to be detected when GY
was conditioned on GN, suggesting that the expression of these
2 QTLs is completely associated with the variation in GN. But
these 2 QTLs were detected again with similar effects when
given PN or GW; they thus were considered to be independent
of PN and GW. Similarly, QTL 8–9 was independent of PN and
GW, but was partially contributed by GN since the conditional
and the unconditioinal effects of the QTL were largely different.
QTL 1–15 for GY was detected with different effects conditioned
on each of the 3 yield component traits compared with the
unconditional QTL. It thus was considered to be partially
associated with the variation of all 3 component traits.

Six additional QTLs (2–7, 3–17, 4–8, 7–11, 8–15, and
12–9) associated with GY, which failed to be detected in the
unconditional mapping, were identified with significant effects
when conditioned on GN. It was thus suggested that expressions
of these QTLs for GY were completely suppressed by the trait
GN, and their effects could only be revealed when the influence
of the variation of GN was removed.

Discussion

Grain yield in rice is a complex trait, which is the combination
of different yield components (Yoshida 1983). The yield
component traits, however, are less environmentally sensitive
and have higher heritabilities than grain yield (Yano and
Sasaki 1997). In the present study, the estimated general
genetic heritabilities of PN, GN, and GW were 43.3%, 28.7%,
and 40.6%, respectively; while only 16.0% in GY (Table 2).
Therefore, yield components are often treated as indirect traits
for improving grain yield. To dissect the complex relationship
and to reveal the net contribution of one trait to another, the
conditional analysis approach was proposed by Zhu (1995).
This method can effectively analyse the dependencies among
variables by estimating conditional variances after removing
their causal influence. Using this method, we explored the net
contribution of each yield component to the yield trait (GY). It
was observed that the contribution of GN was the largest among
the 3 yield components, and various types of variations of GY
were mostly due to the phenotypic variation of GN. It suggests
that GY can be effectively improved by enhancing the grain
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number per panicle (GN) in rice plants. Meanwhile, reducing the
variation in GN would enhance the accuracy of genetic analysis
in GY.

In the classical Mendelian approach, it was very difficult
to identify the individual genes controlling a quantitative trait
(Comstock 1978). Recent advances in QTL mapping facilitated
the analysis of the genetic basis of quantitative traits at the single-
locus level (Lander and Botstein 1989; Zeng 1994, 2005; Zeng
and Weir 1996; Yang et al. 2007). QTLs for rice yield and its
components have been reported (Champoux et al. 1995; Courtois
et al. 1995; Xing et al. 2002), and pleiotropy or close linkage
of QTLs has been assumed as the basis of relationships among
them (Paterson et al. 1991; Zhuang et al. 1997; Julier et al.
2007). However, a common problem associated with the QTL
mapping analyses regarding yield and its components reported
so far was based on the separate analysis of each trait. There is
no obvious evidence that pleiotropy or close linkage of QTLs
would result in genetic correlation among the traits of interest. It
is nonetheless impossible to reveal the complex genetic basis of
trait correlation by these methods (Zhu 1995; Guo et al. 2005).
To effectively identify the influence of one trait on another trait
at the QTL level, the conditional genetic analysis approach (Zhu
1995) combined with the QTL mapping method was proposed
(Zhu 1999). Guo et al. (2005) applied this method to identify the
QTLs for yield in rice with different component influences, but
the QE effects were ignored due to the data being derived only
from one environment in their study. The present investigation
revealed several QTLs, i.e. the unconditional and conditional
QTLs, independent, partial, and completely correlated QTLs
associated with GY. Any QTLs for GY detected in this study were
associated with at least one of the 3 component traits. It further
demonstrates that application of unconditional and conditional
mapping methods could reflect the net contribution of each of
the causal traits to the resultant trait at the QTL level, which
might be a useful way to improve the desirable (resultant) traits
at the QTL level important for breeding.

Understanding expression patterns of QTLs is one of the
major goals in quantitative genetics. According to the theory
of developmental genetics, genes are expressed differently at
different times and growth stages (Atchley and Zhu 1997). Many
studies indicated that the expression of QTLs is affected by
many factors, such as environments (Zhuang et al. 1997), genetic
background (Li et al. 1998; Xing et al. 2002), developmental
stages (Yan et al. 1998a, 1998b; Cao et al. 2001), and related
traits (Guo et al. 2005; Zhao et al. 2006). According to
expression patterns, QTLs can be classified into at least 5 types,
namely non-specific, environment-specific, genotype-specific,
stage-specific and trait-specific QTLs. Non-specific QTLs are
the most stable since their expression is not influenced by
inner and external factors, and they can be used under various
conditions. The other 4 types of QTLs are unstable, and are
suitable only under specific conditions. In this study, we found
that 2 QTLs (7–5 and 7–11) were environment-specific since
they had ae effects. One QTL (1–15) was found to be regulated
by all 3 component traits, and the remaining 9 QTLs were
regulated by GN. So these QTLs can be suggested as trait-
specific, and might be suitable only in this population for marker-
assistant selection and QTL cloning. Their expressions would be
different if another population with different yield component

traits was used. Obviously, the genetic basis of quantitative traits
is extraordinarily complex, and is the comprehensive effect of
various types of QTLs on a trait. This perhaps is one explanation
for why QTLs of a trait could be detected differently by using
various environments, experimental materials, development
stages, and mapping populations. In breeding practice, selections
should be applied especially with non-specific QTLs due to their
stable expression. It is also preferable to select the superior gene
or trait combination rather than the single gene or trait due to the
interactions between loci or traits.

Comparing both the unconditional and conditional QTL
mapping methods, some new QTLs controlling the target trait
could be detected by conditional QTL mapping (Yan et al.
1998a, 1998b; Cao et al. 2001; Guo et al. 2005). In this study,
conditional QTL mapping detected 6 new QTLs, which failed
to be detected by unconditional QTL mapping, and the total
number of QTLs detected for GY was larger than that detected
only by the unconditional mapping method. Using the same
mapping population as this study, we had a comprehensive work
based on phenotypic evaluation and detailed GE analysis for
11 traits (Hittalmani et al. 2003). Although it was conducted
at 9 different locations across 4 countries in Asia, only 3 GY
QTLs were identified by the unconditional mapping method,
and their expressions were suggested to be environment-specific.
In the given study, we detected 10 GY QTLs by the method
of unconditional mapping combined with conditional mapping
based on data only in 2 different seasons at one location, and
2 of the QTLs were identified to be environment-specific. In
addition, conditional QTL mapping may be helpful to distinguish
the pleiotropic effect or gene linkage for QTLs that contribute to
both traits in the same genomic intervals. For example, QTL
1–15 might be pleiotropic since it controls GY and 3 yield
components simultaneously. Generally, 2 close-vicinity QTLs
for 2 traits may be regarded as a pleiotropic QTL if their effects
change due to conditional mapping. Conversely, they are more
likely to be closely linked QTLs if the effects of unconditional
and conditional QTLs coincide.
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