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Abstract

The development of an organism represents a complex dynamic process, which is controlled
by a network of genes and multiple environmental factors. Programmed cell death (PCD), a phys-
iological cell suicide process, occurs during the development of most organisms and is, typically,
a complex dynamic trait. Understanding how genes control this complex developmental pro-
cess has been a long-standing topic in PCD studies. In this article, we propose a nonparametric
model, based on orthogonal Legendre polynomials, to map genes or quantitative trait loci (QTLs)
that govern the dynamic features of the PCD process. The model is built under the maximum
likelihood-based functional mapping framework and is implemented with the EM algorithm. A
general information criterion is proposed for selecting the optimal Legendre order that best fits the
dynamic pattern of the PCD process. The consistency of the order selection criterion is established.
A nonstationary structured antedependence model (SAD) is applied to model the covariance struc-
ture among the phenotypes measured at different time points. The developed model generates a
number of hypothesis tests regarding the genetic control mechanism of the PCD process. Exten-
sive simulation studies are conducted to investigate the statistical behavior of the model. Finally,
we apply the model to a rice tiller number data set in which several QTLs are identified. The de-
veloped model provides a quantitative and testable framework for assessing the interplay between
genes and the developmental PCD process, and will have great implications for elucidating the
genetic architecture of the PCD process.
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1 Introduction

As a physiological cell suicide process that occurs during the development of
most organisms, programmed cell death (PCD) is typically a complex dynamic
longitudinal trait (Ameisen, 2002). PCD functions as a defense mechanism
against disease or virus attacks, to balance an organism’s metabolism (Elis et
al., 1991). It is involved in multiple developmental stages of an organism: cell
differentiation, proliferation, aging and dying, and can be mathematically de-
scribed by five distinguishable developmental phases (Cui et al., 2006). PCD
has been universally observed in a wide range of phyla spanning from plants
and animals to humans (Jacobson et al., 1997; Pennell and Lamb, 1997; Vaux
and Korsmeyer, 1999). While its role in shaping an organism’s development
has been unanimously recognized, the mechanisms underlying this complex
developmental process are poorly understood (Vaux and Korsmeyer, 1999). It
is highly expected that identifying genes that contribute to this unique process
would greatly enhance our understanding of the pathogenesis of important dis-
eases such as cancer (Hanahan and Weinberg, 2000; Yuan and Horvitz, 2004)
and, ultimately, help us to explore opportunities to therapeutically prevent,
control and treat diseases (Martin, 2006).

PCD-related phenomena have been studied experimentally using simple
structure model systems such as the nematode Caenorhabditis elegans and the
fruitfly Drosophila. Several PCD-associated genes have been identified under
experimental conditions (Ellis and Horvitz, 1986; Horvitz, 1999, 2003; Yuan
and Horvitz, 2004). The identification of PCD genes in more complicated
organisms, such as humans or flowering plants, however, has not been quite
successful. This is partly due to the higher-order complex structure of these
organisms. Before the positional cloning of a candidate gene, a natural way
to target those genetic regions harboring PCD-related genes is to implement a
QTL mapping strategy. Considering the longitudinal feature of the PCD trait
(Ameisen, 2002), traditional QTL mapping that only considers the phenotypic
trait measured at a particular time point will be less powerful for detecting
PCD QTLs. More recently, a series of statistical models, called functional
mapping models, have been developed to map genes responsible for the dy-
namic features of a trait (Ma et al., 2002; Wu et al., 2004; reviewed in Wu and
Lin, 2006). By incorporating various well-established mathematical functions
into the mapping framework, functional mapping has flexibility for mapping
genes that underlie complex longitudinal traits. It has been applied to the
study of many genetic mechanisms of biological or biomedical processes, such
as allometric scaling (Wu et al., 2002), tumor progression (Liu et al., 2005),
HIV dynamics (Wang et al., 2004), and drug response (Lin et al., 2005). Spe-
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cific parametric functions have been adopted in these studies to fit specific
developmental patterns. Simulation and real data analysis from these stud-
ies indicate that functional mapping has high power to detect dynamic QTL
effects.

In real life, however, many biological characteristics, such as PCD, show
unique developmental patterns, which cannot be explained by currently avail-
able parametric mathematical functions or equations (Cui et al., 2006). Tra-
ditional parametric approaches, such as parametric regression, require spe-
cific quantitative information about regression forms. Hence, they do not
have enough flexibility to capture the nature of this process and have cer-
tain limitations in fitting a developmental PCD curve. To better understand
the dynamic gene effects that govern complex longitudinal PCD traits, two
major statistical issues need to be addressed: (1) How does one model the
mean curve to better capture the dynamic developmental pattern of the PCD
process? (2) How does one model the variation at different time points and the
intra-individual correlation structure to better explain the variations caused
by natural gene and environmental perturbations? These two issues form two
inter-related processes and should be clearly addressed to dissect the genetic
effects of major QTLs.

Recently, Cui et al. (2006) proposed a semi-parametric approach for
mapping PCD genes by dividing the overall development process into two sep-
arate stages and fitting them with different functions. This unique modelling
strategy brings advantages in fitting PCD trajectories, since it incorporates the
growth law in the early developmental stage. However, the growth function
needs at least three time points to estimate growth parameters, which could be
easily violated in practice. Moreover, the asymptote might not be reached to
allow it to be able to fit a logistic growth function (Lin and Wu, 2006). These
limitations certainly restrict the utility of a semiparametric approach. Re-
laxing the assumption of parametric and semi-parametric approaches, a more
natural way to fit the developmental process would be to use a nonparametric
approach, such as nonparametric regression (Hart and Wehrly, 1986; Müller,
1988; Altman, 1990; Fraiman and Meloche, 1994; Altman and Casella, 1995;
Boularan et al., 1995; Ferreira et al., 1997). These methods treat time as the
only explanatory variable and estimate the mean response curve by smoothing
the raw data. No study has been reported to apply these methods in genetic
mapping.

In genetic studies, the random regression (RR) model has been used
commonly for modelling dynamic additive effects in which the Legendre poly-
nomial (LP) is applied to fit the developmental curves, partly due to the nature
of the flexibility of the orthogonal polynomial (Pool et al., 2000a, 2000b; Kirk-
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patrick and Heckman, 1989). Lin and Wu (2006) recently applied the Legendre
polynomial to jointly model longitudinal traits and time-to-event data. The
authors applied regular AIC or BIC to select the Legendre order. However,
the consistency of order selection is not established, especially under the mix-
ture model-based multivariate functional mapping framework. Moreover, the
authors proposed to select the Legendre order only under the null hypothesis
(i.e., one mean trajectory). The same order was then assigned to different
QTL genotypes under the alternative (i.e., more than one mean trajectory)
across the whole linkage group. In general, the PCD structure is much more
complicated under the alternative than that under the null. This restriction
could lead to a potential under-fit of the data under the alternative at differ-
ent testing positions, and may consequently lead to information loss, such as
missing QTLs, or to wrong inferences such as false QTL detection and biased
QTL location estimation.

To overcome the limitations of the parametric and semiparametric ap-
proaches, in this article we will develop a nonparametric approach for mapping
QTL underlying the complex developmental PCD process. The Legendre func-
tion is applied to fit a dynamic PCD curve and the structured antedependence
(SAD) covariance structure is used to model the intra-individual correlation.
We further propose a general information selection criterion and study its con-
sistency property under the current mapping framework. The consistency of
the selection criteria is established and its small sample performance is eval-
uated through simulation studies. Detailed parameter estimation procedures
are given. Monte Carlo simulation studies and a real example using rice tiller
number data, are given to demonstrate the utility of the developed model.
Comparisons with current approaches are discussed.

2 Statistical Method

2.1 The Finite Mixture Model and Likelihood Function

For simplicity, we consider a standard backcross design. The model can easily
be extended to other genetic designs, such as an F2 design. Consider a back-
cross design, initiated with two contrasting homozygous inbred lines, in which
there are two genotypes at each locus. A genetic linkage map is constructed
with molecular markers, aimed at identifying QTL responsible for the PCD
process. The longitudinal PCD trait, such as cell count or other measurement
at tissue or organ level, is observed at a finite set of time points for each
individual. The observed PCD trait is quantitative in nature and its mean
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function can be modelled by a parametric or nonparametric function.
Suppose there is a putative segregating QTL, with alleles Q and q, that

affects the PCD trait, but with different degrees. In QTL mapping studies,
QTL genotype is generally considered as missing. Statistically, this is a miss-
ing data problem where the phenotypic trait at time t can be described by
a mixture of two mean functions for different genotypes. Assuming indepen-
dence and multivariate normality distribution, the joint likelihood function
conditional on the observed phenotype (y) and marker data (M) is given by

L(Ω|y,M) =
n∏

i=1

[π1|if1(yi|Ω,M) + π0|if0(yi|Ω,M)] (1)

where yi = [yi(t1), · · · , yi(tτ )] is the observed trait vector for individual i
(i = 1, · · · , n) over τ time points; πj|i (j = 0, 1) is the mixture proportion for
individual i with genotype j, which can be obtained based on the Mendelian
segregation theory (Lynch and Walsh, 1998); the unknown parameters in Ω

contain three sets of parameters, one defining the co-segregation between the
QTL and markers and, thereby, the location of the QTL relative to the mark-
ers, denoted by Ωq, and the other two defining the distribution of the PCD
trait for each QTL genotype, denoted by (Ωm,Ωv), where Ωm = (Ωm1

,Ωm0
)

defines the mean vector for different genotypes and Ωv defines the covariance
matrix among different time points.

The multivariate normal distribution for progeny i, which carries geno-
type j, can be expressed as

fj(yi|Ω,M) =
1

(2π)τ/2|Σ|1/2
exp

[
−

1

2
(yi − mj)Σ

−1(yi − mj)
T

]
, (2)

where mj = [mj(t1), · · · ,mj(tτ )] is the mean vector common for all individuals
with genotype j. At a particular time point (say t), the relationship between
the response and mean can be written as a linear regression model,

yi(t) = δim1(t) + (1 − δi)m0(t) + ei(t), (3)

where δi is an indicator variable with the value taken to be 1 or 0, depending
on j = 1 or 0, respectively, and ei(t) is the residual error, which is normal,
with mean zero and variance σ2(t). The errors for individual i at two different
time points, t1 and t2, are correlated with covariance cov(yi(t1), yi(t2)). The
variance and covariance parameters comprise the covariance matrix Σ, whose
elements are the common parameters specified by Ωv.
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2.2 Modelling the Mean PCD Process

One of the statistical challenges in mapping QTLs governing the PCD process
is how to model the dynamic mean function, m, given in Eq. (2). The chal-
lenge lies in the complexity of intra- and inter-individual variations, as well
as in the unique developmental pattern that the PCD process possesses. A
typical PCD developmental curve can be described by five stages (Cui et al.,
2006). No appropriate mathematical function or equation has been developed
to fit this unique developmental pattern. In fact, different organisms may
carry different PCD patterns, partly due to their mass differences. This also
makes it difficult to formulate a unified parametric function to describe the
developmental trajectory. A natural and flexible way to model this process
is in a nonparametric fashion that lets the data specify the best fit. Among
a pool of choices, the orthogonal Legendre function has shown a number of
merits for modelling genetics data (Pool et al., 2000a, 2000b; Kirkpatrick and
Heckman, 1989), and can thus be applied to model the PCD process.

Denote the Legendre polynomial (LP) of order r at time t as Pr(t). By
choosing different orders of orthogonal polynomials, the Legendre function has
the potential to approximate the functional relationships between trait values
and different time points to any specified degree of precision. The measurement
time can be adjusted to fit the orthogonal function range [-1, 1], by

t′ = −1 +
2(t − t1)

tτ − t1
, (4)

where t1 and tτ are the first and last measurement time points, respectively.
With an appropriate order r, the time-dependent genotypic means for

different QTL genotypes at time t can be fitted by the orthogonal LP. A family
of such polynomials is denoted by

P(t′) = [P0(t
′), P1(t

′), · · · , Pr(t
′)]T

and a vector of time-independent values, specific for genotype j with order r
is denoted by

uj = (uj0, uj1, · · · , ujr)
T .

This genotype-related vector is called the base genotypic vector, and the
parameters within the vector are called the base genotypic means for QTL
genotype j. A vector of polynomials P(t′) is also called the base function.
Then, the time-dependent genotypic values at time t, mj(t), can be described
as a linear combination of uj weighted by a series of the polynomials, i.e.

mj(t) = uTj P(t′) (5)
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Thus, for individual i, whose QTL genotype is j, its genotype means at
different time points can be modelled by the following vector

mj|i = [mj|i(t1), · · · ,mj|i(tτ )] (6)

This modelling approach has great flexibility in modelling curves in which
the logistic or other parametric functions do not fit. By choosing the appro-
priate order, the model can better capture the intrinsic developmental PCD
trend.

2.3 LP Order Selection

One of the major advantages in using a nonparametric approach is that the
best fit is specified by the data themselves, which offers a certain degree of
flexibility and accuracy in terms of model fitting. If the degree of LP is k
(the highest power of the polynomial), the order of LP is k + 1 (the number
of the coefficients defining the polynomial). The LP order selection is similar
to selecting variables in a regression study. Normally, a higher order always
provides a better fit. However, if a model contains too many parameters, it
will greatly reduce the model efficiency and increase computation burden. On
the other hand, if the developmental curve is fit by low orders, a model that
contains too few parameters will not be flexible enough to approximate impor-
tant features in the data. Consequently, this will result in a bias contribution
to the misfit, due to a lack of flexibility. In both cases, the use of poor or
redundant orders can be harmful. There should be a tradeoff between the LP
order and the model efficiency. It is essential to select the optimal LP order
without over- or under-fitting the PCD curve. One choice is to conduct the
order selection using an information-theoretic criterion.

A general form for the basic information criterion to select the LP order
can be given by

ICr(n) = −2 ln L(Ω̂|Y, r) + c(n)pr(τ) (7)

where the first term on the right hand side is the negative maximum log-
likelihood of the data Y , given the model parameter estimates; Ω̂ contains the
MLEs of mean and covariance parameters; pr(τ) represents the number of free
parameters, which only depends on the number of measurement time with an
order of r, i.e., pr(τ) = dimension(Ω|r); c(n) is a penalty term. The model
that minimizes the criterion is considered to be the optimal one. Clearly, both
the AIC and BIC information criteria are two special cases of this general
form, with AIC having c(n) = 2 and BIC having c(n) = τ log(n).
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When the proposed information criterion is applied to the current mix-
ture model-based likelihood framework, the consistency property of the selec-
tion criterion needs to be established. The consistency of a selection criterion
is defined as the probability of choosing the correct model approaching one as
sample size goes to infinity. Hence, a model selection criterion is consistent if

P [choose model M2] = P [ICr1(n) < ICr2(n)] → 1, as n → ∞

where we assume that M2 is the correct model; ICr1(n) and ICr2(n) are the
information criteria for models M1 and M2, with LP order r1 and r2, respec-
tively. For a backcross design assuming one QTL, there are two developmental
trajectories corresponding to two different genotypes. The density function for
each observation is modelled as a mixture of two distributions corresponding
to two different genotypes. To apply the selection criterion, we first show the
consistency property demonstrated by the following theorem.

Theorem Under the current functional mapping framework, a model selec-
tion criterion ICk(n) defined in Equation (7) is consistent if

c(n)[pr0(τ) − pr(τ)]

n
→ 0, as n → ∞

where r0 and r are the optimal and selected LP order, respectively.

Proof See Appendix B for a rigorous proof.
Based on the theorem, the regular AIC and BIC information criteria are

consistent under the current mixture model based functional mapping frame-
work. The asymptotic consistency is based on infinite sample size. In practice,
sample size is often limited. Simulation studies are designed to check the finite
sample performance of the selection criteria, which is given in section 3.

2.4 Modelling the Covariance Structure

Covariance structure modelling is another important and challenging step in
the functional mapping of PCD genes. Dissection of the intra-individual cor-
relation will help us to understand how QTLs mediate the developmental
pattern. The nonstationary nature of the covariance structure can be best de-
scribed by the structured antedependence (SAD) model (Jaffrézic et al. 2003).
The SAD model, with order p for modelling the error term in Eq. (3), is given
by

ei(t) = φ1ei(t − 1) + · · · + φpei(t − r) + ǫi(t) (8)
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where ǫi(t) is the “innovation” term assumed to be independent and distributed
as N (0, σ2

t ). Therefore, the variance-covariance matrix of the PCD process can
be expressed as

Σ = AΣǫA
T, (9)

where Σǫ is a diagonal matrix, with diagonal elements being the innovation
variance. For the first-order SAD or SAD(1) model, the matrix A can be
expressed as

A =




1 0 0 0
φ1 1 0 0
...

. . .

φτ−1
1 φτ−2

1 · · · φ1 1




In general, the SAD order (p) can be selected through an information
criterion (Zhao et al., 2005). The closed forms for the inverse and determinant
of matrix Σ are given in Appendix A.

2.5 Parameter Estimation

We implement the EM algorithm, originally proposed by Dempster et al.
(1977), to obtain the maximum likelihood estimates (MLEs) of the unknown
parameters. In general, we do not directly estimate the QTL-segregating pa-
rameters (Ωq). Instead, we use a grid search approach to estimate the QTL
location, by searching for a putative QTL at every 1 or 2 cM on a map in-
terval bracketed by two markers throughout the entire linkage map. The
log-likelihood ratio test statistic for a QTL at a testing position is displayed
graphically, to generate a log-likelihood ratio plot called the LR profile plot.
The genomic position corresponding to a peak of the profile is the MLE of
the QTL location. The curve parameters contained in Ωmj

(j = 1, 0) and the
covariance parameters contained in Ωv can be estimated by the EM algorithm
(see Appendix A for a detailed derivation).

2.6 Hypothesis Testing

2.6.1 Global test

The first step toward the understanding of the genetic architecture of the
PCD process would be to test whether specific QTLs exist to affect the entire
trajectory. After obtaining the MLEs of the parameters, the existence of
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a QTL affecting the PCD curve can be tested by formulating the following
hypotheses {

H0 : Ωm1
≡ Ωm0

H1 : The equalities above do not hold,
(10)

where H0 corresponds to the reduced model, in which the data can be fit by
a single curve, and H1 corresponds to the full model, in which different curves
exit that fit the data. The test statistic for testing the hypotheses is calculated
as the log-likelihood (LR) ratio of the reduced model to the full model

LR = −2[log L(Ω̃|y,M) − log L(Ω̂|y,M)]

where Ω̃ and Ω̂ denote the MLEs of the unknown parameters under H0 and
H1, respectively. An empirical approach for determining the critical threshold
is based on permutation tests (Churchill and Doerge, 1994). Specifically, we
randomly reshuffle the individual phenotype data many times, while fixing the
structure for the genotype data. The reshuffled data represent random sam-
ples from the null distribution, assuming no QTL effects, from which we can
determine the threshold value. When reshuffling the data, the phenotype vec-
tor for each individual is maintained as a unit, to preserve the intra-individual
correlation structure.

2.6.2 Regional test

Once we find the QTL, it would be interesting to test the difference in PCD
trajectories over a certain time interval. The question of how a QTL exerts its
effects on a period of PCD trajectories [t1, t2] can be tested using a regional test
approach based on the areas under the curve (AUC). The AUC for genotype
j is calculated as

AUCj =

∫ t′
2

t′
1

uTj P(t′)dt′

where t′ is the adjusted time according to Eq. (4). If the AUC of the two
genotypes for a testing period [t1, t2] is the same, then we claim there is no
QTL effect at that time interval. The hypothesis test for the genetic effect on
a period of PCD process can be formulated as

{
H0 : AUC1 = AUC0

H1 : AUC1 6= AUC0,
(11)
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which is equivalent to testing the difference between the full model with no
restriction and the reduced model with a restriction, where 0 and 1 corre-
sponding to different genotypes in a backcross design. One of the applications
of this test is to test whether a detected QTL affects the growth phase or
the death phase. This can be achieved by comparing the AUC for different
genotypes, calculated under the two phases as

AUCj =

∫ t∗′

t′
1

uTj P(t′)dt′

for testing growth, and

AUCj =

∫ τ ′

t∗′
uTj P(t′)dt′

for testing death, with t∗
′

representing the transformed transition time point.
Similarly, we can also test the QTL effect at different phases, such as at the
lag phase or at the exponential phase, described in Cui et al. (2006).

3 Monte Carlo Simulation

Consider a backcross population with which a 100cM long linkage group, com-
posed of 6 equidistant markers, is constructed. A putative QTL that affects
the PCD process is located at 48 cM from the first marker on the linkage group.
The Haldane map function is used to convert the map distance into the re-
combination fraction. We simulate data with different specifications, namely
different heritability levels (H2=0.1 vs 0.4) and different sample sizes (n=100
vs 200). For each backcross progeny, its phenotype is simulated with 9 equally
spaced time points. The covariance is simulated assuming the first-order SAD
structure.

We assume that individuals carrying different genotypes will follow the
same LP order. For simplicity, we specify the true LP order as six. Data are
then simulated assuming that the true order is known in order to demonstrate
the selection power under different conditions. We only report the performance
of two commonly used criteria, AIC and BIC. The selection power is evaluated
as the percentage of the simulated data sets in which the correct models are
selected.

Comparisons of the two model selection criteria are summarized in Table
1. The table gives the percentage of those simulations in which the correct
models are chosen, for each combination of sample size, heritability level, and
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selection criteria. Despite differences in performance between the two selection
criteria, trends that hold across different criteria are evident. As might be
expected, the overall power of the two selection criteria to select the true model
generally increases as sample size and heritability increase. For example, for
fixed heritability (H2 = 0.1), the power of BIC increases from 0.82 to 0.93
when sample size increases from 100 to 200. For a fixed sample size (n = 100),
the power of BIC increases from 0.82 to 1 when heritability level increases
from 0.1 to 0.4. However, relative to the effect of sample size, the increase
of H2 from 0.1 to 0.4 can lead to a more significant power improvement than
the increase of sample size n from 100 to 200. For example, the power would
increase by 22% when H2 is increased from 0.1

Table 1: Power comparison for LP order selection with different information
criteria, from 100 simulation replicates.

H2 = 0.1 H2 = 0.4
Information criteria n=100 n=200 n=100 n=200
AIC 82% 85% 90% 91%
BIC 82% 93% 100% 100%

The true order is specified as six. Power is calculated as the percentage of the

number of those simulations in which the correct order is selected.

to 0.4, but only by 13% when n is increased from 100 to 200.
Even though both AIC and BIC are asymptotically consistent, their

finite sample performances are quite different under a number of conditions.
We observe a distinct pattern in which BIC outperforms AIC under different
sample sizes and heritability levels. For example, with a heritability level of
0.4 and a sample size of 200, BIC has 100% power to pick the right model while
the AIC criterion has only 91% power to choose the correct model. In theory,
the BIC criterion can select more parsimonious models than AIC since BIC
puts more penalty term (log(n)) than AIC (2) does to the likelihood function.
The simulation results also confirm this conclusion. Therefore, one can apply
BIC to select the optimal order in practice.

With the appropriate LP order selected, we would like to check how well
the parameters are estimated. Simulation results are summarized in Table 2.
The precision of parameter estimation is evaluated in terms of the square root
of the mean squared errors (RMSE) of the MLEs. In general, the model can
provide reasonable estimates of the QTL positions (λ) and effects of various
kinds, with estimation precision dependent on heritability, sample size and
sampling strategy. As might be expected, the precision of the QTL parameter
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estimation increases with increased sample size. Histogram plots for all pa-
rameter estimates out of the 100 simulation runs under different sample sizes
indicate good convergence of the parameter estimates (data not shown). It has
also been noted that precision is greatly improved with increased heritability
levels, rather than with increased sample sizes. For example, the RMSE of the
mean parameter u20 for genotype QQ decreases from 0.59 to 0.45 when sample
size n increases from 100 to 200. However, for a fixed sample size (n = 100),
we observe a decrease of RMSE from 0.59 to 0.22 when H2 increases from
0.1 to 0.4. Thus, the relative precision increase with increased sample size
is less attractive, when compared with the precision increase with increased
heritability. This information also suggests that, in practice, well-managed
experiments, through which residual errors are reduced and therefore H2 is
increased, are more important than simply increasing sample size.

4 A Case Study

We apply the developed model to a real data set to show its utility. Two
inbred lines, semi-dwarf IR64 and tall Azucena, were crossed to generate an
F1 progeny population. By doubling haploid chromosomes of the gametes
derived from the heterozygous F1, a doubled haploid (DH) population of 123
lines were founded (Huang et al., 1997). With 123 DH lines, Huang et al.
(1997) and Yan et al. (1998) genotyped 175 genetic markers to construct a
genetic linkage map of length 2005 cM, representing good coverage of 12 rice
chromosomes. The 123 DH lines were planted in two blocks, with each block
divided into different plots, each containing eight plants per line. Starting from
10 days after transplanting, tiller numbers were measured every 10 days for
five central plants in each plot until all lines had headed. The mean number
of tiller numbers for the two blocks were used in QTL analysis.

Tiller growth is thought to be an excellent example of PCD in plants
(Greenberg, 1996), since it experiences several developmental stages during
rice ontogeny. Different development stages, such as vegetative, reproductive
and ripening phases, represent a dynamic PCD process that can be summa-
rized as two distinct growth and death phases (Cui et al., 2006). A genome-
wide scan is conducted at every 2 cM distance on each of the 12 chromosomes.
At each test position, an LP order is selected using the BIC information cri-
terion and an LR test is conducted. Figure 1 shows the log-likelihood profile
plot between the full (there is a QTL) and reduced (no QTL) models for tiller
number trajectories across the 12 rice chromosomes. The solid curve repre-
sents the LR value at each test position. The 5% significant threshold value
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Table 2: The MLEs of the model parameters and the QTL position derived
from 100 simulation replicates, with the SAD(1) covariance structure. The
squared root of the mean square errors (RMSEs) of the MLEs are given in
parentheses.

True H2 = 0.1 H2 = 0.4
parameters n=100 n=200 n=100 n=200

QTL position
λ = 48 47.98(4.62) 47.02(3.47) 46.38(3.49) 46.26(2.96)

Mean parameters for QQ
u20 = 9.049 9.329(0.59) 9.323(0.45) 9.080(0.22) 9.091(0.15)
u21 = 1.151 1.337(0.45) 1.311(0.32) 1.165(0.18) 1.168(0.13)

u22 = −6.019 -5.684(0.49) -5.677(0.44) -6.006(0.13) -6.001(0.09)
u23 = 2.651 2.592(0.29) 2.580(0.23) 2.658(0.11) 2.663(0.09)
u24 = 0.652 0.774(0.27) 0.753(0.20) 0.672(0.10) 0.658(0.07)

u25 = −0.797 -0.975(0.27) -0.949(0.23) -0.820(0.08) -0.826(0.07)
u26 = 0.621 0.619(0.25) 0.636(0.19) 0.621(0.10) 0.626(0.06)

Mean parameters for Qq
u00 = 7.148 7.345(0.49) 7.393(0.43) 7.139(0.19) 7.145(0.17)
u01 = 1.379 1.520(0.40) 1.559(0.32) 1.370(0.17) 1.374(0.13)

u02 = −4.489 -3.929(0.67) -3.981(0.59) -4.467(0.15) -4.482(0.09)
u03 = 2.004 1.862(0.34) 1.843(0.25) 2.006(0.12) 1.987(0.09)
u04 = 0.662 0.695(0.23) 0.699(0.17) 0.679(0.10) 0.682(0.08)

u05 = −0.836 -0.904(0.24) -0.928(0.16) -0.862(0.09) -0.852(0.07)
u06 = 0.432 0.410(0.24) 0.403(0.16) 0.448(0.10) 0.445(0.07)

Covariance parameters
σ2

0.1 = 5.065 4.732(0.41) 4.755(0.35)
σ2

0.4 = 0.844 0.825(0.04) 0.829(0.03)

φ = 0.95 0.915(0.04) 0.915(0.04) 0.951(0.02) 0.948(0.01)

The location of the simulated QTL is described by the map distance (in cM)
from the first marker of the linkage group (100 cM long).
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Figure 1: The profile plot of the log-likelihood ratios between the full (there is a
QTL) and reduced model (there is no QTL) for tiller number trajectories across the
12 rice chromosomes. The genomic positions corresponding to the peak of the curve
are the MLEs of the QTL location (indicated by the arrows). The threshold value
for claiming the existence of QTLs is given as the horizonal dotted line for the 5%
genome-wide level. The positions of markers on the linkage groups (Huang et al.
1997) are indicated at ticks.

for claiming the existence of QTLs at the genome-wide level is marked with
the horizonal solid line, based on permutation tests.

As clearly shown by the genome-wide LR profile plot in Figure 1, the
model detected 4 major QTLs that are all significant at the 5% genome-wide
significance level, based on permutations. Table 3 tabulates the estimated
QTL positions on the chromosome, the marker intervals of the QTLs, the
MLEs of curve parameters that specify the developmental pattern, as well as
the asymptotic standard errors of the estimators (in the parenthesis). Most
parameters can be reasonably estimated with a small sampling error. As
clearly indicated in the table, the LP orders at different test positions are not
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the same. Two QTLs have order 7 (Q11 and Q31) and two QTLs have order 8
(Q12 and Q32).

The developmental trajectories of the identified QTLs are shown in Fig-
ure 2, with tiller number trajectories for all individuals indicated in the back-
ground. The four QTLs detected are found between marker RZ276 and RG146,
denoted as CH1-1(Q11), between markers RZ730 and RZ801, denoted as CH1-
2 (Q12) (both located on chromosome 1), between marker RZ337A and RZ448,
denoted as Ch3-1 (Q31) and between marker RZ519 and Pgi 1, denoted as Ch3-
2 (Q32) (both located on chromosome 3). Among these four QTLs detected,
three of them show similar development patterns (Q11, Q31 and Q32), while
QTL Q12 shows a different pattern. A statistical test based on hypotheses (11)
shows that QTL Q12 only controls the growth phase (P < 0.05) and all the
other three QTLs control the entire development process (P < 0.05 for both
growth and death tests). Also, there is a genetic effect switch for QTL Q12

in which two genotypes switch their genetic effects, roughly at the end of the
exponential growth phase. The goodness of fit of the polynomial to the data is
assessed through one of the criteria summarized in Zheng (Zheng, 2000). The
criterion is defined as

R2 = 1 −

∑τ
t=1

∑n
n=1(yit − ŷit)

2

∑τ
t=1

∑n
n=1(yit − ȳ)2

(12)

where ŷit = π1|im1(t) + π0|im0(t) and ȳ = 1
nτ

∑τ
t=1

∑n
n=1 yit. The estimated

R2 values for the four detected QTLs are 0.69(Q11), 0.71(Q12), 0.73(Q31) and
0.79(Q32), which indicate adequate fit. At a particular time point, the good-
ness of fit is assessed through a similar measure defined as

R2
t = 1 −

∑n
n=1(yit − ŷit)

2

∑n
n=1(yit − ȳ)2

(13)

where t refers to the tth time point. We observe adequate fit of the polynomial
to the data at early stages for the four QTLs. For example, the R2

1 values are
close to one and the R2

6 values are greater than 0.6 for the four QTLs. However,
we observe small R2

t value at the right tail, where R2
t < 0.4 for t ≥ 7.

Since the genetic distance between the two QTLs detected on chromo-
some 3 are only 42cM apart, these two QTLs show signs of a weak linkage.
If one QTL is the true one, the other one could be false positive caused by
its linkage with the true positive. Based on one referee’s suggestion, we did a
linkage scan, using the parametric bootstrapped samples, to see whether the
model can really separate the two linked QTLs. We first fixed the marker and
linkage map information and then simulated bootstrapped samples assuming
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Table 3: The QTL location, MLEs of the estimated parameters and their as-
ymptotic standard errors in the parentheses, with the SAD(1) covariance struc-
ture.

Parameters Q11 Q12 Q31 Q32

QTL position (λ) 112cM 200cM 220cM 262cM

Marker interval RZ146-RG345 RZ730-RZ801 RZ337A-RZ448 RZ519-Pgi-1

Parameters for QQ

u00 10.108(0.25) 8.848(0.26) 8.933(0.19) 9.136(0.18)
u01 1.426(0.25) 1.920(0.19) 1.542(0.16) 1.624(0.16)
u02 -6.231(0.33) -6.119(0.20) -5.594(0.20) -6.213(0.15)
u03 2.472(0.22) 1.332(0.15) 2.039(0.13) 2.076(0.15)
u04 0.719(0.27) 1.069(0.13) 0.855(0.16) 0.533(0.12)
u05 -1.425(0.16) -1.154(0.11) -1.137(0.09) -1.181(0.10)
u06 1.341(0.17) 0.627(0.11) 0.919(0.10) 1.054(0.11)
u07 0.973(0.21) 1.144(0.17) 0.695(0.14) 0.715(0.16)
u08 -1.099(0.38) - -0.729(0.25) -

Parameters for qq

u20 7.462(0.14) 7.517(0.19) 7.126(0.20) 6.982(0.19)
u21 1.377(0.12) 1.055(0.16) 1.329(0.17) 1.289(0.17)
u22 -4.431(0.17) -4.690(0.14) -3.927(0.22) -4.343(0.16)
u23 2.027(0.10) 2.718(0.13) 2.117(0.14) 2.118(0.17)
u24 0.761(0.13) 0.054(0.10) 0.807(0.18) 0.421(0.13)
u25 -0.717(0.07) -0.774(0.09) -0.548(0.10) -0.572(0.11)
u26 0.537(0.09) 0.929(0.10) 0.397(0.12) 0.547(0.12)
u27 -0.061(0.09) -0.444(0.14) -0.425(0.15) -0.372(0.17)
u28 -0.543(0.20) - -0.768(0.28) -

Covariance parameters

σ2 0.725(0.04) 0.748(0.04) 0.787(0.04) 0.789(0.04)
φ 0.848(0.02) 0.901(0.02) 0.884(0.02) 0.842(0.02)
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Figure 2: Two curves for the dynamic changes of tiller numbers, each representing
one of the two groups of genotypes, QQ and qq, at each of the four significant
QTLs. Tiller number trajectories for all observed individuals are indicated in the
gray background.

there were two QTLs located at the positions indicated in Table 3. The boot-
strapped samples were drawn from a multivariate normal distribution, with
the mean and covariance variables tabulated in Table 3. Fig. 3A shows the
averaged LR profile plot of 100 bootstrapped samples for chromosome 3. We
observed consistent peaks for the two QTLs in the 100 samples, and the model
has 100% power to detect these two QTLs. The highest LR peak, at the inter-
val RZ337A-RZ448, coincides with the original QTL position, based on real
data analysis. The highest peak at the interval RZ519-Pgi-1 is shifted a little
to the left of the original QTL position (Q32) partially due to the effect of
the QTL located at the interval RZ337A-RZ448. Also seen in the figure, the
linkage signals between the two intervals harboring the two QTLs are inflated,
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Figure 3: The averaged LR profile plot of 100 bootstrapped samples for chromosome
3. For each parametric bootstrapped sample, the marker information remains fixed,
and the phenotype data are simulated assuming that there are two QTLs located
at the intervals given in Table 3 (A) and that there is only one QTL located at
the interval RZ337A − RZ448 (B). The genetic parameters for the two QTLs are
tabulated in Table 3. The arrows indicate the estimated QTL positions.

due to linkage.
We also ran another parametric bootstrapping for a situation in which

there is only one true positive; how likely are we to detect another one? With-
out a loss of generality, we assume the true one is located at the interval
RZ337A-RZ448. Data were simulated assuming there is only one QTL; and
the genetic and QTL location parameters are given in Table 3. Fig. 3B plots
the averaged LR profile plot of 100 bootstrapped samples for chromosome 3.
We can clearly see that the highest LR peak is always located at the inter-
val where the true QTL is assumed to be. The linkage signal at the interval
RZ519-Pgi-1 does not reach the significant level. The averaged QTL location
estimate is 4cM left of the initial estimate listed in Table 3. This information
indicates that the presence of other linked QTLs might potentially affect the
tested QTL location estimation when the effect of a QTL located outside of the
tested interval is not adjusted. In summary, information from the two boot-
strap scenarios confirms that the two QTLs detected have a high probability
of being two separate QTLs.
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5 Discussion

The proper development of any organism is systematically maintained by the
functional balance of cell growth and death. Proper cell death is an important
requirement for the normal development of an organism. Meanwhile, inap-
propriate cell death may often lead to a variety of disorders or cancers (Vaux
and Korsmeyer, 1999). Using genetic approaches, scientists have identified at
least 10 genes associated with PCD in model organisms. However, a complete
understanding of how this unique process is triggered by specific genes is still
in its infancy. By integrating modern statistics and molecular techniques, the
recently developed functional mapping approach provides an alternative quan-
titative platform for testing the interplay between gene actions and complex
PCD processes (Ma et al., 2002; Cui et al., 2006; reviewed in Wu and Lin,
2006).

To fully enhance the flexibility of functional mapping for the PCD trait,
we have extended the mapping approach for mapping QTLs responsible for
longitudinal traits, by using the orthogonal Legendre function. We propose
selecting the LP order under the alternative hypothesis and further propose a
general information criterion to select the LP order and show its consistency
property. The small sample properties, when applying AIC or BIC information
criteria to select the optimal order under the functional mapping framework,
are assessed through simulation studies. Since BIC has a stronger penalty
term to the likelihood function, it likely favors more parsimonious models
when compared with AIC, and this fits our modelling objective for a PCD
curve. Simulation also confirms that BIC has a higher power than AIC when
sample size is small. It might be expected that different genotypes could follow
different development patterns, which may result in different LP orders. Order
selection that assumes different orders for different genotypes, will need to be
developed in the future.

As revealed by real data analysis, the current nonparametric approach
and our previous semiparametric approach (Cui et al., 2006) only agree with
two significant QTLs, namely Q11 and Q12. Both QTLs reach the genome-wide
significant level by using the current nonparametric approach, but only one
(Q11) reaches the genome-wide significant level by using the previous semi-
parametric approach. One of the QTLs detected on chromosome 9 by our
previous semiparametric approach is not identified by the current approach.
This QTL, however, also did not show significance in an analysis by Yan et
al. (1998), which is consistent with the current finding. Moreover, the current
model detects two QTLs located on chromosome 3 which were not identified by
our previous semiparametric approach. Even though the two QTLs are weakly
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linked, bootstrapping results confirm that they are likely two separate QTLs.
These evidences demonstrate the power of the current approach, compared to
the semiparametric approach, for this particular data set. Possible reasons
for these differences might be directly related to different ways of modelling
mean function. Further experimental evidence needs to be collected to reach
a conclusion as to which model is more robust. Besides the effects of mean
function on the power of functional mapping, covariance structure also plays a
pivotal role in the precision and power of QTL detection. Modelling the covari-
ance structure can be accomplished either parametrically or nonparametrically
(Zimmerman and Núñez-Antón, 2001; Diggle and Verbyla, 1998; Kirkpatrick
et al., 1994). However, it is difficult to compare which structure is optimal,
given that simulating the true biological mechanisms is unrealistic due to our
limited knowledge of the underlying true residual covariance structure. More
studies on covariance structure modelling are desired.

For the rapidly changing values of a PCD curve to be approximated, an
appropriate LP order needs to be selected. Intuitively, a higher order indicates
a higher complexity to the developmental PCD process. Significant QTLs at
different genomic locations may trigger different genetic effects on the PCD
trait, which is revealed by the complex structure of the PCD curve. The
curve complexity can then be described by the varying degrees of LP orders.
Thus, the LP order reflects the functional complexity of the underlying QTL
effects. Real data analysis indicates that the LP order does show different
orders at different genomic regions (Table 3). For example, the two QTLs
detected in chromosome 1 (Q11 and chromosome 3 Q31) have an LP order of 7.
If the order is selected under the null hypothesis as described by Lin and Wu
(2006), the optimal order would be 6, using the BIC criterion. When the 6th
order LP is applied to fit data under the alternative hypothesis, we observe
a substantial likelihood reduction for the QTL in chromosome 3 (Q31) due
to potential mis-fitting. The likelihood ratio test statistic does not reach the
genome-wide significant level. Thus, simply selecting the LP order under the
null could lead to potential information loss and wrong inferences. Selecting
the order under the alternative should be more informative. In general, the
Legendre polynomial fits the data adequately as revealed by the trajectory
plot in Fig. 2. The overall measure of the goodness of fit (R2) defined in Eq.
(12) shows that the polynomial fits the data well for the four QTLs. The poor
fit of the polynomial to the right tail of the data, indicated by the measure
defined in Eq. (13), may be due to the poor performance of the criterion
itself. Since the mixture density does not directly lead to the mixture mean
function, more study is needed to assess the goodness of fit in a nonlinear
mixture model-based longitudinal regression setting.
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It should be noted that the current nonparametric functional mapping
approach does not consider the effects of background markers. This can be
done by applying the composite interval mapping idea (Zeng, 1994) and in-
tegrating a simple multivariate multiple regression approach to select back-
ground markers as cofactors. Since the power of the functional mapping is
to incorporate mathematical functions into a mapping framework by reduc-
ing the number of parameters to be estimated, using this marker selection
approach without considering the functional curve information for a longi-
tudinal or dynamic trait would reduce the power of the functional mapping.
Moreover, preserving biologically relevant information for the responses during
background marker selection presents great challenges to statistical modelling.
Little research has been done for such an analysis; and modelling through mul-
tiple QTL by composite or multiple interval mapping should make the current
mapping approach more useful in practice.

Our nonparametric approach using the Legendre function is built under
the maximum likelihood-based functional mapping framework, and provides
a testable quantitative platform for understanding the genetic basis of genes
that account for quantitative variations of the PCD trait. The proposed frame-
work is not restricted to the PCD trait. Any dynamic developmental process,
whether or not it follows a particular parametric function, can be modelled
and tested under the current framework.

APPENDIX A: DERIVATION OF EM ALGORITHM

The MLEs of the parameters contained in Ω = (Ωq,Ωm,Ωv) are derived as fol-
lows. Since we use a grid search algorithm by assuming known QTL positions,
Ω only contains two sets of parameters, i.e., (Ωm,Ωv). The first derivative of
the log-likelihood function, with respect to specific parameter ϕ contained in
Ω, is given by

∂

∂Ωϕ

log ℓ(Ω|y,M) =
n∑

i=1

1∑

j=0

πj|i
∂

∂Ωϕ
fj(yi|Ω,M)

∑1
j=0 πj|ifj(yi|Ω,M)

=
n∑

i=1

1∑

j=0

πj|ifj(yi|Ω,M)
∑1

j′=0 πj′|ifj′(yi|Ω,M)

∂

∂Ωψ

log fj(yi|Ω,M)

=
n∑

i=1

1∑

j=0

Πj|i
∂

∂Ωϕ

log fj(yi|Ω,M)
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where we define

Πj|i =
πj|ifj(yi|Ω,M)

∑1
j′=0 πj′|ifj′(yi|Ω,M)

(A1)

The MLEs of the parameters contained in (Ωm,Ωv) are obtained by solving

∂

∂Ωϕ

log ℓ(Ω|y,M) = 0 (A2)

Direct estimation is unavailable since there is no closed form for the MLEs of
parameters. The EM algorithm is applied to solve these unknowns iteratively.

Define

X =




P0(t
′
1) P1(t

′
1) · · · Pr(t

′
1)

P0(t
′
2) P1(t

′
2) · · · Pr(t

′
2)

... · · · · · ·
...

P0(t
′
τ ) P1(t

′
τ ) · · · Pr(t

′
τ )




and uj =




u0j

u1j
...

urj


 (A3)

where X is a matrix of the LP base function with order r and uj is the base
genotypic vector for genotype j, which contains the mean parameters to be
estimated. We then have the mean vector mj = Xuj.

For the SAD(1) covariance structure given in Eq. (9) with constant
innovation variance σ2

t = σ2, we have the following properties
(1) Σ−1 = 1

σ2 L
TL

(2) |Σ| = (σ2)τ

(3) (yi − mj)
TΣ−1(yi − mj)

=
1

σ2
(yi − mj)

TΓ(φ)(yi − mj)

=
1

σ2

{
− 2φ

τ−1∑

s=2

[
yi(ts) − mj(ts)

][
yi(ts+1) − mj(ts+1)

]

+ (φ2 + 1)
τ−1∑

s=1

[
yi(ts) − mj(ts)

]2

− [yi(tτ ) − mj(tτ )]
2
}

where L is a lower triangular matrix with 1s on the diagonal and with the
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negative of the antedependence coefficient φ as below diagonal entries.

L =




1 0 0 · · · · · · 0

−φ 1 0 0 · · · 0

0 −φ 1 0 · · · 0

... · · · · · · · · · · · ·
...

0 · · · 0 −φ 1 0

0 · · · · · · 0 −φ 1




and

Γ(φ) =




φ2 + 1 −φ 0 · · · 0

−φ φ2 + 1 −φ · · · 0

0 −φ φ2 + 1 −φ
...

... · · · · · · · · · 0

0 · · · −φ φ2 + 1 −φ

0 · · · 0 −φ 1




In solving Eq. A2 with respect to the unknowns to get the MLEs of the
unknown parameters, we have

ûj =

∑n
i=1 Πj|iX

TΣ−1yi∑n
i=1 Πj|iXTΣ−1X

=

∑n
i=1 Πj|iX

TLTLyi∑n
i=1 Πj|iXTLTLX

(A4)

and the MLEs of the covariance parameters are given by

σ̂2 =

∑n
i=1

∑1
j=0 Πj|i(yi − Xûj)

TΓ(φ̂)(yi − Xûj)

nτ
(A5)

φ̂ =

∑n
i=1

∑1
j=0 Πj|i

∑τ−1
s=1 [yi(ts) − XT

s ûj][yi(ts+1) − XT
s+1ûj]∑n

i=1

∑1
j=0 Πj|i

∑τ
s=1[(yi(ts) − XT

s ûj]2
(A6)

where Xs and Xs+1 are the (s)th and (s + 1)th row of the design matrix X.
E-step: Given initial values for (Ωm,Ωv), calculate the posterior probability
matrix Π = {Πj|i} in Eq. (A1).
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M-step: With the updated posterior probability Π, we can update the para-
meters (u1,u0, σ

2, φ) The above procedures are iteratively repeated between
(A1) and (A4) - (A6), until a certain convergence criterion is met. The con-
verged values are the MLEs of the parameters.

APPENDIX B: CONSISTENCY OF THE MODEL SELECTION CRITERION

Background

Under the alternative given in hypotheses (10), there are two genotypes in
a backcross design. The mean vector for genotype j can be expressed as
mj = Xuj, j = 0, 1. The log-likelihood function can be expressed as

ℓ(Ω|y,M) =
n∑

i=1

log{π1|if1(yi|u1,Σ,M) + π0|if0(yi|u0,Σ,M)} (B1)

where π1|i and π0|i are the mixture proportions; fj(yi) is the density function
for genotype j, which has the form given in Eq. (2)

The EM algorithm can be applied to estimate the parameters Ω =
(u1,u0, σ2, φ), as shown in Apendix A in details. The MLEs of the mean and
covariance parameters are consistent under the assumption that the covariance
matrix is the same for both mixture components (Redner 1981; Pourahmadi
2000).

Based on the segregation principle, there are two QTL genotypes at
a particular test position for a backcross progeny. Different combinations of
flanking markers form 4 groups, say MηMηMη+1Mη+1(M1), MηMηMη+1mη+1(M2),
MηmηMη+1Mη+1(M3), MηmηMη+1mη+1(M4). The longitudinal PCD traits
can be grouped as yk corresponding to marker group Mk, with each group
containing nk (k = 1, · · · , 4) observations. Now define f(yk,i|Ω,Mk) =
πk1|if1(yk,i|Ω,Mk) + πk0|if0(yi|Ω,Mk) and πk1|i + πk0|i = 1, for k = 1, · · · , 4

and i = 1, · · · , n, where πkj|i is the mixture proportion for individual i in group
k with genotype j, and fj is the multivariate density function for genotype
j with parameters contained in Ω. A further partition of the log-likelihood
function given in Eq. (B1) leads to

ℓ(Ω|y,M) =
n∑

i=1

logf(yi|Ω,M)

=
4∑

k=1

nk∑

i=1

logf(yk,i|Ω,Mk)
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Order Selection Criterion

Under the current study’s design, we aim at fitting the developmental PCD
curve using the LP function with an optimal order r that best explains the
variations of the dynamic PCD process. Our selection goal is to choose an
optimal order that has great flexibility so as to capture the developmental
PCD pattern, yet is parsimonious enough for modelling purposes. We propose
using the following information criterion

ICr(n) = −2ℓ(θ̂r|y) + c(n)pr(τ)

where ICr(n) is the information for the model, with an LP order r; θ̂r =

(Ω̂m, Ω̂v) = (û1|r, û0|r, σ̂
2
r , φ̂r); c(n) is a penalty term; pr(τ) is the number of

free parameters for the selected model.

Consistency of the Selection Criterion

Theorem: Under the current mapping framework, a model selection criterion
ICr(n) is consistent if

c(n)[pr0(τ) − pr(τ)]

n
→ 0, as n → ∞

where r0 and r represents the optimal and selected LP order, respectively.
The following arguments are based on the assumption that MLEs con-

verge and are consistent.
Proof: To show the consistency of the selection criterion, we need to show
that

lim
n→∞

p[ICr0(n) < ICr(n)] = 1

Let θ∗ be the parameters of the true model; θ̂r and θ̂r0 be the MLEs under
model mr and mr0 , respectively. Then

P [ICr0(n) < ICr(n)] = P [2ℓ(θ̂r) − c(n)pr(τ) < 2ℓ(θ̂r0) − c(n)pr0(τ)]

= P [2ℓ(θ̂r) − 2ℓ(θ̂r0) − c(n)(pr(τ) − pr0(τ)) < 0]

= P [2
ℓ(θ̂r) − ℓ(θ̂r0)

n
+

c(n)[pr0(τ) − pr(τ)]

n
< 0]

By the consistency of the MLEs, we have θ̂r0 → θ∗r0 and θ̂r → θ∗r , where θ∗r0
and θ∗r are the closest points in the parameter space of model mr0 and mr, to
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the true parameter θ∗. Then we have

ℓ(θ̂r) − ℓ(θ̂r0)

n
=

1

n

4∑

k=1

nk∑

i=1

{logf(yk,i|θ̂r,Mk) − logf(yk,i|θ̂r0 ,Mk)}

→
1

n

nk∑

k=1

nk∑

i=1

{logf(yk,i|θ
∗
r ,Mk) − logf(yk,i|θ̂r0 ,Mk)}

=
ℓ(θ∗r) − ℓ(θ∗r0)

n

By the weak law of large numbers (WLLN), when Pθr0
is the true probability

measure

1

nk
{
nk∑

i=1

{logf(yk,i|θ̂r,Mk) − logf(yk,i|θ̂r0 ,Mk)}

→ Eθr0
[logf(yk,1|θ

∗
r ,Mk) − logf(yk,1|θ

∗
r0

,Mk)]

= Eθr0
[log

f(yk,1|θ
∗
r ,Mk)

f(yk,1|θ∗r0 ,Mk)
], as nk → ∞

with Pθr0
[f(yk,1|θ

∗
r ,Mk) = f(yk,1|θ

∗
r0

,Mk)] < 1, ∀ r0 6= r, and 0 < nk

n
=

O(1) < 1, ∀ k = 1, · · · , 4
Therefore,

1

n
∇ℓ(n)

def
=

1

n

4∑

k=1

nk∑

i=1

{logf(yk,i|θ̂r,Mk) − logf(yk,i|θ̂r0 ,Mk)}

=
4∑

k=1

(
nk
n

)
1

nk

nk∑

i=1

{logf(yk,i|θ̂r,Mk) − logf(yk,i|θ̂r0 ,Mk)}

→
4∑

k=1

O(1){Eθr0
[logf(yk,1|θ

∗
r ,Mk) − logf(yk,1|θ

∗
r0

,Mk)]}, as nk → ∞

=
4∑

k=1

O(1)Eθr0
[log

f(yk,1|θ
∗
r ,Mk)

f(yk,1|θ∗r0 ,Mk)
]

Now using the fact that log( 1
x
) ≤ 1

x
− 1 ∀ x > 0 with equality iff x = 1,

putting x = f(yk,1|θ
∗
r0

,Mk)/f(yk,1|θ
∗
r ,Mk) and then taking expectation, one

gets

Eθr0
[log

f(yk,1|θ
∗
r ,Mk)

f(yk,1|θ∗r0 ,Mk)
] ≤ Eθr0

[
f(yk,1|θ

∗
r ,Mk)

f(yk,1|θ∗r0 ,Mk)
]−1 ≤ 1−1 = 0, ∀ k = 1, · · · , 4
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Hence,

P [ICr0(n) < ICr(n)]

= P{2
ℓ(θ̂r) − ℓ(θ̂r0)

n
+

c(n)[pr0(τ) − pr(τ)]

n
< 0}

= P{
2

n
∇ℓ(n) +

c(n)[pr0(τ) − pr(τ)]

n
< 0}

→ 1

if
c(n)[pr(τ) − pr0(τ)]

n
→ 0 as n → ∞.

Since pr(τ) − pr0(τ) is finite,
c(n)[pr(τ)−pr0

(τ)]

n
→ 0 as long as c(n)

n
→ 0. So both

AIC and BIC are consistent in this case.
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