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ABSTRACT

Summary: Understanding how interactions among set of genes

affect diverse phenotypes is having a greater impact on biomedical

research, agriculture and evolutionary biology. Mapping and

characterizing the isolated effects of single quantitative trait locus

(QTL) is a first step, but we also need to assemble networks of QTLs

and define non-additive interactions (epistasis) together with a host

of potential environmental modulators. In this article, we present a

full-QTL model with which to explore the genetic architecture of

complex trait in multiple environments. Our model includes the

effects of multiple QTLs, epistasis, QTL-by-environment interactions

and epistasis-by-environment interactions. A new mapping strategy,

including marker interval selection, detection of marker interval

interactions and genome scans, is used to evaluate putative

locations of multiple QTLs and their interactions. All the mapping

procedures are performed in the framework of mixed linear model

that are flexible to model environmental factors regardless of fix or

random effects being assumed. An F-statistic based on Henderson

method III is used for hypothesis tests. This method is less

computationally greedy than corresponding likelihood ratio test.

In each of the mapping procedures, permutation testing is exploited

to control for genome-wide false positive rate, and model selection is

used to reduce ghost peaks in F-statistic profile. Parameters of the

full-QTL model are estimated using a Bayesian method via Gibbs

sampling. Monte Carlo simulations help define the reliability and

efficiency of the method. Two real-world phenotypes (BXD mouse

olfactory bulb weight data and rice yield data) are used as exem-

plars to demonstrate our methods.

Availability: A software package is freely available at http://

ibi.zju.edu.cn/software/qtlnetwork

Contact: jzhu@zju.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In contrast to Mendelian traits controlled by individual genes,

the phenotypic variations of complex traits result from the

segregation of alleles at multiple quantitative trait loci (QTLs)

with effects sensitive to genetic, sexual, parental and environ-

mental factors (Mackay, 2001). Understanding the genetic

architecture of complex traits is a major challenge in the

post-genomic era, especially for QTL-by-QTL interactions

(epistasis), QTL-by-sex (QS) interactions, QTL-by-

environment (QE) interactions, epistasis-by-sex interactions,

epistasis-by-environment interactions and more complex higher

order interactions.

The term epistasis was primarily coined to describe the

distortions of Mendelian segregation ratios that were due to

one gene masking the effects of another in classical genetic

studies on qualitative variations such as coat color (i.e. the

albino allele of tyrosinase masks the phenotypes of other

loci such as brown and agouti; Carlborg and Haley, 2004).

Intensive work on quantitative variation also provided evidence

of epistatic interactions. For example, susceptibility to lung

cancer in mouse is significantly influenced by interactions

among QTLs (Fijneman et al., 1996). Molecular dissection of

bristle number in Drosophila has also revealed a substantial

interaction between two QTLs: the combination of these loci

had much larger effect than that predicted by the sum of their

individual effects (Gurganus et al., 1999; Long et al., 1995).

Strong interactions between QTLs have also been observed in

maize (Lukens and Doebley, 1999) and soybean (Lark et al.,

1995). The genotypic effect of one locus on phenotype might

depend on the genotype at several or many other loci, such as

the dependence of mutant phenotype on modifier genes in

mouse (Gerlai, 1996) and fruit fly (de Belle and Heisenberg,

1996). In addition, QTL with minor or no individual effect can

also be involved in epistatic interaction, a finding that is well

documented for a number of physiological traits in Drosophila

melanogaster (Montooth et al., 2003).
With the advance of molecular marker techniques, fine-scale

genetic and physical chromosomal maps of various organisms

are now available. Using these maps, methods of mapping

QTLs in experimental populations have become pervasive if not

even high throughput (Haley and Knott, 1992; Jansen, 1994;

Lander and Botstein, 1989; Zeng, 1994). Methods have been

developed for detecting QE interactions (Piepho, 2000) and for

detecting epistasis among QTLs (Kao et al., 1999; Ljungberg

et al., 2004; Sen and Churchill, 2001; Yi et al., 2003). Some of

these methods are based on simultaneous scans to detect

epistatic QTLs that do not have individual effects (Ljungberg

et al., 2004; Sen and Churchill, 2001). However, none of these

methods has integrated QE interactions and epistasis into one*To whom correspondence should be addressed.
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mapping system.Wang et al. (1999) proposed a two-locus model

for data from multi-environment trials (METs), which could

simultaneously analyze QTL main effects, epistatic effects as

well as their interactions with environments. But their approach

has some drawbacks in cofactor selection, false positive rate

control and computational tractability. Moreover, parameter

estimation of this method is conducted using a two-locus model,

which does not take the whole genetic architecture into account

and might contribute to biased estimation of genetic effects.

In the present study, a full-QTL model is proposed for

modeling the genetic architecture of complex trait, which

integrates the effects of multiple QTLs, epistasis and QE

interactions into one mapping system. A Bayesian method

implemented with Gibbs sampling is used to estimate genetic

parameters in the full-QTL model. A systematic mapping

strategy is developed to search for QTLs and their interactions

by the F-test based on Henderson method III, which requires

less computation than the likelihood ratio test. Monte Carlo

simulation studies and real data sets in mouse and rice are used

to demonstrate the utility of the method.

2 METHODS

2.1 Modeling the genetic architecture of complex trait

from multi-environment trials (METs)

Consider a population consisting of N recombinant inbred lines (RILs)

or doubled-haploid lines (DHLs) derived from a cross between two

homozygous inbred lines (P1 and P2). The experiments are conducted

in p different environments. Suppose there are s segregating QTLs

(Q1, Q2, . . .,Qs) each with two genotypes QQ and qq, in which t pairs

of QTLs are involved in epistatic interactions. Let a random variable

�ki be the genotype of Qk from the i-th line taking �ki¼ 1 if the genotype

of Qk is QkQk and �ki¼�1 if the genotype of Qk is qkqk. Let xki¼E(�ki|

the genotypes of flanking markers) which can be achieved by a general

algorithm proposed by Jiang and Zeng (1997) with dominant,

codominant or missing markers. Regarding the environmental effects

as random effects, the phenotypic value of the i-th line in the j-th

environment (yij) can be expressed by the following mixed linear model

yij ¼ �þ
Xs
k

akxki þ
Xt

k, h2ð1,2, ... ,sÞ, k 6¼h

aakhxkixhi

þ ej þ
Xs
k

aekjxki þ
Xt

k, h2ð1,2, ... ,sÞ, k6¼h

aaekhjxkixhi þ "ij

ð1Þ

where � is the population mean; ak is the additive effect of Qk, fixed

effect; aakh is the additive–additive epistatic effect between Qk and Qh,

fixed effect; ej is the main effect of the j-th environment, random effect;

aekj is additive–environment interaction effect between Qk and

environment j, random effect; aaekhj is the interaction effect between

aakh and environment j, random effect; "ij is the residual effect. In such a

mixed linear model, there is no constraint that any pair of effects

involved in interaction must have their individual effects.

We can express Equation (1) in matrix form as

y ¼ 1�þ XAbA þ XAAbAA þUEeE þ
Xs
k¼1

UAkEeAkEþ
Xt
h¼1

UAAhEeAAhE þ e"

¼
�
1 ..

.
XA

..

.
XAA�½�

..

.
b0A

..

.
b0AA

�0
þ
Xr
u¼1

Uueu þ Ie"

¼ Xbþ
Xrþ1
u¼1

Uueu ð2Þ

where y is an n� 1 vector of phenotypic values; n is the total

number of observations; 1 is an n� 1 vector with all the

elements¼ 1. bA¼ [a1 a2 . . . as]
0 and bAA¼ [aa1 aa2 . . . aat]

0 with the

coefficient matrix XA and XAA; eE¼ [e1 e1 . . . ep]
0 �Nð0, I�2EÞ, eAkE ¼

½aek1 aek2 � � � aekp�
0
�Nð0, I�2AkE

Þ and eAAhE ¼ ½aaeh1 aaeh2 � � � aaehp�
0

�Nð0, I�2AAhE
Þ with the coefficient matrices UE, UAkE and UAAhE,

respectively; e" is an n� 1 vector of residual effects, e" �Nð0, I�
2
" Þ;

I (Urþ1) is an n� n identity matrix.

2.2 Scanning genome for QTLs and epistasis

In Equation (1), we assume that the locations of all the QTLs and the

epistatic interactions among them are known. In reality, however, such

information is actually unavailable before mapping. In the following

sections, we will introduce a systematic mapping strategy to search for

QTLs with and/or without epistatic effects in Equation (1).

2.2.1 Mapping QTLs by 1D genome scan To address the

problem of multi-dimensional searches for the multiple loci in the whole

genome, Zeng (1994) proposed an approach called composite interval

mapping (CIM), which could simplify the process of mapping multiple

QTLs from multiple dimensional to 1D search problem. It can be

accomplished by testing for a QTL in a particular genomic region

conditioned on the selected markers controlling the genetic variance of

other QTLs located outside the genomic region to be tested. Denote by

I1, I2, . . ., Ic the marker intervals selected as cofactors when testing a

genomic region for putative QTL. Let ðM�l , M
þ
l Þ be interval Il and M�l

and Mþl be its flanking markers. Let MlMl and mlml be the two

genotypes of Ml. The QTL mapping model for testing a locus k within

a particular genomic region can be written as

yij ¼ �j þ akjxki þ
Xc
l¼1

��jl �
�
il þ �

þ
jl �
þ
il

� �
þ "ij ð3Þ

where �j is the population mean in the j-th environment; �jl is the effect

of the l-th marker in the j-th environment; �il takes the value of 1 or �1

depending on whether the genotype of Ml is MlMl or mlml; the

remaining variables and parameters have the same definition as those in

Equation (1).

Equation (3) can be written in matrix form as

y ¼WQbQ þWMbM þ e ð4Þ

where bQ¼ [a1 a2 . . . aL]
0; bM ¼ ½l

0 a01 a02 � � � a0L�
0 with �¼ [�1

�2 . . .�L]
0 and aj ¼ ½�

�
j1 �
þ
j1 �
�
j2 �
þ
j2 � � � �

�
jc �
þ
jc �
0; WQ and WM are the

coefficient matrices corresponding to bQ and bM, respectively; y and e

have the same definitions as those in Equation (2). Without having to

know which elements of bQ and bM are fixed or random, a general

equation for the expected reduction sum of square of bQ can be

obtained by Henderson method III (Searle, 1992) as

E SSR bQjbM
� �� �

¼ E y0WW
þ
y� y0WMWþMy

� �
¼ tr W0QAMWQ E bQb

0
Q

� �� �
þ �2" rW � rWM

� � ð5Þ

where W ¼ ðWQ
..
.
WMÞ, AM ¼ I�WMðW

0
M WMÞ

�W0M, rW is the rank

of W and rWM
is the rank of WM. Accordingly, we can have the

following F-statistic under the null hypothesis H0: a1¼ a2¼ . . .¼ap¼ 0

F ¼
SSRðbQjbMÞ=ðrW � rWM

Þ

SSE=ðn� rWÞ
ð6Þ

The F-test can be conducted along the whole genome step by step

(1D genome scan). When the F-values for a region exceed a pre-defined

critical threshold, a QTL is indicated at that position with the regional

maximum F-value.

Before scanning the genome for putative QTLs, marker interval

analysis is required to select the candidate marker intervals as cofactors

for Equation (3). Piepho and Gauch (2001) proposed a marker pair

selection (MPS) approach to select cofactors for CIM. The MPS
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approach has two advantages: (1) markers enter the model in adjacent

pairs, which reduces the number of models to be considered, thus

alleviating the problem of overfitting and increasing the chances of

detecting QTLs; (2) an exhaustive search for all the marker pairs per

chromosome is used instead of simple forward selection, which

maximizes the chance of finding the best-fitting models. For a trait

value of the i-th line in the j-th environment, a single-interval model of

the l-th marker interval is written as

yij ¼ �j þ �
�
jl �
�
il þ �

þ
jl �
þ
il þ "ij ð7Þ

where, all the parameters and variables have same definition as those in

Equation (3). We can conduct the F-test based on the aforementioned

Henderson method III for all the marker intervals, and plot the F-

values along the whole genome. When the F-values at a region exceed

the threshold value, a candidate marker interval is selected at the

position with the regional maximum F-value.

2.2.2 Mapping epistasis by two-dimensional (2D) genome
scan Suppose that s QTLs have been mapped by the 1D

genome scan. In order to find all possible epistasis, we adopt the 2D

genome scan procedure conditional on the effects of the s QTLs

mapped by the 1D genome scan as well as a group of marker interval

pairs selected by marker interval interaction analysis. For any pair of

marker intervals (IA and IB), we can use the following two-interval

model to test the interaction effect between them

yij ¼ �j þ ��
A�B�

j �A
�

i �B
�

i þ ��
AþBþ

j �A
þ

i �B
þ

i þ
Xc
k¼1

��jk�
�
ik þ �

þ
jk�
þ
ik

� �
þ "ij ð8Þ

where ��A
�B�

j and ��A
þBþ

j are the interaction effects between

the flanking markers of IA and IB, ðMA� ,MB� Þ and ðMA� ,MB� Þ.

Under the null hypothesis H0 : ��A
�B�

1 ¼ ��A
þBþ

1 ¼ ��A
�B�

2 ¼

��A
þBþ

2 ¼ � � � ¼ � �A
�B�

p ¼ ��A
þBþ

p ¼ 0, the F-test based on Henderson

method III can be performed for all possible pair-wise marker

intervals. When the F-values for a region exceed the pre-defined

threshold value, a candidate marker interval interaction is selected

at that position with the regional maximum F-value.

Let ðIA1 ,I
B
1 Þ,ðI

A
2 ,I

B
2 Þ, . . . ,ðIAf ,I

B
f Þ be the candidate marker interval

interactions selected above. The model for testing the significance of

epistatic interaction between loci k and h can be written as

yij ¼ �j þ aakhjxkixhi þ
Xp
s

asjxsi

þ
Xf
l

��A
�B�

jl �A
�

il �
B�

il þ ��
AþBþ

jl �A
þ

il �
Bþ

il

h i
þ "ij

ð9Þ

where, all the parameters and variables have similar definitions

as those described above. Under the null hypothesis H0:

aakh1¼ aakh2¼ � � � ¼ aakhp¼ 0, the F-statistic can be used to test any

pair of loci in the genome (2D whole-genome scan). However, this 2D

whole-genome scan strategy is very time-consuming, especially for the

data from METs. To reduce the computational complexity, we skip the

genomic regions, in which no significant marker interval interaction is

detected by the interval interaction analysis.

2.2.3 Threshold determination and model selection As

described above, the present mapping strategy consists of the

procedures of marker interval selection, detection of marker interval

interaction, 1D and 2D genome scans. In each of these procedures,

multiple hypothesis tests are performed across the entire genome. Thus,

it is necessary to adjust for the critical threshold value of the F-statistic

to control the experiment-wise false positive rate. The permutation

testing (Doerge and Churchill, 1996) is employed to determine an

empirical threshold value of the F-statistic. However, Equations (3, 7–9)

are complex models, which contain not only the variables to be tested,

but also the variables for background variance control. If the

observation values are directly permutated, the relationship between

trait and background control variables will be destroyed, and thus

permutation testing will give artificially low threshold. Therefore, some

adjustments are needed to apply the permutation testing for complex

models. Without loss of generality, we express the Equations (3, 7–9) in

a general matrix form as

y ¼WTbT þWCbC þ e ð10Þ

where, bT represents the effects to be tested with coefficient matrix WT;

bC represents the effects for background variance control with coefficient

matrixWC. For each permutation, we randomly shuffle the line order of

the matrix WT to destroy the relationship between the variables to be

tested and the trait values, but keep the matrix WC unchanged. This

method is distribution free, applicable in different population structures

and especially simple to be conducted. However, a significant

disadvantage is the computational burden. At least 1000 and 10 000

permutations are suggested to obtain reasonably accurate estimates of

the threshold value for type I error rates of 0.05 and 0.01, respectively.

Furthermore, at the end of each mapping procedure, the peaks which

exceed the critical F-value calculated by permutation testing are selected

from the F-statistic profile. However, some of the peaks are ghost peaks

due to the high correlation of closely linked markers and random noise,

etc. Thus, we perform a stepwise selection on all the significant peaks

selected from the F-statistic profile after each mapping procedure using

the F-statistic as criterion. The stepwise selection strategy is comprised

of two steps, i.e. the forward selection step and backward selection step.

Firstly, all of the selected peaks are ranked by F-values, and the one

with the maximum F-value is picked up into Equation (10) as the effects

for background control (bC). In forward selection step, the remaining

peaks are put into Equation (10) as tested effects (bT) for F-test one by

one, and the most significant one is retained in the model. In backward

selection step, the peaks retained in the model are tested by F-statistic to

examine if some retained peaks will return to non-significance due to

the new peak selected by forward selection. These two selection steps

are iteratively performed until the forward selection step is unable to

select any peak into the model and the backward selection step is unable

to drop any retained peak out of the model.

2.3 Parameter estimation using a Bayesian method via

Gibbs sampling

After we obtain the locations of the putative QTLs and the epistatic

interactions among them, we can estimate all the parameters of

Equation (1) by a Bayesian method via Gibbs sampling (Wang et al.,

1994). In this section, we are not intending to describe this Bayesian

method in detail, but providing a brief introduction of it. For a general

mixed model equation, the estimates of all the effects can be obtained

by solving the following normal equation,

X0X X0U1 X0U2 � � � X0Ur

U01X U01U1 þ R�11

�2
rþ1

�2
1

U01U2 � � � U01Ur

U02X U02U1 U02U2 þ R�12

�2
rþ1

�2
2

� � � U02Ur

..

. ..
. ..

. ..
. ..

.

U0rX U0rU1 U0rU2 � � � U0rUr þ R�1r

�2
rþ1

�2r

2
66666666664

3
77777777775

b̂

ê1

ê2

..

.

êr

2
66666664

3
77777775
¼

X0y

U01y

U02y

..

.

U0ry

2
66666664

3
77777775

ð11Þ

where Ru is the Wright’s relationship matrix.
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In Bayesian analysis of mixed linear model, the prior distributions of

all the unknown parameters are given as

pðbÞ/constant ð12Þ

eujRu,�
2
u �Nqu 0, Ru�

2
u

� �
ð13Þ

p �2u
� �
/ �2u
� ��vu=2�1

exp �
1

2
vus

2
u=�

2
u

� �
ð14Þ

where qu is the rank of Uu; vu is a degree of belief; and s2u is a prior value

of �2u .

The joint posterior distribution density functions of all the

parameters are

p h,rjy,s,vð Þ /
Yrþ1
i¼1

�2i
� ��ðqiþviþ2Þ=2

exp �
�i
2�2i

� �	 

ð15Þ

where h ¼ ½b0 e01 � � � e0r�
0, r ¼ ½�21 �

2
2 � � � �

2
rþ1�
0, v¼ [v1 v2 . . . vrþ1]

0

and s ¼ ½s21 s
2
2 � � � s

2
rþ1�
0; �i ¼ e0 iR

�1ei if i� r, and

�rþ1 ¼ ðy� Xb�
Pr
i

UieiÞ
0
ðy� Xb�

Pr
i

UieiÞ þ vrþ1s
2
rþ1.

The full conditional posterior distributions of the parameters are

�ijy, h�i, r�N ~�i, ~vi
� �

ð16Þ

�2i jy,h,r�i,s,v� ~vi ~s
2
i �
�2
~vi

ð17Þ

where h�i and p�i denote h and p without the i-th element; ~�i ¼ ð�	�PN
j¼1,j6¼i

!ij�jÞ=!ii, ~vi ¼ �
2
rþ1=!ii and !ij is the ij-th element of the first

matrix of Equation (11); ~s2i ¼ �i= ~vi.

The full conditional posterior distributions (Equations 16 and 17) are

called the Gibbs samplers. Our objective is to generate random samples

of parameters from the joint posterior distribution, by updating and

drawing samples from the Gibbs samplers. The Gibbs sampling

procedure is formally performed as

(1) set arbitrary initial values for h and p;

(2) generate h from Equation (16) and update h;

(3) generate p from Equation (17) and update p;

(4) repeat (2) and (3) for k times.

When k!1, a Markov chain with an equilibrium distribution is

created with Equation (15) as its density. The initial iterations are

usually not collected as samples for that the chain may not have reached

the equilibrium distribution yet. We can check the convergence of the

iterations by running the chains under different specifications (initial

values, chain length and number of samplers saved). If these different

specifications result in similar results, it is assumed that the Gibbs

samplers have converged to equilibrium distribution. This procedure is

called burn-in. After burn-in, we run a chain of length L, and collect

samples from every d-th iteration cycle (thinning interval). In practice, a

conservative burn-in period of 20 000 cycles, a chain length (L) of

200 000 and a thinning interval (d) of 10 cycles are used for all the

parameters. Parameter estimations and statistical inferences of the

parameters are conducted by summarizing the Gibbs samplers.

3 RESULTS

3.1 Monte Carlo simulation

The simulation study was conducted under a range of scenarios

with different heritabilities and sample sizes. To make the

simulation as close to the reality as possible, we use a real

genetic map of mice, which consists of 1095 markers covering

2037.6 cM with an average spacing of 1.86 cM. Suppose that a

complex trait is controlled by a genetic architecture with five

QTLs. The QTLs are designated as Q1, Q2, . . ., Q5. Four of the

five QTLs are involved in three pairs of epistatic interactions

designated as EQ1, EQ2 and EQ3. Detailed information on the

positions and genetic effects of these QTLs is presented in

Tables 1 and 2. Two mapping populations with 100 and 200

RILs were generated according to the real linkage map and the

hypothesized genetic architecture. Denote I and II as sample

sizes of 100 and 200, respectively. Two levels of heritability (20

and 40%) are used to generate the phenotypic values. All the

individuals are assumed to be investigated in three different

environments. Two hundred simulations were run for each case

and the average estimates and their SEs were computed.
The estimated positions and effects of QTLs and epistasis

and their SEs were presented in Tables 1 and 2. The support

interval (SI) calculated by the odd ratio reduced by a factor

10 (Lander and Botstein, 1989) was averaged for each of the

QTLs. In general, our model can provide reasonably accurate

estimates of the parameters and have acceptable performance in

false positive rate control. At both of the two heritability levels

with increasing sample size, the powers of detecting QTLs as

well as the precision of parameter estimation increased, support

intervals narrowed and the false discovery rates decreased.

Comparing the accuracy of parameter estimation, powers of

detecting QTLs and epistasis as well as the false discovery rates

of QTLs and epistasis (Tables 1 and 2), it was found that the

method performance was slightly improved with the increase of

heritability. For the QTLs with RCs larger than 4.0%, the

powers of detecting them were all higher than 90% even for

the sample size of 100 at the heritability level of 20%. In all of

the cases, the power of detecting epistasis was lower than that

of QTL. Taking case I at the heritability level of 40% as an

instance, although the RC of Q5 (2.31%) was lower than that

of EQ1 (2.74%), the power of Q1 (52.5%) was distinctly higher

than that of EQ1 (29.0%). Thus, a relatively large sample size is

required for efficiently detecting epistasis.

3.2 Analysis of mouse data

A data set from mouse BXD population consisting of 358

animals belonging to 35 BXD recombinant inbred strains

(Williams et al., 2001), was re-analyzed by the present method.

These strains were generated by crossing C57BL/6J (B6) and

DBA/2J (D2) parental strains in the 1970s (BXD1 through 32)

and 1990s (BXD33 through 42) (Taylor et al., 1999). Genotypic

data of these BXD strains was obtained from the following

URL: http://www.genenet-work.org/dbdoc/BXDGeno.html,

which included 3795 markers covering 19 autosomes and the

sex chromosome. Because the population size is relatively small,

some of the adjacent markers have identical strain distribution

patterns. We screened out 1095 haplotype markers and

constructed a genetic linkage map covering 2037.6 cM with an

average spacing of 1.86 cM. All the 358 animals were measured

for olfactory bulb weight (OBW), brain weight (BrW) and body

weight (BoW), and the trait data were downloaded from the

following URL: http://www.nervenet.org/m-ain/databases.html
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Table 1. Summarized simulation results for mapping QTLs with individual effects

Heritability 20% 40%

QTL Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

aRC (%) 2.42 1.88 4.20 3.43 1.15 4.84 3.76 8.40 6.86 2.31

Chromosome 3 5 6 8 10 3 5 6 8 10

Position (cM) 31.98 60.31 42.64 52.27 65.50 31.98 60.31 42.64 52.27 65.50

Estimates (SE) I 32.22 (1.74) 60.43 (1.87) 42.70 (1.11) 52.74 (1.90) 65.10 (2.89) 32.07 (1.47) 60.68 (1.11) 42.60 (0.94) 52.58 (1.61) 65.54 (2.55)

II 32.04 (0.95) 61.04 (3.63) 42.63 (0.51) 52.59 (0.68) 65.81 (1.54) 32.04 (0.79) 60.72 (0.57) 42.59 (0.44) 52.57 (0.58) 65.74 (1.31)
bSI Length (cM) I 4.06 4.97 4.10 3.18 3.66 3.54 4.71 3.58 2.73 3.63

II 3.52 4.80 4.04 3.05 4.23 2.64 3.58 3.11 2.37 3.01

a �2.78 0.00 2.90 �3.31 1.92 �2.78 0.00 2.90 �3.31 1.92

Estimates (SE) I �2.94 (0.50) �0.17 (0.81) 2.92 (0.62) �3.35 (0.56) 2.37 (0.65) �2.79 (0.39) �0.04 (0.47) 2.90 (0.45) �3.26 (0.45) 1.98 (0.36)

II �2.80 (0.26) �0.04 (0.32) 2.93 (0.26) �3.28 (0.27) 1.91 (0.23) �2.78 (0.18) �0.02 (0.21) 2.92 (0.19) �3.28 (0.19) 1.88 (0.18)

ae1 0.00 �2.04 2.58 0.00 0.00 0.00 �2.04 2.58 0.00 0.00

Estimates (SE) I 0.04 (0.22) �2.17 (0.61) 2.38 (0.66) �0.02 (0.31) �0.01 (0.24) 0.02 (0.11) �2.04 (0.36) 2.47 (0.43) �0.01 (0.18) �0.00 (0.18)

II �0.00 (0.15) �2.04 (0.38) 2.51 (0.37) 0.01 (0.15) 0.00 (0.16) 0.00 (0.11) �2.05 (0.26) 2.55 (0.26) 0.01 (0.11) 0.00 (0.10)

ae2 0.00 �0.67 �1.31 0.00 0.00 0.00 �0.67 �1.31 0.00 0.00

Estimates (SE) I 0.00 (0.20) �0.72 (0.56) �1.19 (0.51) 0.01 (0.21) 0.05 (0.30) 0.00 (0.11) �0.68 (0.37) �1.26 (0.36) 0.01 (0.15) 0.01 (0.18)

II 0.02 (0.16) �0.68 (0.32) �1.29 (0.33) �0.03 (0.15) 0.00 (0.15) 0.01 (0.12) �0.67 (0.23) �1.31 (0.23) �0.02 (0.11) �0.00 (0.10)

ae3 0.00 2.72 �1.27 0.00 0.00 0.00 2.72 �1.27 0.00 0.00

Estimates (SE) I �0.05 (0.23) 2.89 (0.55) �1.19 (0.52) 0.00 (0.26) �0.03 (0.28) �0.02 (0.11) 2.70 (0.34) �1.23 (0.36) �0.00 (0.15) �0.01 (0.17)

II 0.02 (0.14) 2.65 (0.38) �1.23 (0.34) 0.01 (0.16) �0.00 (0.15) �0.01 (0.10) 2.67 (0.25) �1.25 (0.23) 0.01 (0.12) �0.00 (0.10)

Power (%) I 76.5 41.5 95.5 95.0 28.5 92.0 83.5 99.5 99.5 52.5

II 100.0 99.5 100.0 100.0 89.5 100.0 100.0 100.0 100.0 99.0

aRC, relative contribution.
bSI Length, average length of support interval of 200 simulation replicates.

I and II represent the population sizes of 100 and 200, respectively. Each estimate presented in this table is an average of the estimates from 200 runs with the standard error (SE) in the parentheses. The false discovery

rates of QTLs for cases I and II are 0.0413 and 0.0412 at the heritability level of 20%, and are 0.0584 and 0.0413 at the heritability level of 40%.
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With the objective of identifying the OBW-specific QTLs,

Williams et al. (2001) excluded the contributions of BrW–OBW

(BrW minus OBW), BoW, age and sex to OBW by regression

analysis, and used the regression-corrected values (residues) for

QTL analysis. We used the original BrW but not BrW–OBW for

regression analysis. Our method detected two significant QTLs

with sharp and narrow F-statistic peaks located on chromosome

11 and 12 by 1D genome scan (Fig. 1a). Moreover, one

significant epistatic interaction was detected between two QTLs

on chromosome 1 and chromosome 19 by 2D genome scan

(Fig. 1b). The critical F-values for both 1D and 2D scan were

calculated by permutation testing at genome-wise 0.05

Fig. 1. F-statistic plots from (a) 1D genome scan for QTLs with individual effects and (b) 2D genome scan for epistasis of OBW in mouse. (a) Two

peaks exceed the threshold F-value (14.5) calculated by permutation tests on chromosome 11 and 12, respectively. (b) F-statistic profile obtained by

2D genome scan between the regions from 26 to 48 cM on chromosome 1 and from the 5 to 36 cM on chromosome 19. A significant peak is detected

which much larger than the threshold F-value (10.2). Colour version of this figure is available as Supplementary material online.

Table 2. Summarized simulation results for mapping epistasis

Heritability 20% 40%

Epistasis EQ1 (Q1–Q4) EQ2 (Q2–Q4) EQ3 (Q2–Q5) EQ1 (Q1–Q4) EQ2 (Q2–Q4) EQ3 (Q2–Q5)

RCa (%) 1.37 3.33 2.22 2.74 6.67 4.43

aa �2.09 2.58 �2.66 �2.09 2.58 �2.66

Estimates (SE) I �2.35 (0.41) 2.29 (0.53) �2.44 (0.44) �2.03 (0.34) 2.37 (0.42) �2.45 (0.41)

II �2.02 (0.27) 2.48 (0.29) �2.50 (0.34) �2.04 (0.50) 2.51 (0.22) �2.53 (0.27)

aae1 0.00 �1.79 0.00 0.00 �1.79 0.00

Estimates (SE) I 0.01 (0.19) �1.41 (0.63) �0.03 (0.27) 0.01 (0.12) �1.57 (0.42) 0.02 (0.12)

II 0.02 (0.15) �1.69 (0.32) �0.00 (0.13) 0.02 (0.11) �1.74 (0.23) �0.00 (0.09)

aae2 0.00 2.16 0.00 0.00 2.16 0.00

Estimates (SE) I �0.04 (0.21) 1.86 (0.64) �0.00 (0.21) �0.02 (0.12) 1.94 (0.46) 0.00 (0.13)

II �0.02 (0.15) 2.06 (0.37) 0.00 (0.12) �0.01 (0.11) 2.10 (0.25) 0.00 (0.08)

aae3 0.00 �0.37 0.00 0.00 �0.37 0.00

Estimates (SE) I 0.03 (0.20) �0.43 (0.47) 0.03 (0.12) 0.01 (0.12) �0.38 (0.37) �0.02 (0.15)

II �0.01 (0.14) �0.39 (0.31) �0.00 (0.12) �0.01 (0.11) �0.38 (0.22) 0.00 (0.09)

Power (%) I 16.5 85.0 39.5 29.0 93.0 67.0

II 78.0 99.0 94.5 87.5 100.0 98.0

aRC, relative contribution.

I and II represent the population sizes of 100 and 200, respectively. Each estimate presented in this table is an average of the estimates from 200 runs with the SE in the

parentheses. The names of QTLs involved in each epistasis are given in the parenthesis after the name of epistasis. The false discovery rates of epistasis for the cases I and

II are 0.1627 and 0.0512 at the heritability level of 20%, and are 0.1538 and 0.0473 at the heritability of 40%.
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significance level. Genetic effects and support intervals of all the

QTLs are presented in Table 3. The QTLs are designated as

‘OBW’ with the serial numbers of chromosome and marker

interval. The additive effect of QTL OBW11–12 is �0.75,

indicating that alleles from D2 could increase OBW by

�0.75mg above population mean. In the study of Williams

et al. (2001), they mapped a QTL on chromosome 11 between

markers D11Mit51 and D11Mit20 (18–20 cM) with an additive

effect of�0.7, which was consistent with the QTLOBW11–12 in

the present study. The estimated RC of OBW11–12 was 14.6%,

suggesting that �14.6% of OBW variation is generated by this

QTL. In addition, none of the two epistatic QTLs could be

detected with a significant individual effect. We have strong

confidence in this epistasis, not only because the F-statistic peak

of this epistatic interaction was especially sharp, but also

because there was a significant marker interaction in these two

genomic regions in the previous pair-wise marker interval

interaction analysis.

3.3 Analysis of rice data

A rice DH population consisting of 123 lines derived from two

inbred parents, IR64 and Azucena, was grown in a randomized

block design with two replications at Hainan (18� N) in

1995 and Hangzhou (32� N) in 1996 and 1998. A total of

175 polymorphic markers covering 2005 cM of the genome

along 12 chromosomes were used in this analysis (Huang et al.,

1997). Yield (Yd) was investigated in a series of three-year field

experiments.

A total of six QTLs with three pair of epistatic interactions

were detected for yield at genome-wise significance level of 0.05

by permutation testing. The F-statistic profiles obtained from

the 1D and partial 2D genome scan procedures are shown in

Figure 2a and b, and the whole genetic architecture information

is summarized in an informative QTL network map (Fig. 2c).

The QTLs are designated as ‘Yd’ with the serial numbers of

chromosome and marker interval. Of these six QTLs, only two

QTLs (Yd3–13 and Yd4–10) had additive effects, and both of

them were sensitive to the environments (Table 4). Except for

Yd4–10, all the epistatic QTLs had no individual effect. Special

attention should be paid to the QTL Yd10–2, which was

involved in all the three epistasis (Fig. 2b and c) but without

individual effect according to the F-statistic profile obtained

from 1D genome scan (Fig. 2a). It might be implied that there

may be one or several modifier gene(s) that play(s) an

important role in regulating the reproductive growth located

in this locus. In addition, it was revealed that nearly 31.8% of

the genetic variance is attributed to those epistatic interactions

between QTLs without individual effects.

4 DISCUSSION

In the present study, we propose a full-QTL model to integrate

the effects of QTLs, epistasis and QE interaction into one

mapping system, and developed a systematic mapping strategy

to search for QTLs and epistasis among them. Other two

popular QTL mapping methods, the multiple interval mapping

(MIM; Kao et al., 1999) in Windows QTL Cartographer

software and the multiple imputation method (Sen and

Churchill, 2001) in R/qtl software, can also handle QTLs

with individual effects and epistasis. Under the assumption that

the QTLs without individual effects will not be involved in

epistasis, MIM method uses model selection technique to detect

the epistatic interactions among the QTLs detected by CIM

method. The multiple imputation method was developed based

on a Monte Carlo algorithm to implement Bayesian QTL

analysis. It uses 2D genome scan to search for multiple

interacting QTLs. Both of these two programs cannot analyze

QE interaction effects. When using these two programs to

analyze data form METs, users have to analyze the data in

separate environments, and compare the results from different

environments to indicate the QE interaction. However, the

differences in mapping results among different environments

could not precisely indicate the existence of QE interaction

(Jansen et al., 1995). Wang et al. (1999) proposed a two-locus

model that could also map epistasis and QE interaction for data

from METs. However, it has several disadvantages especially in

the mapping strategy. (1) It selects the cofactors separately in

each of the environments by strategy of stepwise model

selection, without controlling the genome-wise false positive

rate; (2) in the genome scan procedure, only the adjacent

marker intervals of the candidate marker pair are searched by

the two-locus model. In the present method, marker interval

analysis is conducted by data from all the environments with

permutation testing to control the genome-wise false positive

rate. It is much more conservative in cofactor selection than the

separate analysis without genome-wise false positive rate

control. With respect to the pair-wise genomic regions for

2D scan, we extend scanning regions around the candidate

marker pair until no pair of marker interval has significant

interaction; (3) comparison-wise significant level is used to test

the significance of putative QTL and epistasis, which could

result in high rate of false positive epistatic interactions. In the

Table 3. QTLs and epistasis for OBW in mouse

QTL OBW11–17 OBW12–55 Epistasis (OBW1–28, OBW19–13)

Chromosome 11 12 Chromosome (1, 19)

Position (cM) 20.3 95.7 Position (cM) (39.9, 15.2)

SIa (cM) 18.4–22.1 92.9–98.2 aSI (cM) (36.0–40.9, 13.9–21.7)

a (P-value) �0.75 (0.0000) �0.32 (0.0004) aa (P-value) 0.43 (0.0000)

aSI, support interval.

The QTLs are designated as ‘OBW’ with the serial numbers of chromosome and marker interval.
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Fig. 2. F-statistic plots from (a) 1D genome scan for QTLs with individual effects and (b) 2D genome scan for epistasis and (c) the predicted genetic

architecture of yield in rice. (a) Two peaks exceed the threshold F-value (6.3) calculated by permutation tests on chromosome 3 and 4, respectively.

(b) 2D genome scan is performed between the region from 0 to 32 cM on chromosome 10 and two regions on chromosome 8 and 14 for epistasis.

Three peaks have been detected exceeding the threshold F-value (4.8). (c) The blue ball represents QTL with both additive effect and additive–

environment interaction effect. The black ball represents epistatic QTL without individual effect. Chromosome region in yellow indicts the support

interval of a QTL. Colour version of this figure is available as Supplementary material online.

Table 4. QTLs and epistasis for yield in rice

QTL Yd3–13 Yd4–10 Epistasis (Yd4–9, Yd10–2) (Yd4–10, Yd10–2) (Yd8–15, Yd10–2)

Chromosome 3 4 Chromosome (4, 10) (4, 10) (8, 10)

Position 179.2 124.2 Position (91.4, 6.6) (124.2, 6.6) (156.2, 6.6)

SI 174.2–185.2 116.2–132.2 SI (82.3–101.4, 3.0–18.6) (11(116.2–132.2, 3.0–18.6) (1(149.1–162.2, 3.0–18.6)

a (P-value) �0.88 (0.0002) �1.77 (0.0000) aa (P-value) 0.65 (0.0149) 0.82 (0.005) �0.88 (0.0002)

ae1 (P-value) 1.11 (0.0236) 1.56 (0.0097) aae1 (P-value) �0.68 (0.1923) 0.00 (0.9971) 0.46 (0.2539)

ae2 (P-value) �1.21 (0.0013) �1.77 (0.0001) aae2 (P-value) 1.07 (0.0091) 0.00 (0.9964) �0.52 (0.1169)

ae3 (P-value) 0.12 (0.7337) 0.18 (0.6686) aae3 (P-value) �0.43 (0.2510) 0.00 (0.9993) 0.07 (0.8243)

aSI, support interval.

The QTLs are designated as ‘Yd’ with the serial numbers of chromosome and marker interval.
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present method, the threshold F-values determined by permu-
tation testing are used to control the genome-wise false positive
rate and (4) it uses likelihood ratio test to search for the

putative QTLs and epistasis, and uses Jackknife re-sampling
technique for significance test. Both methods require calcula-
tion of the inverse of an n� n V matrix (n is the total number of

observations). We use the F-test based on Henderson method
III for hypothesis tests throughout the whole mapping
procedure. It completely avoids inversing the V matrix.

Moreover, Bayesian method is used for parameter estimation
and statistical inference of the full-QTL model, which can avoid
calculation of the inverse of the n� n matrix, and also provide

reasonably unbiased estimates of all the genetic effects
(Tables 1 and 2). In our software, we provide an option to
choose the conventional mixed model approach instead of the

Bayesian method. The conventional mixed model approach
consists of the REML (restricted maximum likelihood) method
for variance component estimation, GLS (generalized least
square) for fixed effect estimation, BLUP (best linear unbiased

prediction) for random effect prediction and Jackknife
re-sampling technique for significance tests of the parameters.
In the worked examples of the present study, we found some

epistatic QTLs which were not detectable with individual effects
by 1D genome scan. This suggested that epistatic interactions
from modifier loci could be a common type of epistasis.

According to Greenspan’s network model to describe the
flexible genome, we believe that these types of epistatic
interactions are important genetic buffer which can provide

much functional redundancy for species to survive perturba-
tions, and also can generate much more phenotypic poly-
morphism in response to natural and artificial selection

(Greenspan, 2001). However, we should bear it in mind that
any strong conclusion on epistasis should be based on a
relatively large population, at least more than 200 for RILs.

The simulation study in the present study reveals that for the
RIL population with a size of 100, the false positive rate of
epistasis is higher than 0.15 and the power of detecting epistasis

is relatively low (Table 2). Moreover, further experimental
techniques such as genetic complementation and co-isogenic
mutation analysis are required to identify genes involved in

epistatic interactions to gain insights into the genetic network
of evolutionarily and agriculturally important complex traits.
The permanent genetic resources, such as RILs and DHLs,

need to be genotyped only once and can be investigated in
multiple environments, which cannot only benefit the analysis
of traits with low heritabilities, but also allow an examination

of the QE interactions. The method proposed in the present
study provides a way to identify the QE interaction, which can
play a significant role in genetic improvement of crops to

obtain location-specific or broadly adapted elite varieties by
marker-assisted selection. Another significant source of pheno-
typic variance is the sex effect, especially for the behavioral

traits. By treating male and female as two environments, the
present method can also analyze the sexual dimorphism of QTL
and epistasis. In addition, researches in genetic epidemiology

have implied that particular genes and particular genetic
variation-associated disease risk in one population can differ
from another because the spectrum of environments is different

between populations. Identification of the interaction between

environment and gene or a group of genes would play a key
role in prevention and treatment of common diseases. Thus,
a more flexible method is required to handle the data from

natural populations.
Based on the models and methods proposed in the present

study, the computer software QTLNetwork was developed

in the Cþþ programming language (http://ibi.zju.edu.cn/
software/qtlnetwork). This software can be run on most of
the commonly used operation systems including Microsoft

Windows, Linux and UNIX. The Graphic User Interface
(GUI) and graphic visualization was developed based on
Microsoft Foundation Class (MFC) and Visualization

Toolkit (VTK), respectively. Various kinds of populations
(DH, RI, backcross, F2 and other arbitrary designs) can be
handled by this software for QTL mapping.
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