
Copyright � 2006 by the Genetics Society of America
DOI: 10.1534/genetics.106.061960

On the Generalized Poisson Regression Mixture Model for Mapping
Quantitative Trait Loci With Count Data

Yuehua Cui,*,1 Dong-Yun Kim* and Jun Zhu†

*Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824 and †College of
Agricultural and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310029, People’s Republic of China

Manuscript received June 13, 2006
Accepted for publication September 24, 2006

ABSTRACT

Statistical methods for mapping quantitative trait loci (QTL) have been extensively studied. While most
existing methods assume normal distribution of the phenotype, the normality assumption could be easily
violated when phenotypes are measured in counts. One natural choice to deal with count traits is to apply the
classical Poisson regression model. However, conditional on covariates, the Poisson assumption of mean–
variance equality may not be valid when data are potentially under- or overdispersed. In this article, we
propose an interval-mapping approach for phenotypes measured in counts. We model the effects of QTL
through a generalized Poisson regression model and develop efficient likelihood-based inference pro-
cedures. This approach, implemented with the EM algorithm, allows for a genomewide scan for the ex-
istence of QTL throughout the entire genome. The performance of the proposed method is evaluated
through extensive simulation studies along with comparisons with existing approaches such as the Poisson
regression and the generalized estimating equation approach. An application to a rice tiller number data set
is given. Our approach provides a standard procedure for mapping QTL involved in the genetic control of
complex traits measured in counts.

MODERN biological techniques make it possible to
detect the abundant variation of molecular poly-

morphisms that segregate in most species in nature.
Consequently, it is possible to detect quantitative trait
loci (QTL) underlying quantitative variation of certain
traits and to map their chromosomal locations through-
out the entire genome using statistical methods
(Mackay 2001). Given the recent intriguing result of
gene cloning from rice on the basis of QTL mapping
results (Li et al. 2006), QTL mapping is still proven to be
an important tool for gene discovery in the postgenomic
era. Therefore, there is a great demand to develop ef-
ficient statistical methods to improve the precision and
power of QTL mapping, not only for continuous traits,
but also for discrete traits such as those measured in
counts.

Most current statistical methods for QTL mapping in
experimental crosses date back to the seminal mapping
article of Lander and Botstein (1989). Since then, this
work has been extended and improved by a number of
statisticalmethods, forexample, composite intervalmap-
ping (Zeng 1994) and multiple-interval mapping (Kao

et al. 1999). However, most of the existing methods
developed so far assume that the phenotypic trait be
normally distributed. This assumption is easily violated
when the phenotype of interest shows nonnormal char-

acteristics, for instance, pertaining to survival time (Diao

et al. 2004) or displaying a binary characteristic (Xu and
Atchley 1996).

Another type of data often observed in real experi-
ments is count data where the phenotype of interest is
measured in counts. For example, the number of roots
generated in a plant (Lall et al. 2004), CD4 Tcell counts
in a human study (Hall et al. 2002), and the number of
cholesterol gallstones formed in mice (Wittenburg

et al. 2003) are all examples of phenotypes measured
in counts. The distribution of these types of data is
generally skewed, especially when the mean is compar-
atively small. Tilquin et al. (2001) proposed to perform
a mathematical transformation of count data and then
apply a standard QTL mapping approach such as least
squares (Haley and Knott 1992), maximum likeli-
hood (Lander and Botstein 1989), or a nonparamet-
ric approach (Kruglyak and Lander 1995). However,
the nature of the data distribution is still not incorpo-
rated and consequently the mapping power might
be affected. Due to the lack of an efficient statistical
method, the standard QTL mapping approach assum-
ing normally distributed phenotypes is still being ap-
plied (Lall et al. 2004).

When the sampling variance of a count variable Y is
significantly greater or less than that predicted by an
expected probability distribution, Y is said to be over- or
underdispersed, respectively. A natural way to analyze
regular count data is to use a Poisson regression model
where the Poisson mean can be modeled as a function
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of linear predictors through the log link function in a
generalized linear model (GLM) setting (McCullagh

and Nelder 1989). Using parametric approaches by
applying Poisson distribution in QTL mapping has been
previously proposed (Rebaı̈ 1997; Shepel et al. 1998;
Sen and Churchill 2001). These approaches were
built on the maximum-likelihood framework (Shepel

et al. 1998), least-squares-based regression framework
(Rebaı̈ 1997), and Bayesian framework (Sen and
Churchill 2001), and each one displays its own merits
in handling count data in QTL mapping. However, if
dispersion occurs, ignoring it will result in biased pa-
rameter estimates, which may lead to incorrect conclu-
sions and inferences (Wang 1994). Therefore, these
approaches are greatly limited when the underlying
data are potentially dispersed.

When count data are dispersed, one can apply a non-
parametric approach (Kruglyak and Lander 1995)
using its nice distribution-free property. However, one
of its major disadvantages is that it does not provide
QTL-effect estimation and hence greatly restricts its util-
ity for inference. Moreover, it is based on the Wilcoxon
rank-sum test and chooses to rank tied individuals at
random. This also greatly restricts its application when
the number of ties is high, especially for count data
(Rebaı̈ 1997). McCullagh and Nelder (1989) suggest
modeling mean and dispersion jointly as a way to take
possible dispersion into account. The GLM was later
applied to a QTL mapping study using a generalized
estimating equation (GEE) approach (Lange and
Whittaker 2001; Thomson 2003). The GEE approach
shows its merits in handling dispersion. However, since
the GEE approach does not assume a full probabil-
ity model, a misspecified variance may have an influ-
ence on the efficiency of the parameter estimates and
a likelihood-based inference procedure cannot be ap-
plied directly. Wang et al. (1996) suggest modeling data
with a mixed Poisson regression model to take data
dispersion into account. Famoye (1993) proposed a
generalized Poisson regression model in which the dis-
persion parameter can be directly estimated and tested.
Neither of these two approaches has been applied
in QTL mapping studies.

In this article, we propose a rigorous extension of the
interval-mapping approach to count traits. We model the
QTL effects through a generalized Poisson regression
model (Famoye 1993) and develop efficient likelihood-
based inference procedures. Residual analysis and good-
ness-of-fit tests are proposed to check the model fitting.
This approach, implemented with the EM algorithm,
allows for a genomewide scan for the existence of QTL
throughout the entire genome. Extensive simulation
studies are performed to evaluate the statistical behavior
of the approach. Comparisons with the GEE approach
and the Poisson regression are also given on the basis of
simulations. An application to a rice tiller number data
set is provided in which several QTL are detected to

affect tiller growth. Our approach provides a standard
procedure for mapping QTL involved in the genetic
control of complex traits measured in counts.

MODELS

Generalized Poisson regression model: Suppose that
Yi is a count response variable that follows a generalized
Poisson distribution (Famoye 1993). The probability
function of Yi is given by

pðYi ¼ yi j li ;fÞ

¼ li

1 1 fli

� �yi ð1 1 fyiÞyi�1

yi !
exp

�lið1 1 fyiÞ
1 1 fli

� �
; yi ¼ 0; 1; . . . ;

ð1Þ
where li is the mean of the function and can be ex-
pressed as a function of genetic and nongenetic factors;
i.e., li ¼ liðxiÞ ¼ expðx9i bÞ, where xi is a p-dimensional
vector of covariates including genetic and nongenetic
factors, b is a p-dimensional vector of regression param-
eters, and f is a dispersion parameter.

The generalized Poisson regression (GPR) model (1)
is a generalization of the standard Poisson regression
(PR) model. When the dispersion parameter f ¼ 0, the
probability function in (1) reduces to the PR model.
When f . 0, the GPR model represents count data with
overdispersion and when f , 0, the GPR model rep-
resents count data with underdispersion. Therefore, the
GPR model shows more flexibility in modeling count
data when the underlying data show varying degrees
of dispersion. Since the parameter f is restricted to 1 1

fli . 0 and 1 1 fyi . 0, the model is also called the re-
stricted generalized Poisson regression model (Famoye

1993).
The mean of the response in the GPR model is given

by E(Yi j li, f) ¼ li and the variance is given by V(Yi j li,
f) ¼ li(1 1 fli)2. Clearly, when f . 0, the variance is
overdispersed and when �2/li , f , 0, the variance is
underdispersed. The GPR model is very useful for mod-
eling count data, especially when mean and variance
differ.

Interval-mapping approach: In this section, we de-
velop an interval-mapping method for potentially dis-
persed count traits in a backcross population. Expanding
the results to other crosses such as an F2 or a recombinant
inbred line (RIL) is straightforward. Suppose that there is
a putative QTL that is segregating with two alleles Q and
q in a backcross population of size n, initiated with two
contrasting inbred lines. The QTL is assumed to be
responsible for the quantitative variation of the pheno-
type measured in counts. Data are randomly collected,
which include a set of genetic markers with a known
genetic linkage map and set of phenotype data.

For simplicity, we ignore nongenetic covariates and
consider only the genetic covariates. Let xi ¼ 1 or 0 ac-
cording to whether the QTL genotype for the ith subject
is QQ or Qq, respectively. We specify a GPR model for the
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effects of the QTL genotype on the count trait such that,
conditional on the QTL genotype Gi, the mean of the
GPR model can be expressed as

li jGi ¼ expðx9i bÞ ¼
expðm 1 aÞ for QQ

expðmÞ for Qq; ð2Þ

�

where b¼ (m, a) in which m is the overall genetic effect,
and a is the additive genetic effect.

Statistical methods for mapping QTL on the basis
of a mixture model have been previously developed
(Lander and Botstein 1989). In the mixture model,
each observation y is assumed to have arisen from one of
j components (QTL genotypes), with each component
being modeled by a probability distribution function,
for example, a generalized Poisson regression function
in the current setting. At each locus, the conditional
probability of QTL genotype j given on the flanking
markers Mi for individual i can be calculated, which is
expressed as pijj¼ Pr(xi¼ j jMi) (i¼ 1, . . . , n), where n is
the total sample size and j takes value 1 or 0 depending
on whether the QTL genotype is QQ or Qq (Lynch and
Walsh 1998). The conditional probability is considered
as the mixture proportion in the mixture model. For the
backcross family, the mixture model has the form

f ðyi j li ;fÞ ¼ pij1p1ðyi j lij1;fÞ1 pij0p0ðyi j lij0;fÞ: ð3Þ

From the mixture distribution, we can easily compute
the unconditional mean and variance of Yi, which are
expressed as

mi ¼ EðYiÞ ¼ EðEðYi j liÞÞ ¼
X1

j¼0

pijj lijj ð4Þ

and

V ðYiÞ ¼ EðV ðYi j liÞÞ1 V ðEðYi j liÞÞ

¼
X1

j¼0

fl2
ijj 1 lijjð1 1 flijjÞ2g � ½EðYiÞ�2: ð5Þ

Assuming independent observations, the log-likeli-
hood function given the phenotype y and marker data
M can be expressed as

‘nðb;f j y;MÞ

¼
Xn

i¼1

logfpij1p1ðyi j lij1;fÞ1 pi j0p0ðyi j lij0;fÞg: ð6Þ

The parameters specifying function p1 are (m, a, f)
with lij1 ¼ exp(m1a) and the parameters specifying
function p0 are (m, f) with lij0 ¼ exp(m).

Parameter estimation: Define V ¼ ðb;fÞ ¼ ðm; a;fÞ,
which contains the genetic parameters and dispersion
parameter. The maximum-likelihood estimate (MLE) V̂

for V is such that it solves the partial-derivative equation
with respect to the rth parameter contained in V:
@‘n(V)/@Vr ¼ 0. In practice, we treat the positions of
QTL, t, as known parameters rather than unknown,
although their MLEs can also be obtained through
iterative steps. We can then use a grid search approach
to estimate the QTL positions. By hypothesizing a QTL
every 1 or 2 cM at marker intervals, the landscape of log-
likelihood test statistics throughout the entire genome
can be obtained. The positions corresponding to the
peak of the landscape across a linkage group are the
MLEs of the QTL positions. Therefore, a computational
algorithm can be formulated as follows. For any fixed
QTL position, t, the EM algorithm (Dempster et al.
1977) is used to find the restricted MLE V̂ðtÞ, with the
Newton–Raphson algorithm employed in the M-step
(detailed instructions are given in the appendix). Then
obtain t̂ by varying t over an interval with a small in-
crement of 1 or 2 cM at a time.

With a backcross design, we have two mixture com-
ponents. For a fixed number of mixtures, asymptotic
normality of

ffiffiffi
n
p ððm̂; â ; f̂Þ � ðm; a;fÞÞ can be proved un-

der standard regularity conditions (Lehmann 1983).
However, as restricted by the condition 1 1 fyi . 0, the
parameter f is bounded below by the observed data set.
If f reaches the lower bound, the asymptotic normality
for f may not be satisfied. The approximate standard
errors of the estimates can be obtained from the by-
product of the Newton–Raphson algorithm. Applying
Wald’s (1949) consistency argument and using the
techniques developed in Chen and Chen (2005), we
can prove the consistency of the MLEs of V under the
GPR mixture model. If a QTL exists in an interval, i.e.,
a 6¼ 0, the MLE of QTL position t is also consistent.

Hypothesis test: The presence of QTL responsible for
the variation of the count phenotype can be tested by
using the following hypotheses:

H0: a ¼ 0

H1: a 6¼ 0: ð7Þ
The test statistic for testing the above hypotheses is
calculated as the log-likelihood-ratio test statistic (LR)
of the full model (H1) over the reduced model (H0),

LR ¼ �2 log½Lð~VÞ � LðV̂Þ�; ð8Þ
where ~V and V̂ denote the MLEs of the unknown
parameters under H0 and H1, respectively. Because of
the mixture model, the regularity conditions for asymp-
totic x2-distribution of the LR do not hold. To find the
threshold value, we use the permutation test proposed
by Churchill and Doerge (1994).

MODEL IMPLEMENTATION

Model comparison: After specifying a regression func-
tion, different regression models such as the regular
Poisson, the generalized Poisson, or the compound
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Poisson regression models may be applied to a given
data set. A natural question arises: Which model should
one adopt to fit the data for QTL analysis? This is es-
sentially a model selection problem. Two widely used
model selection criteria are Akaike’s Information Cri-
terion (AIC) (Akaike 1974) and the Bayesian Informa-
tion Criterion (BIC) (Schwarz 1978). Quantitatively,
the BIC puts more penalty on the log-likelihood func-
tion and the model selected by the BIC is more parsi-
monious. Here we define the AIC and the BIC criteria
for the mixture model as

AIC ¼ �2 ln LðV̂ j yÞ1 2p ð9Þ

and

BIC ¼ �2 ln LðV̂ j yÞ1 p logðnÞ; ð10Þ

where p is the number of free parameters in the defined
model. The model with the smallest AIC or BIC value is
selected as the best.

Dispersion test: The GPR model reduces to the
Poisson regression model when the dispersion parame-
ter f vanishes. To assess the adequacy of the GPR model
over the Poisson regression model, and to determine
whether the data are over- or underdispersed with re-
spect to the generalized Poisson regression model, a test
for the dispersion parameter can be formulated as
follows:

H0: f ¼ 0

H1: f 6¼ 0: ð11Þ

When the lower bound for f̂ is not reached, a Wald-
type test can be conducted in which f̂=OŝðfÞ may
asymptotically follow a standard normal distribution.
Further theoretical investigation is needed to demon-
strate the validity of the Wald test for f under the mix-
ture distribution framework. Alternatively we can apply
the likelihood-ratio test in which the threshold is deter-
mined using permutation tests. The sign of significant
test statistics suggests over- or underdispersion, where
negative estimates indicate underdispersion and posi-
tive estimates indicate overdispersion. Meanwhile, sig-
nificance of the test provides evidence of a better fit for
the GPR model over the PR model.

Residual analysis and goodness-of-fit: After model
selection and a GPR model is fitted, it is essential to
check the quality of the fit. One way to check the quality
of fits is to perform a residual analysis. For this purpose,
we consider a Pearson or a deviance residual to check
the model fit. The Pearson residual for the ith observa-
tion is defined as

rpi
¼ yi � m̂i

OV̂ ðyiÞ
; ð12Þ

where m̂i and V̂ ðyiÞ can be obtained from (4) and (5)
by replacing the parameters by the MLEs. The sum

of squared Pearson residuals, X 2, gives the Pearson
goodness-of-fit statistic for the GPR mixture model.

The deviance residual is defined as

rdi
¼ signðyi � m̂iÞ

ffiffiffiffi
di

p
; ð13Þ

where di ¼ 2ð‘ðyi ; f̂; yiÞ � ‘ðm̂i ; f̂; yiÞÞ, and ‘ðyi ; f̂; yiÞ ¼
f ðyi j yi ; f̂Þ, and ‘ðm̂i ; f̂; yiÞ is the log likelihood of the
generalized Poisson regression mixture model for yi.
The goodness-of-fit of the generalized Poisson regres-
sion mixture model can be measured by the deviance
D ¼

Pn
i¼1 di .

The above two residuals asymptotically follow the stan-
dard normal distribution as n/‘. Therefore, large re-
siduals may indicate poorly fitting observations (Pierce

and Schafer 1986). An index plot of these residuals
may be used for detection of potential outliers.

After calculating the residuals, we can also use these
residuals to test the goodness-of-fit for the GPR mixture
model. The Pearson’s statistic X 2 and the deviance sta-
tistic D are asymptotically distributed as x2

n�m under
the null hypothesis, where m is the number of free pa-
rameters under the alternative (Wang et al. 1996). A
large value of X 2 or D indicates poor fit.

We can also apply the techniques developed by Wang

et al. (1996) to evaluate how the ith observation affects a
set of parameter estimates. We define the following
quantity as the influential estimate (IE) for individual i,
which has the form

wi ¼
1

m

Xm

k¼1

jV̂k � V̂
ðiÞ
k j

seðV̂kÞ
; ð14Þ

where V̂k and V̂
ðiÞ
k are the MLEs of the GPR mixture

model based on the complete data set of n individuals
and on the dataset of n� 1 individuals excluding the ith
individual, respectively; and m is the total number of
parameters in the model. The IE calculated for in-
dividual i can be interpreted as the average relative co-
efficient changes for a set of estimates and is useful for
assessing the effect of parameter estimates by exclusion
of the ith observation (Wang et al. 1996). Therefore, a
relatively large value of wi indicates a potential influen-
tial observation that might cause instability in model
fitting. An index plot of w may be used for detection of
the influential point.

SIMULATION

To investigate the statistical behavior of the proposed
methods in practical situations, we perform Monte
Carlo simulations. The simulation is designed to evalu-
ate the model performance considering the effects of
sample sizes (n ¼ 100, 200, and 400) and the pattern
of dispersion (under-, non-, and overdispersion) on pa-
rameter estimation as well as the mapping power. The
mapping power is defined as the proportion of simu-
lations in which a significant QTL is identified. Consider
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a backcross population with which a 100-cM-long link-
age group composed of six equidistant markers is con-
structed. A putative QTL that affects the phenotype of
interest is located at 48 cM from the first marker on
the linkage group. The Haldane map function is used
to convert the map distance into the recombination
fraction. To test the model performance, we simulate
data with different specifications, namely different sam-
ple sizes (n ¼ 100, 200, and 400), and different pat-
terns of dispersion using the proposed GPR mixture
model.

In each simulation scenario, 1000 Monte Carlo repeti-
tions are performed. For each Monte Carlo sample, the
EM algorithm is used to obtain the MLEs of parameters.
Table 1 tabulates the MLEs of all parameter estimates.
The square root of the mean square error (SMSE) is
given in parentheses, which provides a measure of pre-
cision for each parameter estimate. The result listed
in the first row for each given sample size is obtained
using the GPR model, and the one in the second row is
obtained using the regular PR model. In general, the
GPR model can provide reasonable estimates of the
QTL positions (t) and effects of various kinds, with es-
timation precision depending on sample size and dis-

persion pattern. As expected, the precision of QTL
parameters increases with increased sample size. For
example, the SMSE of the mean parameter a decreases
by more than twofold under different dispersion pat-
terns when the sample size increases from 100 to 400.
Meanwhile, as the sample size increases, the mapping
power also increases (Table 1).

Under different dispersion patterns, all the parame-
ters can be reasonably estimated with high precision
with the GPR model, which suggests the robustness of
the model and good convergence rate of parameters.
A minor difference is observed for the QTL location
estimates in which slightly higher precision is observed
when data show no dispersion. When the sample size is
small (i.e., n ¼ 100), high mapping power is observed
when data show no dispersion compared to dispersed
data (Table 1). For example, the power is 93.2% for no
dispersion data compared to 74.5% for overdispersed
data and 85% for underdispersed data with the sample
size 100. The reduction of mapping power is possibly
due to extra data variation caused by under- or over-
dispersion. The difference is not so notable when
sample size increases to 200, which suggests that a rea-
sonable sample size of 200 is needed in practice.

TABLE 1

The mean MLEs with their square-root mean square errors (SMSEs) (in parentheses) of the parameters
estimated from 1000 simulation replicates with different dispersion patterns

n t ¼ 48 cM f ¼ �0.03 m ¼ 2 a ¼ 0.2 Power

Underdispersion
100 47.27 (14.19) �0.0317 (0.0065) 1.9966 (0.0425) 0.2055 (0.0589) 85

47.32 (15.16) — 2.0037 (0.0412) 0.1918 (0.0517) 81.3
200 47.34 (8.29) �0.0308 (0.0045) 1.9978 (0.0289) 0.2028 (0.0396) 99

47.25 (8.58) — 2.0077 (0.0288) 0.1851 (0.0399) 94
400 47.69 (5.145) �0.0302 (0.003) 1.9996 (0.0208) 0.2004 (0.0279) 100

46.59 (6.661) — 2.0089 (0.0218) 0.1832 (0.0306) 99.9

n t ¼ 48 cM f ¼ 0 m ¼ 2 a ¼ 0.3 Power

No dispersion
100 47.18 (13.323) �0.0021 (0.0085) 1.9963 (0.0545) 0.3046 (0.0743) 93.2

47.19 (13.389) — 1.9970 (0.0543) 0.3033 (0.0739) 93.5
200 47.24 (6.893) �0.0009 (0.0059) 1.9972 (0.0377) 0.3025 (0.0515) 100

47.23 (6.885) — 1.9976 (0.0375) 0.3018 (0.0510) 99.9
400 47.86 (4.116) �0.0003 (0.0040) 1.9995 (0.0272) 0.3002 (0.0362) 100

47.85 (4.117) — 1.9995 (0.0271) 0.3001 (0.0360) 100

n t ¼ 48 cM f ¼ 0.015 m ¼ 1.6 a ¼ 0.3 Power

Overdispersion
100 47.19 (15.754) 0.0113 (0.0138) 1.5912 (0.0740) 0.3125 (0.1042) 74.5

47.34 (17.327) — 1.5866 (0.0756) 0.3207 (0.1078) 71.2
200 47.43 (10.596) 0.0134 (0.0096) 1.5943 (0.0496) 0.3068 (0.0682) 95.3

47.44 (10.874) — 1.5885 (0.0512) 0.3171 (0.0714) 93.5
400 47.56 (6.405) 0.0145 (0.0065) 1.5988 (0.0358) 0.3014 (0.0483) 100

47.66 (6.518) — 1.5925 (0.0369) 0.3125 (0.0507) 99.9

Data are simulated using the GPR model. Power is calculated as the percentage of all simulations in which the
significant QTL is detected. The first and second rows for a given sample size correspond to the results analyzed
using the GPR and the PR approaches, respectively.
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Comparisons between the GPR and PR model are
summarized in Table 1, where the underlying data are
simulated using the GPR model. When data are poten-
tially dispersed, the GPR model outperforms the PR
model with increased precision for QTL location and
other genetic parameter estimation as well as increased
testing power. The differences are more notable when
sample size is small. For example, the power is 85%
using the GPR model compared to 81.3% using the PR
model with a sample size of 100 from underdispersed
data. We also observe a larger bias for the additive effect
a using the PR model compared to the GPR model,
which could lead to biased inference. When data are not
dispersed, both models perform similarly.

Comparisons of the current approach with the
GEE-type approach (Lange and Whittaker 2001) are
summarized in Figures 1 and 2. Figure 1 shows the com-
parisons based on the power and type I error rate. Data
are simulated using the GPR model and are then ana-
lyzed using both approaches. The power and type I error
are calculated on the basis of the 5% nominal level from
the permutation test (Churchill and Doerge 1994).
When data are dispersed and sample size is small (100
say), the GPR approach has higher power than the GEE
approach. As sample size increases to $200, these two
approaches are comparable. Both approaches underes-
timate the type I error rate when sample size is small and
data are dispersed. When sample size increases to 400,
the GEE approach overestimates the type I error and
performs poorly compared to the GPR approach. When
data are not dispersed, the difference in power is not
significant, but it is not so for the type I error.

A boxplot of the QTL position estimates is given in
Figure 2, which displays the interquantile and the range

of the estimated position. Outliers are indicated by
asterisks. The notch indicates a robust estimate of the
uncertainty about the median. The dotted vertical line
represents the true QTL location. In all simulation
studies, the GPR approach gives more efficient esti-
mates of the QTL position than the GEE approach.

APPLICATION

The proposed model is employed to reanalyze a real
data set of rice tiller number (Yan et al. 1998). Two
inbred lines, semidwarf IR64 and tall Azucena, were
crossed to generate an F1 progeny population. By dou-
bling haploid chromosomes of the gametes derived
from the heterozygous F1, a doubled-haploid (DH) pop-
ulation of 123 lines was founded (Huang et al. 1997),
which is genetically equivalent to a backcross popula-
tion. A genetic linkage map was constructed using 175
genetic markers, with a total length of 2005 cM, rep-
resenting a good coverage of 12 rice chromosomes.

The 123 DH lines were planted in a completely
randomized design with two replications. Each replicate
was divided into different plots, each containing eight
plants per line. Starting from 10 days after transplant-
ing, tiller numbers were measured every 10 days for five
central plants in each plot until all lines had headed.
The tiller numbers were averaged from the two repli-
cates. Given that tiller number can be only an integer,
the averaged tiller number was rounded to the nearest
integer for QTL analysis. Since the majority of individ-
uals have only one tiller and the rest have two tillers at
day 10 after rounding, the data do not provide enough
variability to fit the GPR model. Only data beginning at
day 20 were subject to QTL mapping study.

Figure 1.—The comparison of power and type
I error plots between the GEE and GPR ap-
proaches from 1000 simulation replicates. Data
are simulated using the GPR model under differ-
ent dispersion patterns of (A) underdispersion,
(B) no dispersion, and (C) overdispersion with
parameters listed in Table 1 and are analyzed us-
ing the GEE and GPR approaches separately.
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Three types of statistical model are applied, namely a
model with regular Poisson regression, a model with the
newly proposed generalized Poisson regression, and the
GEE approach (Lange and Whittaker 2001). The PR
and GPR approaches lead to a significantly different LR
profile throughout the genome and consequently a
larger number of QTL are identified by the GPR than
by the PR model. There is only one genomewide signifi-
cant QTL identified by the GEE approach, located on
chromosome 5 before day 50. After day 50, no genome-
wide significant QTL are identified. Also, the location of
the identified QTL by the GEE approach is completely
different from the ones detected using the GPR model.
Both the dispersion test and the goodness-of-fit test
show that data are underdispersed. Therefore, we focus
only on the results obtained by the GPR model in this
section.

By genomewide scanning for QTL at every 2 cM
within each marker interval across 12 rice chromo-
somes, our model has identified six major QTL that
trigger effects on tiller growth. As shown by the genome-
wide LR profile plot in Figure 3, QTL located on chro-
mosomes 2, 5, and 8 are significant only at the 5%
chromosomewide level and QTL located on chromo-
some 4 (marker interval RZ565–RZ675) show genome-
wide significance on the basis of the critical thresholds
determined from 1000 permutation tests. Both QTL
located on chromosome 3 show genomewide signifi-
cance at days 40 and 70 but show chromosomewide

significance at the other periods. One of the possible
reasons that these QTL do not show genomewide sig-
nificance during the whole study period might be due to
small sample size. As revealed by the simulation study,
the mapping power is greatly affected by sample size
when data are potentially dispersed.

It is noteworthy that different QTL are involved in the
control of tiller growth during different stages of rice
development (Figure 3). A QTL detected on chromo-
some 3 (marker interval CDO337–RZ337A) has triggered
continuous effects on tiller growth since activation. A
QTL detected on chromosome 8 is obviously an early
locus that affects tiller growth only during the first 30
days. As this QTL is switched off, some other QTL are
activated to regulate tiller development. For example, a
QTL on chromosome 5 becomes operational at day 40
but only functions for a short period of time and is
switched off after day 50. Another QTL on chromo-
some 2 is then switched on at day 50 and continuously
functions. Following the turn-off of the QTL on chro-
mosome 5, the QTL located on chromosome 4 starts to
function from day 70.

To know more about the behavior of the detected
QTL, we tabulate the MLEs of parameters, along with
the approximate standard errors of the estimates (Table
2). All the parameters are estimated with reasonably
high precision as shown by the small standard errors.
QTL significant at the 5% chromosomewide level are
marked by single asterisks and those significant at the

Figure 2.—The boxplot of the estimated QTL
position from 1000 simulation replicates. Data
are simulated using the GPR model under differ-
ent dispersion patterns with parameters listed in
Table 1 and are analyzed using the GEE and the
GPR approaches separately. The numbers 1, 2,
and 3 on the vertical axis indicate sample sizes
100, 200, and 400, respectively. The true QTL po-
sition is simulated at 48 cM away from the first
marker indicated by the vertical dotted line.
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5% genomewide level are marked by double asterisks.
Clearly shown in Table 2, for individuals carrying geno-
type QQ, QTL on chromosomes 2 and 5 trigger a posi-
tive effect on tiller growth while the rest of the QTL
located on chromosomes 3, 4, and 8 exert a negative
effect on tiller growth. Depending on the need in breed-
ing, a scientist may pay particular attention to those
QTL.

We pick one QTL located at chromosome 3 within
marker interval RZ519–Pgi-1 at day 40 to demonstrate
the model implementation. The sample mean is 11.07
and the sample variance is 6.33, which indicates po-
tential underdispersion with respect to Poisson distri-
bution. This conjecture is further confirmed by the
dispersion test (11) as shown in Figure 4. As revealed by
the real data analysis, the parameter f never reaches the
lower bound across all the linkage locations, hence we
can apply Wald’s test. The ratios of dispersion parame-
ters with respect to their standard errors are all , �2
across all loci of the entire genome. The differences of
the AIC and BIC values when fitting the data with the
GPR mixture model and the PR mixture model are also
calculated across the entire genome. As clearly shown
in Figure 5, the differences are always negative for both
criteria, which indicates that the GPR mixture model
has better fit than PR mixture model at all loci.

We also calculated the deviance and Pearson residuals
as well as the influential estimates for the QTL detected
on chromosome 3 at marker interval RZ519–Pgi-1 at
day 40. The Pearson and the deviance goodness-of-fit
statistic X 2 and D are 3.45 and 86.48, respectively, with
88 d.f. These values are less than the upper 95% critical
point of the x2

88-distribution, suggesting that there is no
evidence of lack of fit. The Pearson and the deviance
residuals are displayed in Figure 6. The Pearson re-

siduals appear to be normally distributed. However, the
deviance residuals show that some of the data may be
potential outliers such as the 47th and 53rd observa-
tions. On omitting these observations, the deviance is
reduced by 0.2, while the X 2 is reduced by 0.46. This im-
plies that these observations are possible outliers, but
they may not have a significant impact on the overall fit
of the GPR model.

To check which observations are influential points on
parameter estimates, we calculated the influential esti-
mates w, which are displayed in Figure 6. As shown,
observations 47 and 53 are potentially influential. If we
omit these two observations, the overall genetic effect
estimate m does not change, but the additive and disper-
sion parameter estimates change by 11 and 17%, re-
spectively. By further omitting three more observations
(the 2nd, 71st, and 82nd), we observe a change of 33
and 16%, respectively, for additive and dispersion param-
eters. However, omitting these observations does not
affect the likelihood-ratio test statistic as much.

EXTENSIONS

The interval-mapping approach considers only one
QTL at a time (Lander and Botstein 1989). However,
when the phenotypic variation is explained by more
than one QTL, those QTL located elsewhere in the ge-
nome can have interfering effects. As a result, potential
bias of QTL effects and location parameters may occur
and the power of detecting QTL may be reduced. To
overcome these problems, a number of approaches
have been developed and here we consider only two pop-
ular approaches, namely composite-interval mapping
(CIM) (Zeng 1994) and multiple-interval mapping
(MIM) (Kao et al. 1999). We extend our single-QTL

Figure 3.—The profiles of the log-likelihood
ratios (LR) between the full and reduced (no
QTL) models estimated from the GPR mixture
model for tiller growth across the entire genome
from chromosome 1 to 12 at different stages. The
genomic positions corresponding to the peaks of
the curves are the MLEs of the QTL positions.
The genomewide threshold values for claiming
the existence of QTL are given as the dotted ho-
rizonal lines, and the chromosomewide thresh-
old values are marked as the dashed–dotted line.
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model to multiple-QTL analysis on the basis of these two
approaches. An extension of the current approach to a
random-mean model is also given.

Composite-interval mapping: The basic idea of CIM is
to incorporate multiple-regression analysis into interval
mapping by conditioning on markers outside an inter-
val of interest. By controlling the background markers
effect, the precision and power of QTL mapping is

improved. To extend the original CIM model to count
traits, we consider the following mean function,

li jGi ¼ expðxib 1
X

l 6¼j ;j11

xl blÞ; ð15Þ

where j and j 1 1 represent two flanking markers bor-
dering the putative QTL, and xl is the indicator variable
for the selected background marker genotype, which

Figure 4.—The ratio of the dispersion param-
eter f̂ with its standard error across the entire 12
chromosomes for tillers measured at day 40.

TABLE 2

Estimated genetic effects and their asymptotic standard errors (in parentheses) of QTL detected for the tiller number of the
DH population at different stages

Chromosome Marker interval Day m a f LR

2 RG654–RG256 50 2.264 (0.038) 0.144 (0.048) �0.027 (0.005) 8.90*
60 2.194 (0.038) 0.165 (0.048) �0.031 (0.005) 11.82*
70 2.061 (0.044) 0.168 (0.056) �0.027 (0.006) 8.94*
80 1.871 (0.039) 0.165 (0.048) �0.056 (0.005) 11.54*
90 1.847 (0.039) 0.169 (0.048) �0.058 (0.005) 12.06*

3 CDO337–RZ337A 20 1.589 (0.032) �0.168 (0.054) �0.104 (0.006) 9.49*
30 2.258 (0.029) �0.168 (0.048) �0.037 (0.005) 11.44*
40 2.488 (0.028) �0.193 (0.045) �0.027 (0.004) 17.13**
50 2.419 (0.029) �0.149 (0.046) �0.028 (0.005) 9.95*
60 2.361 (0.029) �0.161 (0.046) �0.032 (0.005) 11.73*
70 2.258 (0.032) �0.223 (0.052) �0.033 (0.005) 17.25**
80 2.048 (0.029) �0.163 (0.047) �0.057 (0.005) 11.9*
90 2.018 (0.030) �0.159 (0.049) �0.057 (0.005) 9.93*

3 RZ519–Pgi-1 30 2.299 (0.027) �0.204 (0.048) �0.039 (0.005) 11.56*
40 2.516 (0.026) �0.226 (0.045) �0.029 (0.004) 17.41**
50 2.447 (0.027) �0.197 (0.047) �0.029 (0.004) 11.83*
60 2.383 (0.028) �0.178 (0.047) �0.032 (0.005) 10.37*
70 2.274 (0.032) �0.234 (0.055) �0.029 (0.006) 13.05**
80 2.065 (0.027) �0.184 (0.047) �0.058 (0.005) 10.86*
90 2.029 (0.029) �0.153 (0.048) �0.058 (0.005) 8.03*

4 RZ565–RZ675 70 2.276 (0.038) �0.216 (0.056) �0.035 (0.006) 13.72**
80 2.078 (0.033) �0.195 (0.048) �0.061 (0.005) 14.25**
90 2.056 (0.033) �0.198 (0.050) �0.059 (0.006) 14.05**

5 RZ67–RZ70 40 2.332 (0.037) 0.140 (0.046) �0.025 (0.004) 8.96*
50 2.264 (0.037) 0.166 (0.047) �0.028 (0.004) 12.27*

8 Amy3D/E–RZ66 20 1.576 (0.032) �0.175 (0.060) �0.099 (0.007) 8.85*
30 2.247 (0.026) �0.166 (0.050) �0.039 (0.005) 10.75*

The significance is at level 5% through 1000 permutation tests. *, chromosomewide significance; **, genomewide significance;
LR, the log-likelihood ratio.
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takes values 1 and 0 corresponding to marker genotypes
QQ and Qq, respectively. We can also model QTL inter-
actions by considering interaction terms in model (15).
Standard methods developed by CIM can be applied
here to select background markers. The EM algorithm
derived for interval mapping can be applied to estimate
parameters.

Multiple-interval mapping: When only one QTL is
considered at a time, it could bias QTL identification
and estimation if indeed multiple QTL are located in
the same linkage group ( Jansen 1993; Zeng 1994). To
deal with these problems and to further improve QTL
mapping precision, Kao et al. (1999) proposed using
multiple marker intervals simultaneously to map multi-
ple QTL of epistatic interactions throughout a linkage
map. Consider s QTL, Q1 , . . . , Qs, located on the ge-
nome. The mean function can be expressed as

li jGi ¼ expðm 1
Xs

j¼1

ajxij 1
X
k 6¼j

dkjðwkjxij xikÞÞ; ð16Þ

where m is the overall mean, xij is coded as 1 or 0 if the
genotype of QTL Qj is Q jQ j or Q jqj, respectively, aj is the
additive effect of Qj, wkj is the epistatic effect between Qj

and Qk, and dkj is an indicator variable for epistasis
between Qj and Qk. A stepwise or chunkwise selection
procedure can be implemented to identify and separate
linked QTL (Kao et al. 1999).

Random mean model: The models we described so
far are called fixed mean models in which the Poisson
mean for each genotype is expressed as a linear function
of covariates through log link function and hence is
treated as fixed. A natural generalization of the model is
to incorporate random effects in the linear predictor
of each mixture component. When random effects are
introduced, the relationship of Poisson means and the
QTL genotypes can be described as

logðli jQQ Þ ¼ m 1 a 1 e1i

logðli jQqÞ ¼ m 1 e2i ; ð17Þ

where m and a are defined the same as before, and e1i and
e2i are two random terms that are assumed to be inde-
pendent and distributed as N ð0;s2

1Þ and N ð0;s2
2Þ, re-

spectively. We can also assume equal variance for the two
random terms such that s2

1 ¼ s2
2 ¼ s2. Such a random

mean model is also called the hierarchical Poisson
mixture model (Wang et al. 2002). The incorporation

Figure 6.—Real data, influential estimates,
and residuals for tiller number observed at day
40. The influential estimates and the residuals
are calculated only for QTL detected on chromo-
some 3 at marker interval RZ519–Pgi-1.

Figure 5.—The differences of AIC (AICD) and
BIC (BICD) information criteria between the
generalized Poisson regression mixture model
and the Poisson regression mixture model across
the entire 12 chromosomes for tillers measured
at day 40.
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of such random effects allows us to model the interindi-
vidual variation of Poisson means caused by the genetic
effects of individuals carrying different QTL genotypes.

Following the GLMM formulation of McGilchrist

(1994), the best linear unbiased prediction (BLUP)-
type log-likelihood is given by ‘ ¼ ‘1 1 ‘2, where

‘1 ¼
Xn

i¼1

logfpij1p1ðyiÞ1 pi j 0p0ðyiÞg

‘2 ¼ �
1

2
2 logð2ps2Þ1 1

s2ðe2
1 1 e2

2Þ
� �

: ð18Þ
The usual EM algorithm can be applied to estimate

parameters. In the initial step of the M-step, dispersion
parameters and coefficients in the linear predictors are
estimated for fixed variance components, by maximiz-
ing the above BLUP log-likelihood (18). The variance
components are then estimated using residual maximum-
likelihood (REML) estimating equations. For a detailed
estimation procedure, refer to Wang et al. (2002).

DISCUSSION

We have developed an efficient method in QTL map-
ping for count data. The generalized Poisson regression
mixture model is derived on the basis of the generalized
Poisson distribution proposed by Famoye (1993) and
is implemented within the maximum-likelihood frame-
work. With the incorporation of the dispersion pa-
rameter, the developed model has greater flexibility in
modeling genetic count data showing different patterns
of dispersion. Computer simulations demonstrate that
the model has high power in mapping QTL for count
data with reasonable sample size and is quite robust in
various situations.

As shown by the simulation results (Table 1), the map-
ping power is affected by data dispersion. High power is
observed when data show no dispersion. Also, the QTL
location is more precisely estimated when data show no
dispersion compared to over- or underdispersion. The
information indicates that dispersion does affect QTL
mapping precision and power.

The GPR approach outperforms the regular PR ap-
proach when the underlying data are potentially dis-
persed and performs similarly to the PR approach for
count data with no dispersion (Table 1). As clearly
demonstrated by the real data set, the theoretical in-
formation criteria such as AIC or BIC always favor the
GPR model when data are potentially underdispersed.
Correspondingly, more QTL are detected by the GPR
model. Therefore, the GPR model should be always
preferred over the PR model in real data analysis.

Given the fact that most current approaches do not
account for data dispersion (Rebaı̈ 1997; Shepel et al.
1998; Sen and Churchill 2001) and there are consid-
erable drawbacks to implementing the nonparametric
approach (Kruglyak and Lander 1995), a further
comparison with the GEE approach is focused on in

this article. Since the full probability model is specified,
both simulation studies and real data analysis indicate
that our approach shows a number of advantages over
the GEE-type approaches for analyzing count data. For
example, GPR is more efficient than GEE for estimat-
ing QTL location and other genetic parameters. Higher
power is observed using the GPR than the GEE ap-
proach. Consequently, more QTL are detected using
the GPR in real data analysis compared to the GEE.
Moreover, the likelihood-based inference procedures
can be easily applied under the current approach such
as the goodness-of-fit test and residual analysis. These
model diagnostic techniques are very useful for identi-
fying which potential outliers and influential points
affect QTL parameter estimation and inference. Also,
our method is based on the maximum-likelihood esti-
mator and is thus statistically efficient.

The same data were previously analyzed by Yan et al.
(1998), assuming normality distribution for the tiller
number. We obtained different results in which both
methods do not agree on most QTL detected. However,
their results were based on the composite-interval map-
ping approach, which could cause potential differences
as our results are based on interval mapping. Another
possible reason for the difference in the results might be
due to the difference in the models fitted. A misfitting of
nonnormal data with normal distribution could lead to
spurious QTL.

We have described our methods in the context of a
backcross population. Extensions to composite- and
multiple-interval mapping are also proposed. The pro-
posed methods can also be generalized to other popula-
tions such as F2, RIL, or combined crosses. A computer
program written in MATLAB is available upon request.
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APPENDIX

The EM algorithm with the backcross population is derived as follows. Define ci¼ 1 or 0 if the QTL genotype is QQ
or Qq, respectively, with its distribution function

f ðciÞ ¼
Y1

j¼0

p
ci jj
j ;

where pj ¼ P(cijj ¼ 1). Thus,

f ðyi j ciÞ ¼
Y1

j¼0

½pjðyi j li j j ;fÞ�ci j j

and

f ðy; cÞ ¼
Yn
i¼1

f ðyi ; ciÞ ¼
Yn

i¼1

f ðyi j ciÞf ðciÞ ¼
Yn
i¼1

Y1

j¼0

½pjðyi j lijj ;fÞ�ci jj p
ci jj
j

( )
:

Then the complete log-likelihood function is given by

‘c ¼
Xn

i¼1

X1

j¼0

ci j j log pjðyi j lijj ;fÞ1
Xn

i¼1

X1

j¼0

cijj log pj : ðA1Þ

Since

f ðci j j j yiÞ ¼
f ðyi ; ci j jÞ

f ðyiÞ
¼

f ðyi j cijjÞf ðcijjÞP1
s¼0 pspsðyi j ls ;fÞ

¼
ðpj pjðyi j lijj ;fÞÞci jj ðps 6¼j ps 6¼jðyi j ls 6¼j ;fÞÞ1�ci jjP1

s¼0 pspsðyi j ls;fÞ
;
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therefore, at the E-step of the (t)th iteration, we calculate

P
ðtÞ
i j j ¼ E ½ci j j j yi ;p; li j j ;f� ¼ E ½ci j j ¼ 1 j yi ;p; lij j ;f� ¼

pj pjðyi j li j j ;fÞP1
s¼0 pspsðyi j ls;fÞ

: ðA2Þ

Replace the missing value cijj by P
ðtÞ
ijj in the log-likelihood function with the complete data and then, in the M-step, we

maximize

Q ðtÞ ¼
Xn

i¼1

X1

j¼0

P
ðtÞ
i j j log pjðyi jli j j ;fÞ1

Xn

i¼1

X1

j¼0

P
ðtÞ
i j j log pj

with respect to V ¼ (m, a, f). To do so, we can use the Newton–Raphson iteration method, which needs the first and
the second partial derivatives given below:

@Q ðtÞ

@Vs
¼
Xn

i¼1

P
ðtÞ
i j j
@ log pjðyi j li j j ;fÞ

@li j j

@li j j
@Vr

with

log pjðyi j li j jÞ ¼ yi log
li j j

1 1 fli j j

 !
1 ðyi � 1Þ logð1 1 fyiÞ �

li j jð1 1 fyiÞ
1 1 fli j j

� logyi !

and

log li j j ¼ x9i b;
@Q ðtÞ

@li j j
¼
Xn

i¼1

X1

j¼0

P
ðtÞ
i j j

yi � li j j

li j jð1 1 fli j jÞ2
;

@li j j
@bl

¼ xil li j j :

Thus,

@Q ðtÞ

@f
¼
Xn

i¼1

X1

j¼0

P
ðtÞ
ij j

�yilij j
1 1 flij j

1
yiðyi � 1Þ
1 1 fyi

�
lij jðyi � lij jÞ
ð1 1 flij jÞ2

( )

@Q ðtÞ

@m
¼
Xn

i¼1

X1

j¼0

P
ðtÞ
ij j
ðyi � lij jÞ
ð1 1 flij jÞ2

@Q ðtÞ

@a
¼
Xn

i¼1

P
ðtÞ
ij1
ðyi � li j1Þ
ð1 1 flij1Þ2

@2Q ðtÞ

@f2 ¼
Xn

i¼1

X1

j¼0

P
ðtÞ
ij j

yil
2
ij j

ð1 1 flij jÞ2
� y2

i ðyi � 1Þ
ð1 1 fyiÞ2

1
2l2

ij jðyi � lij jÞ
ð1 1 flij jÞ3

( )

@2Q ðtÞ

@m2 ¼ �
Xn

i¼1

X1

j¼0

P
ðtÞ
ij j
ð1� fli j j 1 2fyiÞlij j

ð1 1 flij jÞ3

@2Q ðtÞ

@a2 ¼ �
Xn

i¼1

P
ðtÞ
ij1
ð1� flij1 1 2fyiÞlij1
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Xn

i¼1

P
ðtÞ
ij1

lij1 1 flij1ðyi � lij1Þ
ð1 1 flij1Þ3
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The Hessian matrix at the (t)th iteration is given by H ðtÞ ¼ @2Q ðtÞ=@VsVk, which leads to the updated parameters V
at the (t 1 1)th iteration,

Vðt11Þ ¼ VðtÞ � ½H ðtÞ��1u9; ðA3Þ
where u is a vector of the first derivative of Q(t) with respect to Vr. The EM algorithm is repeated between Equations A2
and A3 until certain convergence criteria are satisfied.
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