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ABSTRACT

Developmental instability or noise, defined as the phenotypic imprecision of an organism in the face of
internal or external stochastic disturbances, has been thought to play an important role in shaping evo-
lutionary processes and patterns. The genetic studies of developmental instability have been based on
fluctuating asymmetry (FA) that measures random differences between the left and the right sides of
bilateral traits. In this article, we frame an experimental design characterized by a spatial autocorrelation
structure for determining the genetic control of developmental instability for those traits that cannot be
bilaterally measured. This design allows the residual environmental variance of a quantitative trait to be
dissolved into two components due to permanent and random environmental factors. The degree of de-
velopmental instability is quantified by the relative proportion of the random residual variance to the total
residual variance. We formulate a mixture model to estimate and test the genetic effects of quantitative
trait loci (QTL) on the developmental instability of the trait. The genetic parameters including the QTL
position, the QTL effects, and spatial autocorrelations are estimated by implementing the EM algorithm
within the mixture model framework. Simulation studies were performed to investigate the statistical
behavior of the model. A live example for poplar trees was used to map the QTL that control root length
growth and its developmental instability from cuttings in water culture.

EVERY live organism in the course of evolution is
intricately equipped with developmental stability

or canalization (Waddington 1940) through collective
mechanisms that buffer against the stochastic pertur-
bations arising spontaneously from the cellular processes
involved in the development of morphological struc-
tures (Polak 2003). However, when stochastic pertur-
bations of either environmental or genetic origin are
beyond the capacity of the organism to produce a con-
sistent phenotype, the organism will be forced to display
some degree of developmental instability, manifested
as the imprecision of developmental pathways and
final morphological phenotypes (Waddington 1957;
Zakharov 1992; Palmer 1994). Indeed, developmental
instability embodies variation around the expected (tar-
get) phenotype that should be produced by a specific
genotype in a given environment, and the occurrence
of developmental instability is due to small random er-
rors accruing in development even when genetic and en-
vironmental conditions are kept constant (Klingenberg

2004).

In general, developmental instability produces a
subtle difference in each step of development. But
increasingly more evidence has been observed that
the accumulation of these minor differences may have
played an important role in the ultimate formation and
evolution of a complex trait (reviewed in Leamy and
Klingenberg 2005). In nature, developmental instabil-
ity may negatively affect the fitness of a biological organ-
ism (Badyaev et al. 2000) and the yield of an economic
trait and its components, such as seed size, seed number
and photosynthetic rate (Souza et al. 2005), through the
investment of extra energy to buffer against various
environmental fluctuations that are internal and ex-
ternal to an organism. A widely accepted view is that
developmental instability will be higher in the more
stressed populations compared to the control or un-
stressed populations (Pankakoski et al. 1992; Graham

et al. 2000; Pertoldi et al. 2006). Given the fundamental
importance of developmental instability, it is essential
for understanding its genetic causes and consequences
(Polak 2003; Leamy and Klingenberg 2005) and fur-
ther exploring how it responds to natural or artificial
selection within an evolutionary and ecological context
(Clarke 1998).
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Developmental instability is quantified by the amount
of variation among phenotypes that would be produced
by the same developmental blueprint under identical
genetic and environmental conditions (Klingenberg

2004). In organisms like animals that display a bilateral
symmetry, developmental instability is measured as fluc-
tuating asymmetry (FA) that is due to random dif-
ferences between left and right sides. Although FA is
considered to be purely environmental in origin, it may
also be under genetic control (Leamy 1997; Markow

and Clarke 1997; Palmer 2000; Fuller and Houle

2003). Empirical studies suggest that the heritability of
FA is low (Pelabon et al. 2004), but in many cases it is
significant, as observed in Scheiner et al. (1991) and dem-
onstrated by a meta-analysis of Møller and Thornhill

(1997a,b), although there is a controversy on this issue
(Whitlock and Fowler 1997). Recent quantitative
trait locus (QTL) mapping approaches (Lander and
Botstein 1989; Lynch and Walsh 1998) have been
performed to identify specific loci responsible for the
variation of FA in mice (Leamy et al. 1998, 2002). These
mapping studies allowed Leamy and Klingenberg

(2005) to conjecture the nonadditive genetic architec-
ture of FA composed of intralocus (dominance) and
interlocus interactions (epistasis).

Plants, as organisms with modular construction, are
very suitable subjects for detecting developmental in-
stability caused by environmental disturbance. The anal-
ysis of the asymmetry of plant structural traits can be
used to determine deviations from the basic structural
pattern, which is a measure of plant developmental in-
stability. However, for important traits such as stemwood
growth in forest trees and grain yield in crops, it is not
possible to measure such asymmetry. Different from
conventional FA measures, developmental instability for
these traits can be measured by growing individual plants
of the same genotype in a microsite with clonal rep-
licates or recombinant inbred lines. Variation among
phenotypes of different individuals within a clonal geno-
type under a similar condition is thought to stem from
developmental instability or noise.

In this article, we propose an experimental design
based on genotypic replicates in space to map and es-
timate the genetic effects of QTL on the developmental
instability of a quantitative trait. A mixture model is
constructed to separate different QTL genotypes in terms
of observed marker information (Lander and Botstein

1989). The autoregressive model interpreted on a spatial
scale is used to model the structure of the residual vari-
ance matrix (Cressie 1991). It assumes that the residual
correlation between any two different copies of the same
progeny genotype decays exponentially with the physical
distance between these two replicates in the field. Also,
the residual variance is postulated to be composed of
two components due to permanent and random envi-
ronmental factors. The random residual variance due to
stochastic independent errors reflects the degree of de-

velopmental instability. The genetic control of devel-
opmental instability can be determined by testing the
difference in the random residual variance among QTL
genotypes inferred from a molecular linkage map. The
statistical model is constructed within the context of
maximum likelihood and implemented with the EM al-
gorithm (Dempster et al. 1977). Simulation studies have
been performed to investigate the statistical behavior of
the model. We used a real example in poplars to validate
the usefulness of the model.

THE MODEL

Experimental design: Consider a simple backcross
design in which n progeny are segregating in a 1:1 ratio
at each locus. A genetic linkage map, aimed to identify
segregating quantitative trait loci (QTL), is constructed
with polymorphic markers genotyped through the ge-
nome. Each backcross progeny is replicated with clones,
recombinant inbred lines, or isogenic lines and planted
in a randomized complete design. There are multiple
replicates for each progeny planted in a plot. The
number of replicates (R) can be small or large, depend-
ing on the availability of materials. The shape of a plot
can be a triangle, a rectangle, a square, and so on. With-
out loss of generality, let each progeny have four copies
laid out in a square plot with a loop 1/2/3/4/1 at a
spacing of d 3 d m. Thus, the physical distances between
any two plants can be expressed as

d12 ¼ d; for plants 1 and 2;

d23 ¼ d; for plants 2 and 3;

d34 ¼ d; for plants 3 and 4;

d41 ¼ d; for plants 4 and 1;

d13 ¼ d
ffiffiffi
2
p

; for plants 1 and 3;

d24 ¼ d
ffiffiffi
2
p

; for plants 2 and 4: ð1Þ
For other layouts, between-plant distances can always be
calculated as long as the geometric shape of the plot and
the number of copies are known.

Linear model: The phenotypic value of a quantitative
trait, yij, for progeny i at its jth replicate in a plot is
described by a linear model

yij ¼ ci 1 eij ; ð2Þ
where ci is the genotypic value of progeny i and ej is the
residual (or environmental) effect, eij � N(0, s2).

Suppose there is a putative QTL in the backcross, with
two genotypes, Qq (coded by 1) and qq (coded by 0),
involved in the control of the trait. The genotypic value
of progeny i can be partitioned into two components,
i.e., the genotypic value (mh) of QTL genotype h (h ¼ 1,
0) and the genetic effect (cijh) due to other loci rather
than the QTL under consideration. Because of the
replicates of a progeny, the residual effect is partitioned
into permanent (pi) and random environmental effect
(eij). Thus, Equation 2 is written as
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yij ¼
X1

h¼0

jhmh 1 cijh 1 pi 1 eij ; ð3Þ

where jh is the indicator variable for QTL genotypes
defined as 1 for a considered QTL genotype and 0 other-
wise, mh is assumed to be a fixed effect, and cijh, pi, and
eij are assumed to be the random effects, with cijh� N(0,
s2

c), pi � N(0, s2
p), and eij � N(0, s2

e).
Autocorrelation structure: Let yi ¼ {yij}

R
j¼1 be the

vector of the observed value for the trait measured for
progeny i planted with R replicates in a plot. Equations 2
and 3 are then written in matrix notation as

yi ¼ Fi ci 1 ei

¼
X1

h¼0

jhFimh 1 Fi cijh 1 Cipi 1 ei ; ð4Þ

where Fi is an R-dimensional vector of all elements
equal to 1, Ci is an R-dimensional vector whose elements
describe the spatial positions of different replicates for
progeny i within a plot, ei ¼ feijgR

j¼1, and ei ¼ feijgR
j¼1.

The R-dimensional residual covariance matrix of the
phenotype vector (yi) among different replicates across
different progenies of the same QTL genotype is ex-
pressed in terms of Equation 4 as

Si ¼ FT
i Fis

2
c 1 Ris

2
p 1 Iis

2
e

¼ FT
i Fis

2
c 1 ½ð1� g ÞRi 1 g Ii �s2

e; ð5Þ

where matrix Ri specifies the autocorrelation structure
of different replicates for progeny i within a plot, de-
fined by the positions of replicates Ci (Cressie 1991),
and Ii is an identity matrix because the random environ-
mental effects are assumed to be independent among
replicates.

Equation 5 partitions the variance within QTL geno-
types into two parts, one being the genetic variance and
the other being the residual environmental variance.
The environmental variance is further partitioned into
spatial and nonspatial components. The spatial com-
ponent of the environmental variance is due to some
permanent factors within a plot, such as moisture or
nutritional gradients in a microsite. The nonspatial com-
ponent of the residual environmental variance that does
not depend on microenvironmental gradients is due to
local unpredictable variability arising from random
independent errors. The nonspatial component repre-
sents the local variance of the residual error that is often
called the ‘‘nugget variance’’ (Isaaks and Srivastava

1989). Thus, the relative magnitude of the spatial and
nonspatial components, described by parameter g, re-
flects the extent of the local variability due to devel-
opmental instability. On the basis of this definition, we
have the permanent environmental variance s2

p ¼ (1 �
g)s2 and the random environmental variance s2

e ¼ gs2.

The spatial covariance matrix can be structured by
various statistical models, such as the first-order au-
toregressive ½AR(1)� model, in which the variance is
assumed to be constant over different plant positions
within a plot and the spatial correlation drops off ex-
ponentially with the distance between plant positions,
so that a distance of d between plant positions leads to a
correlation of rd. Considering a square plot, we model
the spatial correlation matrix for progeny i by

Ri ¼

1 rd r
ffiffi
2
p

d rd

rd 1 rd r
ffiffi
2
p

d

r
ffiffi
2
p

d rd 1 rd

rd r
ffiffi
2
p

d rd 1

2
6664

3
7775: ð6Þ

A similar modeling structure can also be used for other
different layouts of the plot.

Likelihood function and computational algorithm:
The likelihood function of the observed values (y) for
the trait and marker information (M) can be expressed,
by a mixture model (Lander and Botstein 1989), as

LðV j y; MÞ ¼
Yn

i¼1

½-1ji f1ðyiÞ1 -0ji f0ðyiÞ�; ð7Þ

where V is the unknown vector including the QTL
position, the QTL genotypic values (mh), the genetic
variance within QTL genotypes (s2

c), the permanent
environmental correlation (r), the residual variance
(s2), and the proportion of the random residual vari-
ance to the total residual variance (g).

The mixture proportions, -1ji and -0ji, are the QTL
genotype frequencies in the backcross. Because each
backcross progeny has known marker genotypes, the
likelihood function will be expressed in terms of known
groups of marker genotypes. Let the putative QTL be
predicted by a pair of flanking markers that bracket the
QTL. Thus, the QTL genotype frequencies should be
expressed for each of the four possible marker geno-
types. These so-called conditional probabilities of QTL
genotype given marker genotypes are derived in terms
of the recombination fractions between the QTL and
two flanking markers. For a dense map, these condi-
tional probabilities can be approximated by the ratio (u)
between the QTL–marker over marker–marker recom-
bination fractions. We thereby use u to denote the
chromosomal location of the QTL within the marker
interval.

The multivariate normal distribution probability of
the trait for QTL genotype h (h ¼ 1, 0), fh(yi), is ex-
pressed as

fhðyiÞ ¼
1

ð2pÞR=2 jSh j 1=2 exp �1

2
ðyi � uhjiÞS�1

h ðyi � uhjiÞT
� �

;

where uhji ¼ Fimh is the vector of the genotypic values
of the trait at R different replicates of QTL genotype

A Model for Mapping Developmental Instability 1189



h within a plot. We use Equation 5 to model the struc-
ture of the covariance matrix in the above probability
density function specifically for QTL genotypes. Assume
that the QTL does not affect the spatial (permanent)
residual variance, but it is responsible for the local
(random) residual variance. Thus, by defining a QTL
genotype-specific proportion of the local to total resi-
dual variance, gh, and comparing its differences among
different QTL genotypes, we can test whether the de-
velopmental instability of the trait studied is controlled
by the hypothesized QTL.

The EM algorithm (Dempster et al. 1977) is imple-
mented to estimate the genotypic values and the pa-
rameters that model the structure of the covariance
matrix, all contained in vector V¼ (u, Q) with Q¼ (mh,
s2

c , gh, r, s2) (h ¼ 1, 0). These unknown parameters can
be estimated by differentiating the log-likelihood func-
tion of Equation 7 with respect to each parameter, let-
ting the derivatives be equal to zero, and solving the
log-likelihood functions.

The log-likelihood function of the phenotypic values
for a trait affected by a QTL is given by

log LðV j y; MÞ ¼
Xn

i¼1

log½-1ji f1ðyiÞ1 -0ji f0ðyiÞ�;

with the derivative with respect to any element V‘ in the
unknown vector

@

@V‘
log LðV j y; MÞ

¼
Xn

i¼1

f1ðyiÞð@-1ji=@uÞ1 f0ðyiÞð@-0ji=@uÞ
-1ji f1ðyiÞ1 -0ji f0ðyiÞ

�

1
-1jið@=@QÞf1ðyiÞ1 -0jið@=@QÞf0ðyiÞ

-1ji f1ðyiÞ1 -0ji f0ðyiÞ

�

¼
Xn

i¼1

-1ji f1ðyiÞð1=-1jiÞð@-1ji=@uÞ1 -0ji f0ðyiÞð1=-0jiÞð@-0ji=@uÞ
-1ji f1ðyiÞ1 -0ji f0ðyiÞ

�

1
-1ji f1ðyiÞð@=@QÞlog f1ðyiÞ1 -0ji f0ðyiÞð@=@QÞlog f1ðyiÞ

-1ji f1ðyiÞ1 -0ji f0ðyiÞ

�

¼
Xn

i¼1

P1ji
1

-1ji

@-1ji
@u

1
@

@Q
log f1ðyiÞ

� ��

1 P0ji
1

-0ji

@-0ji
@u

1
@

@Q
log f0ðyiÞ

� ��
;

where we define

Phji ¼
-hji fhðyiÞ

-1ji f1ðyiÞ1 -0ji f0ðyiÞ
; ð8Þ

which could be thought of as a posterior probability that
progeny i has QTL genotype h. We then implement the
EM algorithm with the expanded parameter set {V, P},
where P ¼ {Phji}. Conditional on P (the E step; Equa-
tion 8), we solve the log-likelihood equations

@

@V‘
log LðV j y; MÞ ¼ 0 ð9Þ

to get the estimates of V (the M step). The E and M steps
between Equations 8 and 9 are repeated until the esti-

mates converge to stable values that are regarded as the
maximum-likelihood estimates (MLEs) of the parame-
ters. A detailed procedure for the derivations of the
MLEs is available upon request.

In practical computations, the QTL position param-
eter can be viewed as a fixed parameter because a puta-
tive QTL can be searched at every 1 or 2 cM on a map
interval bracketed by two markers throughout the entire
linkage map. The log-likelihood-ratio test statistic for a
QTL at a particular map position is displayed graphi-
cally to generate a likelihood map or profile. The geno-
mic position that corresponds to a peak of the profile is
the MLE of the QTL location.

HYPOTHESIS TESTS

The existence of QTL: On the basis of the MLEs of
two QTL genotypic values, we estimate the overall mean
by m̂ ¼ ðm̂1 1 m̂0Þ=2 and the additive genetic effect of the
QTL on the trait by â ¼ ðm̂1 � m̂0Þ=2. This design allows
us to test the existence of a QTL, regardless of whether it
affects only the trait or its developmental instability or
both. This can be tested by formulating the following
hypotheses:

H0: a ¼ 0 and g1 ¼ g0 [ g

H1: at least one of equalities above does not hold:

ð10Þ

The log-likelihood values L0 and L1 under H0 and H1 are
calculated. The test is performed with a log-likelihood-
ratio statistic

LR ¼ �2½ln L0ðm̃; g̃; r̃; s̃2 j yÞ � ln L1ðV̂ j y; MÞ�; ð11Þ

where the tildes and hat stand for the MLEs under the
null and the alternative hypothesis, respectively. The LR
statistic is plotted against test locations and a high LR
corresponds to the position of QTL. Because the QTL
position under H0 of hypothesis (10) is not identifiable,
the distribution of the LR calculated is unclear. An
empirical approach for determining the critical thresh-
old that does not depend on the distribution is based
on permutation tests, as advocated by Churchill and
Doerge (1994). By repeatedly shuffling the relation-
ships between marker genotypes and phenotypes, a
series of the maximum-log-likelihood ratios are calcu-
lated, from the distribution of which the critical thresh-
old is determined.

The effect of the QTL on the trait can be tested using
the hypotheses as follows:

H0: a ¼ 0

H1: a 6¼ 0: ð12Þ

The likelihood calculated under hypothesis (12) can be
thought to follow a x2-distribution with 1 d.f. because

1190 J. Wu et al.



the QTL position under the null hypothesis is identifi-
able, a case different from hypothesis (10). The genetic
variance of the trait contributed by the detected QTL is
the variance between the two QTL genotypes, calculated
by

s2
g ¼

1

4
a2:

The total environmental variance is the summation of
the residual environmental variance within each QTL
genotype weighted by the frequencies of QTL geno-
types, calculated as

s2
e ¼

1

2R2 FS1FT 1 FS0FT
� �

:

Thus, the heritability of the trait explained by the QTL
is calculated as

h2 ¼
s2

g

s2
g 1 s2

c 1 s2
e

:

Genetic control of developmental instability: After
the existence of a QTL for the trait is confirmed, it is
essential to test whether this detected QTL triggers an
effect on the developmental instability of the trait. We
can first test whether the nonspatial local variation is
significant by formulating the hypotheses

H0: g1 ¼ g0 ¼ 0

H1: at least one of equalities above does not hold:

ð13Þ

If H0 of hypothesis (13) is accepted, this means that all
the residual variance is contributed by the spatial vari-
ance and that there is no variance due to developmental
instability. By contrast, if the null hypothesis of the test

H0: g1 ¼ g0 ¼ 1

H1: at least one of equalities above does not hold

ð14Þ

is accepted, this indicates that the nonspatial compo-
nent, i.e., the nugget effect, is only a source for the re-
sidual variance.

The genetic control of developmental instability is
tested by

H0: g1 ¼ g0

H1: g1 6¼ g0: ð15Þ

If H0 of hypothesis (15) is rejected, this suggests that
developmental instability is under significant genetic
control. The LR values for hypotheses (13)–(15) can be
thought to follow a x2-distribution with 2 or 1 d.f., re-
spectively. For each QTL genotype, the proportion of
the nonspatial variance due to developmental noise
relative to the total residual variance is calculated by

Hh ¼
ghðFIFTÞs2

FShFT : ð16Þ

Thus, by comparing Hh between the two genotypes, we
determine how the QTL detected for the trait affects its
developmental instability.

APPLICATION

Material: We used a real example for QTL mapping
in poplar trees to demonstrate the usefulness of our
model. The study material, as described in Wu et al.
(2002), was derived from the triple hybridization of
Populus (poplar), Populus deltoides, and P. euramericana,
which is an interspecific hybrid between P. deltoides and
P. nigra. Of .400 triple hybrids, 90 were randomly
chosen to establish a mapping population for marker
analysis and QTL identification. Given the heterozygous
characteristic of forest trees, analysis of this mapping
population is based on a pseudotest backcross design
(Grattapaglia and Sederoff 1994), in which markers
and QTL are heterozygous in one parent but not in the
second parent. According to this design, two genetic link-
age maps each based on the gene segregation of a dif-
ferent parent were constructed with different types of
molecular markers (Yin et al. 2002). Our analysis here is
based on a P. deltoides (D)-specific linkage map.

Ramets from each of the progeny used to construct
linkage maps were made to study their rooting capacity.
The ramets were water cultured in a randomized com-
plete block design with three different blocks and a four-
tree square plot. Root numbers were counted and the
length of each root was measured at five weekly intervals
starting at day 7. The total root length of each cutting
was then estimated. In this study, the total root lengths at
the last measurement point were used. A total of 75 trees
containing complete marker and trait data are used.

Results: The mapping model with an algorithm
derived in the appendix was used to scan genomewide
for the existence of all possible QTL that affect root
length growth and/or its developmental instability in
hybrid poplars. For this particular example, we derive a
joint likelihood function of the data by combining the
three different blocks although all the parameters are
assumed to be identical among the blocks. To assure that
the data are homogeneous, they were log-transformed
before statistical analyses. On the basis of hypothesis
(10), we calculated the LR values across the entire link-
age map (Figure 1). A QTL on linkage group D4 was
detected to be significant genomewide, with the maxi-
mum LR value 152.9 greater than the 0.05 significance
threshold (150.4) determined from 1000 permutation
tests. This QTL is bracketed by two highly linked AFLP
markers, AG/CGA-395d and CA/CCG-680d. The MLEs
of the parameters (Q) related to this QTL are given in
Table 1.
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The two subsequent hypotheses (12 and 15) were
made to test whether this QTL triggers an effect on root
length growth and the developmental instability of the
trait, respectively. The testing results suggest that the
QTL has a significant additive effect on the root length
(Table 1), explaining 19.9% of the total phenotypic
variance for the trait. In addition, this QTL also displays
a significant effect on the developmental instability of
root length, with the nugget parameters being different
between the two QTL genotypes (0.802 and 0.094; Table
1). Developmental instability explains different propor-
tions of the residual variance for two different QTL ge-

notypes, respectively, as calculated by Equation 16, with
such a proportion being larger for the larger genotype
(29.2%) than for the smaller genotype (5.9%).

Monte Carlo simulation: We performed simulation
studies to investigate the statistical properties of the
model for mapping developmental instability QTL. We
mimicked the poplar example by simulating the back-
cross of a low sample size (n ¼ 75). A linkage group of
length 200 cM is constructed with 10 evenly distanced
markers for this backcross. To investigate the influence
of sample size on parameter estimation, we performed
further simulation studies by increasing sample size to

Figure 1.—The profiles of the log-likelihood ratios between the full and reduced (no QTL) model for root length growth across
linkage groups constructed from the Populus map, using the mapping model proposed in this article. The genomic positions
corresponding to the peak of the curve are the MLEs of the QTL localization (indicated by the arrowhead). The genomewide
threshold value for declaring the existence of QTL is given by the horizonal dashed line. The positions of markers on the linkage
groups (Yin et al. 2002) are indicated at ticks.

1192 J. Wu et al.



200 and 500. Each progeny from this backcross is
planted with a square plot of four copies. Assume that
a QTL located at 48 cM from the first marker at the left
of the linkage group affects a normally distributed trait.
With the given additive genetic effect of the QTL, along
with the parameters that specify the spatial and non-
spatial structure of the covariance matrix (Equation 5;
Table 2), the phenotypic values of the backcross are
simulated under different heritability levels (h2 ¼ 0.1
and 0.4). The spatial correlation is modeled by the AR
model (Equation 6).

The simulated data are subjected to statistical analyses
by the mapping model proposed. For a small sample size
like the one used for the poplar example, the model
provides reasonable but not excellent estimates for all
the parameters (including the QTL position, QTL ef-
fects on the simulated trait and its developmental insta-
bility, and covariance-structuring parameters) when the
heritability of the simulated trait is low (Table 2). How-

ever, as the sample size increases, the precision of pa-
rameter estimation increases remarkably. As expected,
these estimates are more accurate and more precise with
a high heritability. The model appears to have high
power for the detection of significant effects on devel-
opmental instability, even for a low sample size and a low
heritability level (Table 2).

DISCUSSION

Because developmental systems are inherently ‘‘noisy’’
and frequently subject to random fluctuations, consid-
erable variation can be observed in the rates of develop-
ment and morphology even among genetically identical
individuals under the most uniform experimental con-
ditions (McAdams and Arkin 1997). This so-called
developmental noise or instability has been thought to
be related to the fitness and evolution of the organism
(Møller and Swaddle 1997). The study of the genetic

TABLE 2

The MLEs of the QTL position and effect and covariance-structuring parameters under the assumption of the
genetic control of developmental instability derived from 100 simulation replicates

n h2

Position
(at 48 cM) m ¼ 10 a ¼ 1 g1 ¼ 0.4 g2 ¼ 0.8 r ¼ 0.9 s2 Power

0.1 75 49.48 10.013 0.928 0.337 0.767 0.870 4.634 81
(17.105) (0.170) (0.523) (0.224) (0.161) (0.129) (0.496)

0.1 200 48.16 10.005 0.951 0.361 0.789 0.879 4.612 100
(8.283) (0.120) (0.232) (0.150) (0.099) (0.089) (0.270)

0.1 500 47.52 10.004 0.992 0.387 0.794 0.894 4.631 100
(4.807) (0.062) (0.141) (0.107) (0.055) (0.063) (0.138)

0.4 75 47.08 10.010 1.002 0.326 0.773 0.869 0.754 100
(7.821) (0.073) (0.168) (0.209) (0.147) (0.121) (0.088)

0.4 200 48.38 9.997 0.989 0.374 0.803 0.894 0.763 100
(4.230) (0.048) (0.086) (0.150) (0.083) (0.093) (0.050)

0.4 500 47.78 10.001 1.001 0.386 0.795 0.896 0.771 100
(1.694) (0.029) (0.059) (0.106) (0.053) (0.068) (0.032)

The location of the QTL is described by the map distance (in centimorgans) from the first marker of the
linkage group (100 cM long). The hypothesized s2-value is 0.771 for h2 ¼ 0.4 and 4.628 for h2 ¼ 0.1. The square
roots of the mean squared errors of the MLEs are given in parentheses.

TABLE 1

The results of QTL mapping for rooting capacity and its developmental instability
in a pseudotest backcross design of poplar

Marker interval AG/CGA-395d–CA/CCG-680d

m̂ ŝ2
c â ĝ1 ĝ0 r̂ ŝ2

MLE 1.683 0.101 �0.552 0.802 0.094 0.934 0.568
LR 152.9
LRT 34.2
LRD 66.5

LR is the log-likelihood ratio for testing the significance of a QTL that affects root growth and/or its devel-
opmental instability. LRT and LRD are the log-likelihood ratios calculated to test whether the detected QTL
affects root growth and its developmental instability, respectively, suggesting that they are both significant.
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control of developmental instability has been the sub-
ject of great interest in evolutionary and developmental
biology (Klingenberg and Nijhout 1999; Leamy and
Klingenberg 2005) and agricultural genetics (Wu 1997).
Traditional quantitative genetic approaches have been
used to estimate the genetic variability and heritability
of developmental instability measured as FA for bilateral
traits. Specific QTL have been identified for FA in mice
with molecular genetic linkage maps (Leamy et al. 2002).
In this article, we have framed a general design to esti-
mate QTL that affect developmental instability for those
traits whose developmental instability cannot be mea-
sured in terms of FA. We have derived a statistical model
and a computational procedure for testing and estimat-
ing the effect of QTL on developmental instability with
the data collected from a field trial.

The idea behind our model is the incorporation of
the spatial autocorrelation model into the QTL map-
ping framework. We have implemented a common form
of spatial autocorrelation (Cressie 1991) that involves
both spatial and nonspatial, i.e., local or ‘‘nugget,’’ com-
ponents (Isaaks and Srivastava 1989). Thus, rather
than estimating all elements contained within the co-
variance matrix, our model estimates a few key param-
eters that model the structure of the covariance matrix.
Spatial components result from some predictable mi-
croenvironments within a plot, whereas nonspatial com-
ponents result from local unpredictable perturbations.
Thus, the proportion of nonspatial relative to spatial
variances can be regarded as the degree of developmen-
tal instability. We derived the EM algorithm to estimate
the parameters that structure the covariance matrix.
The derived algorithm is robust, as seen from results
through simulation studies, in that the model provides
reasonable estimates of genotypic effects and spatial pa-
rameters over a range of space including different sam-
ple sizes and heritability levels.

The new model has been employed to identify a QTL
that affects rooting capacity and its developmental in-
stability from cuttings of poplar trees in a controlled
water culture laid in a square plot with three blocks. We
have detected a significant QTL on a linkage group
constructed by AFLP markers in an interspecific hybrid
population of two poplar species (Yin et al. 2002). On
the basis of previous quantitative and molecular genetic
studies, rooting capacity is found to be under strong
genetic control in woody plants (Wang et al. 1988;
Wullschleger et al. 2005). Several QTL for fine or
coarse root biomass traits have been mapped on specific
chromosomal locations for hybrid poplars between
P. trichocarpa 3 P. deltoides (Wullschleger et al. 2005).
A smaller number of the root QTL detected in this study
may be due to a small sample size and/or possible
C-effects, a common phenomenon in vegetative prop-
agation (Stelzer et al. 1998), that describe variation in
trait performance among different ramets from dif-
ferent tree positions. A structuring model for approxi-

mating the dependence of ramets can be proposed to
remove C-effects that may have confounded the esti-
mates of the genetic parameters in the poplar example.

As a first conceptual exploration of its kind, our map-
ping model was formulated in terms of interval mapping
and it should be powerful to detect unlinked QTL for a
quantitative trait. Its capacity to separate multiple linked
QTL can be improved through the combination of in-
terval mapping and partial regression analysis on all the
markers except for the two that flank the QTL. This so-
called composite interval mapping (Zeng 1994) that
has proven to increase the resolution of QTL mapping
can be readily integrated with our mapping model to
more precisely identify positions and effects of QTL that
control the developmental instability of a quantitative
trait. Another immediate issue is to incorporate the effects
of QTL 3 environment interactions on developmental
instability when the trial is conducted under multiple
different sites. Such a multisite trial is needed to avoid
the inflated estimate of the genetic control of develop-
mental instability. Our developmental model and its
extensions will prove their value to draw a detailed pic-
ture of the developmental instability of complex phe-
notypes for a variety of organisms in plants and animals.
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APPENDIX

In what follows, we derive the formulas for obtaining the MLEs of all the unknown parameters (V), except for the
QTL position, when the experimental design used has a square plot. The formulas for other designs of a plot can be
derived in a similar way. The log-likelihood equations for estimating the MLEs of V for a square plot whose spatial
correlation matrix is modeled by the AR(1) are derived as
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Considering a square plot, the residual variance matrix, denoted by Sh, for QTL genotype h is modeled by
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