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“Naturally occurring” or “programmed” cell death (PCD) in which the
cell uses specialized cellular machinery to kill itself is a ubiquitous
phenomenon that occurs early in organ development. Such a cell
suicide mechanism that enables metazoans to control cell number and
eliminate cells threatening the organism’s survival has been thought to
be under genetic control. In this report, we develop a novel statistical
model for mapping specific genes or quantitative trait loci (QTL) that
are responsible for the PCD process based on polymorphic molecular
markers. This model incorporates the biological mechanisms of PCD
that undergoes two different developmental stages, exponential
growth and polynomial death. We derived a parametric approach to
model the exponential growth and a nonparametric approach based on
the Legendre function to model the polynomial death. A series of
stationary and nonstationary models has been used to approximate the
structure of the covariance matrix among cell numbers at a multitude
of different times. The statistical behavior of our model is investigated
through simulation studies and validated by a real example in rice.

quantitative trait loci; semiparametric model; mean-covariance struc-
ture model; EM-Simplex algorithm; order selection

THE QUESTION OF HOW AN ORGANISM develops into a fully func-
tioning adult from a mass of undifferentiated cells has always
attracted top researchers in diverse areas of developmental
biology (19). Fundamentally, to produce a functioning adult
form, a living organism should coordinate various complemen-
tary and sometimes antagonistic processes, which include cell
proliferation and programmed cell death (PCD), or apoptosis,
during its development (8). The molecular and genetic charac-
terization of these processes has been useful to identify the
specific signaling pathways that underlie a delicate balance
between cell proliferation and PCD (32) and, in the ultimate,
enhance our understanding of the roots of disease such as
cancer (17, 43). In particular, PCD has been thought to be a
universal phenomenon that occurs in predictable patterns in
response to environmental or developmental clues, whose
study has become one of the most fascinating areas in all of
biology over the last decade (16, 19).

Studies of the genetic control of development have used
simple model systems, the nematode Caenorhabditis elegans
and the fruitfly Drosophila, from which views have been
established that PCD involves specific genes and proteins and
that these genes and proteins interact within the cells that die
(13, 35, 31, 18). For the adult hermaphrodite C. elegans forms,
there are 1,090 somatic cells, of which 131 die by apoptosis.

Each apoptosis process is characterized by four stages (31): 1)
decision about whether a cell should die or assume another
fate, 2) death, 3) engulfment of the dead cell by phagocytes,
and 4) degradation of the engulfed corpse. Each of these stages
is regulated by a number of genes. Mutations affecting the final
three stages affect all somatic cells, whereas genes affecting
the death verdict affect very few cells.

The molecular genetic pathway that defines PCD in C.
elegans and Drosophila provides a basis for understanding
apoptosis in more complex organisms, including higher plants
and humans, because genes responsible for PCD are evolution-
arily conserved (18). Given the unique complexity of genetic
pathways of these species, however, a rigorous, detailed, and
analytic approach should be developed on its merit that allows
for the genome-wide identification of genes for apoptosis in
any complex organism. Genetic mapping based on molecular
markers (23, 44, 26), by superimposing real biological pheno-
types on genome sequence and structural polymorphisms, can
provide an unbiased view of the network of gene actions and
interactions of quantitative trait loci (QTL) that build a com-
plex phenotype like PCD.

Unlike traditional QTL mapping for a complex trait, the
mapping of PCD must incorporate the dynamic feature of this
developmental process. Although this presents one of the most
difficult tasks in genetic studies, some of the key issues have
been overcome by Wu and colleagues (27, 37–41), who
proposed a so-called “functional mapping” to map and identify
specific QTL that underlie the developmental changes of com-
plex traits. The rationale of functional mapping is to express
the genotypic values of QTL at a series of time points in terms
of a continuous growth function with respect to time t. Under
this formulation, the parameters describing longitudinal trajec-
tories, rather than time-dependent genotypic values as carried
out in traditional mapping strategies, are estimated within a
maximum likelihood framework. Also, unlike traditional strat-
egies, functional mapping estimates the parameters that model
the structure of the covariance matrix among a multitude of
different time points, which, therefore, largely reduces the
number of parameters being estimated for variances and co-
variances, especially when the dimension of data is high.

In this article, we develop a novel statistical model for the
genome-wide scan of QTL that guide PCD toward an active
process of cell death. This model incorporates two sequentially
distinct stages of the developmental process into the mapping
framework constructed within the context of Gaussian mixture
models. The first stage, growth, has proven to obey some
universal growth law that can be modeled mathematically by
curve parameters (5). Although no proper mathematical equa-
tion can describe the second stage, death, which is subject to a
fast exponential decay of cells followed by a slowly decreasing
function (4), a nonparametric approach based on the Legendre
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function is derived to model the PCD process. The combina-
tion of parametric modeling of the growth process and non-
parametric modeling of the death process lays a foundation for
semiparametric functional mapping of PCD. We implement a
nonstationary mean-dependent covariance model to character-
ize the structure of the covariance matrix among cell numbers
measured at a multitude of different times. The statistical
behavior of our model is investigated through simulation stud-
ies. The utility of the model in a real example of rice suggests
that our model can be useful in practice.

DIFFERENT PHASES OF PCD

In general, the whole process of PCD can be described by
five reasonably distinct phases (Fig. 1; Ref. 15): lag, exponen-
tial, declining growth rate, a stationary phase, and death. Each
of the phases is defined below.

Lag Phase

The lag phase is the initial growth phase, during which cell
number remains relatively constant before rapid growth. Dur-
ing this phase the organism prepares to grow, and unseen
biochemical changes, cell division, and differentiation of tis-
sues occur during this time.

Exponential Phase

During the exponential phase the tissues are growing and
dividing rapidly to take advantage of abundant nutrients.
Growth rate, as a measure of the increase in biomass over time,
is determined from the exponential phase. Growth rate is one
important way of expressing the relative success of an organ-
ism in adapting to the biotic or abiotic environment imposed
upon it. The duration of the exponential phase depends on the
growth rate and the abundance of nutrients to support tissue
growth. If the growth phase is plotted (time on x-axis and
biomass on logarithmic y-axis), the exponential phase will be
straightened out.

Declining Growth

Declining growth normally occurs when either a specific
requirement for cell division is limiting or something else is
inhibiting reproduction. During this phase growth slows or the
death rate increases. As a result, the initiation of new tissues
and the senescence and death of old ones start to come into
equilibrium. This phase typically occurs as nutrients become
limiting for growth.

Stationary Phase

Tissues enter the stationary phase when net growth is zero,
and within a matter of time cells may undergo dramatic
biochemical changes. The nature of the changes depends on the
growth-limiting factor. The shutdown of many biochemical
pathways as the stationary phase proceeds means that the
longer the cells are held in this condition the longer the lag
phase will be when cells are returned to good growth condi-
tions.

Death Phase

When cell metabolism can no longer be maintained, the
death rate of a tissue is generally very rapid (4). The steepness
of the decline is often more marked than that represented in the
accompanying growth figure.

The duration and extent of each phase will depend on the
organism and the environmental conditions. For example, if
tissues from the stationary phase are supplied with fresh
nutrients, the lag phase will be longer than for the case of
tissues from the declining phase. For growing tissues from the
exponential phase, organisms supplied with fresh nutrients will
likely skip the lag phase. If the growth nutrient is rich,
organisms will remain in the exponential growth phase for a
longer period and produce a greater biomass. Furthermore,
their rate of growth in the exponential phase may also be
greater.

Growth curves must be drawn from a series of growth
measurements at different times during the growth curve.
Mathematical equations have been derived to model the growth
from the lag to stationary phases (34), although there is no
specific mathematical equation for the death phase.

STATISTICAL MODEL

The Mixture Model-Based Likelihood

Consider a standard backcross design, initiated with two
contrasting homozygous inbred lines, in which there are two
genotypes at each locus. Assume that a genetic linkage map
covering the entire genome has been constructed with poly-
morphic markers, aimed to identify QTL responsible for PCD.
There are a certain number of QTL forming J genotypes that
affect PCD. The statistical foundation for functional mapping
of these QTL is based on a finite mixture model. According to
this mixture model, each PCD curve, yi, for a backcross
progeny (i) longitudinally measured at T time points is as-
sumed to have arisen from one (and only one) of these J QTL
genotypes (called components in statistics), with each being
modeled by a multivariate normal distribution, i.e.,

yi�p�yi��,�,�� � �1 f�yi;�1,�� � . . . � �J f�yi,�J,��, (1)

where p is the mixture of multiple multivariate normal distri-

Fig. 1. A typical example of programmed cell death (PCD) that includes 5
different stages: 1) lag, 2) exponential, 3) declining growth, 4), stationary, and
5) death.
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butions, each denoted by f, and � � (�1,. . ., �J)� are the
mixture proportions (i.e., QTL genotype frequencies) of J QTL
genotypes, which are constrained to be nonnegative and

	 j�1
J �j � 1,

� � (�1,. . ., �J)� are the QTL genotype-specific parameters,
and � are parameters that are common to all QTL genotypes.

Now we use the genetic linkage map constructed by molec-
ular markers to detect and map the underlying QTL for PCD
over the entire genome. Consider such a segregating QTL with
alleles Q and q in the backcross population. This QTL cannot
be directly observed but rather is to be inferred on the basis of
known marker information. In QTL interval mapping, we will
use two flanking markers to infer the genotype of a QTL that
is hypothesized to be located between the two markers (23).
The recombination fraction is a linkage parameter that can
describe the genetic distance between two given loci. Let 
, 
1,
and 
2 be the recombination fractions between the two markers
M1 and M2, between the left marker M1 and the QTL, and
between the QTL and the right marker M2, respectively. On the
basis of segregation and transmission of genes from the parent
to progeny, one can derive the conditional probabilities of an
unknown QTL genotype, conditional on the known marker
genotypes, in terms of these recombination fractions. The
unknown parameters that specify the position of QTL within a
marker interval are arrayed in �s, where s denotes the QTL
position.

According to functional mapping (27), the mixture-based
likelihood function of the longitudinal PCD trait (y) and marker
information (M) collected in the backcross population at this
hypothesized QTL with two genotypes (denoted by j � 1, 0) is
constructed as

L��s,�u,�v�y,M� � �
i�1

n

�1/i f �yi��u1,�v�

� �0/i f �yi��u0,�v��,

(2)

where �1�i and �0�i contained in �s are the mixture proportions
corresponding to the frequencies of different QTL genotypes
for a progeny i, expressed as the conditional probabilities of
QTL genotypes given marker genotypes for this progeny;
�u � (�u1, �u0) contains the parameters that model time-
dependent means for genotype j; and �v contains the param-
eters that model the structure of the residual covariance matrix
that is assumed to be common to all mixtures. Different from
parameters � and � in the original mixture model (1), which
are unstructured, �uj

and �v are the mathematical parameters
that model the mean-covariance structure.

The multivariate normal distribution of each mixture for
progeny i measured for T time points is expressed as

f�yi,M��uj
,�v� �

1

�2��T/2 �	�1/2

exp��
1

2
�yi � uj� 	�1 �yi � uj�

T�,

(3)

where yi � [yi(1),. . ., yi(T)] is a vector of observation for
progeny i and uj � [uj(1),. . ., uj(T)] is a mean vector for all the
progeny with genotype j. At a particular time point (say t), the

relationship between the observation and mean can be de-
scribed by a linear regression model,

yi�t� � �iu1�t� � �1 � �i�u0�t� � ei�t�,

where �i is an indicator variable of progeny i for QTL genotype
defined as 1 for j � 1 and 0 for j � 0 and ei(t) is the residual
error which is iid normal with zero mean and variance �2(t).
The errors for progeny i at two different time points, t1 and t2,
are correlated with covariance cov(yi(t1),yi(t2)). The variances
and covariances comprise the covariance matrix ¥, whose
elements are the common parameters specified by �v. With
these general settings, the statistical challenge becomes how to
model the mean process and how to structure the covariance
matrix.

Semiparametric Modeling of Mean Vector

In a broad sense, the entire PCD process for a particular
individual i can be divided into two phases, growth and death
(Fig. 1). Let ti* be the transition time point that marks the end
of the growth phase and the beginning of the death phase. The
mean vector in the multivariate normal distribution of PCD
(Eq. 3) for individual i that carries QTL genotype j can now be
specified by two mean subvectors expressed as

uj�i � �uGj�i,uDj�i� (4)

where uGj�i and uDj�i correspond to the growth and death
vectors before and after ti*, respectively.

Parametric model of growth phase. The process of growth
(before ti*) follows universal growth laws and can be described
by biologically meaningful mathematical functions. As a
nearly universal biological law for living systems, the sigmoi-
dal (or logistic) growth function can be fitted to capture
age-specific change during the growth phase (34). The logistic
function is mathematically described for individual i by

gi�t� �
ai

1 � bie
�cit

, with t � 1,t*i � (5)

where ai is the asymptotic or limiting value of gi when t3 �,
ai/(1 � bi) is the initial value of gi when t � 0, and ci is the
relative rate of growth (5). Thus with these three parameters,
one can uniquely determine the shape of PCD in the growth
phase for individual i that carries QTL genotype j and have the
time-dependent mean vector for Eq. 4 specified by

uGj�i � uGj�i�1�, . . . ,uGj�i�t*i ��

� � aj

1 � bje
�cj

, · · ·,
aj

1 � bje
�citi*� (6)

If different genotypes at a putative QTL have different com-
binations of the parameters (aj, bj, cj), this implies that this
QTL plays a role in governing the difference of growth
trajectories.

Nonparametric model of death phase. Because no particular
mathematical function can be used to describe the death phase
(after ti*), the nonparametric approach based on the orthogonal
Legendre polynomial (LEP) is used. The flexibility of LEP will
greatly increase the robustness of functional mapping.

With appropriate order r, the time-dependent genotypic
values for different QTL genotypes in the death phase can be
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fitted by the orthogonal LEP. A family of such polynomials
with normalized time t� is denoted by

P�t�� � P0�t��,P1�t��, . . ., Pr�t���T

and a vector of genotypic-related, time-independent values
with order r is denoted by

vj � v0j,v1j, . . ., vrj�
T

where vj is called the base genotypic vector for QTL genotype
j and the parameters within the vector are called the base
genotypic means. The normalized time t� is obtained by ad-
justing the original measurement time t to match the orthogonal
function range [�1, 1], by

t� � �1 �
2�t � tmin�

tmax � tmin

where tmin and tmax are the first and last time point,
respectively.

With these specifications, the time-dependent genotypic val-
ues, uDj�i(t) in the death phase can be described as a linear
combination of vj weighted by series of the polynomials, i.e.,

uDj�t� � vj
TP�t�� (7)

Thus for individual i whose QTL genotype is j, we use the
following expression to model genotype means in the death
phase

uDj�i � uDj�i�t*i�, . . ., uDj�i�T�� (8)

This approach has great flexibility in modeling longitudinal
data that cannot be fitted by a parametric model. By choosing
an appropriate order, the nonparametric model can better
capture the intrinsic pattern of developmental PCD. The num-
ber of parameters can be reduced if the order of the polynomial
should be less than the number of time points.

Modeling Covariance Structure

To model the covariance structure for longitudinal data, we
need to make the following assumptions: 1) the error ei(t) in
Eq. 1 is normally distributed with mean zero and variance
�2(t), and 2) the error ei(t) is independent and identically
distributed among different individuals. A number of statistical
models have been used to model the covariance structure (12).
In earlier functional mapping, the first-order autoregressive
[AR(1)] model was used (27), which is expressed as

�2�1� � . . . � �2�T� � �2 (9)

for the variance, and

��t1,t2� � �2� �t2�t1� (10)

for the covariance between any two time intervals t1 and t2,
where 0 � � � 1 is the proportion parameter with which the
correlation decays with time lag. The parameters that model
the structure of the (co)variance matrix are arrayed in �v.

To remove the heteroscedastic problem of the residual vari-
ance, which violates a basic assumption of the simple AR(1)
model, two approaches can be used. The first approach is to
model the residual variance by a parametric function of time,
as originally proposed by Pletcher and Geyer (29). However,
this approach must implement additional parameters for char-

acterizing the age-dependent change of the variance. The
second approach is to embed Carroll and Ruppert’s (7) trans-
form-both-sides (TBS) model into the growth-incorporated
finite mixture model (40), which does not need any more
parameters. Both empirical analyses with real examples and
computer simulations suggest that the TBS-based model can
increase the precision of parameter estimation and computa-
tional efficiency. Furthermore, the TBS model preserves orig-
inal biological means of the curve parameters, although statis-
tical analyses are based on transformed data.

The TBS-based model displays the potential to relax the
assumption of variance stationarity, but the covariance station-
arity issue remains unsolved. Zimmerman and Núñez-Antón
(47) proposed a so-called structured antedependence (SAD)
model to model the age-specific change of correlation in the
analysis of longitudinal traits. The SAD model has been
employed in several studies and displays many favorable
properties (48). Zhao et al. (46) incorporated the first-order
SAD [SAD(1)] model into modeling of the covariance matrix.

In this article, we use a different modeling approach that is
as simple as the AR(1) and as flexible as the SAD(1). This
approach has two steps. In step 1, the intraindividual correla-
tion structure is modeled. In many cases, a systematic pattern
of correlation is evident, which may be characterized accu-
rately by a relatively simple model. The intraindividual corre-
lation among the time-dependent elements of ei for individual
i is assumed to follow a pattern, expressed as

corr�ei� � Ri(�)

where the correlation matrix Ri(�) is a function of a vector of
correlation parameters �. The correlation structure can be
described by the AR(1) model in which � � � (Eq. 10).

In step 2, time-dependent variances are specified according
to Horwitz’s rule in analytical chemistry. This rule proposes
that there exists an empirical relationship between concentra-
tion and variance (1). Thus we can similarly model time-
dependent variances for individual i by considering its geno-
typic means at various time points, expressed as

�i
2�t� � �2uj�i

2 �t�

Therefore, the corresponding covariance matrix can be mod-
eled by

�j�i � cov�y� � �2u
j�i

1
2 Ri���u

j�i

1
2 (11)

where uj�i � diag[uj�i
2 (1),. . ., uj�i

2 (T)]. Because the covariance
structure is modeled as a function of genotypic mean, it is
called the mean-covariance (M-C) model. The M-C model has
great flexibility for modeling the covariance matrix of the PCD
process. The unknown parameters to be estimated in the M-C
model are arrayed in �v � (�2, �) with accepted means.

Computation Algorithms

The EM algorithm (10) has served as a standard approach
for obtaining the maximum likelihood estimates (MLEs) of the
parameters in traditional QTL mapping (23). This algorithm
has also been used for functional mapping of longitudinal traits
to obtain the MLEs of (�s, �u, �v) for the likelihood (Eq. 2)
(27, 40). The EM algorithm is implemented with two steps: 1)
the E step, in which the posterior probability of a QTL
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genotype given the marker genotype of progeny i is calculated
using

�j�i �
�1�i f�yi��uj

,�v�

�1�i f�yi��u1
�v� � �0�i f�yi��u0

,�v�

and 2) the M step, in which the calculated �j�i values are used
to solve the log-likelihood equations, aimed to estimate (�s,
�uj

, �v) defining the QTL position, the QTL genotype-specific
curve parameters, and the parameters that model the covari-
ance matrix, respectively.

An iterative procedure between the E and M steps will be
processed until convergence.

The estimates at convergence are regarded as the MLEs of
the unknown parameters. In practice, the QTL position param-
eter � can be viewed as a known parameter because a putative
QTL can be searched at every 1 or 2 cM on a map interval
bracketed by two markers throughout the entire linkage map.
The amount of support for a QTL at a particular map position
is often displayed graphically through the use of likelihood
maps or profiles, which plot the likelihood ratio test statistic as
a function of map position of the putative QTL.

In functional mapping for PCD, �u � (�G,�D) and �v are
contained in complex nonlinear equations, and therefore it is
difficult to derive a closed form for their MLEs. The Nelder-
Mead simplex algorithm as a direct search method for nonlin-
ear unconstrained optimization, originally proposed by Nelder
and Mead (28), can be used to estimate these parameters (45).
This algorithm attempts to minimize a scalar-valued nonlinear
function using only function values, without any derivative
information (explicit or implicit). The algorithm uses linear
adjustment of the parameters until some convergence criterion
is met.

However, because of the complex nonlinear function being
minimized by simplex algorithm, it cannot always guarantee
the correct convergence of covariance parameters during the
minimization process. This consequently results in negative
infinity of the log-likelihood function, and convergence will
never be reached. Because of these concerns, we used the
simplex algorithm to estimate the mean parameters, namely,
the logistic curve and Legendre polynomial parameters, and
the EM algorithm to estimate the parameters that model the
structure of the covariance matrix (see APPENDIX).

Under the joint modeling framework, two mean functions,
growth and death, must be connected. Two constraints are
imposed to make the PCD curve continuous at the transition
time point ti* for each individual. The first constraint is to
make the growth mean equal to the death mean at time ti*. The
second constraint is that the two functions have the same score
at time ti*. These two constraints are expressed as

� uGj�i�t*i � � uDj�i�t*i �
�

�t*i
uGj�i�t*i � �

�

�t*i
uDj�i�t*i �

With these constraints, we obtain the expressions of one
growth parameter and one death parameter for any QTL
genotype j. For example, if the Legendre polynomial order is 3,
we can solve the equations to obtain the estimates of aj and v1j

as follows,

�aj �
2v0j � 0.5�3t�i

2 � 1�v2j � 5t�i
3v3j��1 � bje

�cjt*i �2

1 � bje
�cjt*i � bjcj��t�ti�e�cjt*i

v1j �
ajbjcj��t�e�cjt*i

2�11 � bje
�cjt*i �

� 3ti�v2j � 0.5�15t�i
2 � 3�v3j

where t�i is the adjusted time for ti and �t � tmax � tmin.
It is possible that the algorithm described above may gen-

erate local maxima for the likelihood surface. An empirical
approach for reducing the possibility of local maxima is to use
multiple sets of initial values of the parameters. The initial
values are determined in the light of parameter estimates from
the data by assuming that no QTL is involved. We will obtain
the global maxima when no further increase of the likelihood
is found in a space of parameters.

Legendre Order Selection

To determine which order of the LEP best fits the data, we
must select the optimal order. One of the popular model
selection criteria is the Akaike information criterion (AIC) (1).
The AIC value at a particular order r is calculated by

AIC � �2lnL��̂G,�̂D,�̂v�r�

� 2 dimension ��G,�D,�v�r�,
(12)

where �̂G � {âj,b̂j,ĉj}}j�0
1 and �̂D � {û0j,b̂1j, . . ., ûrj}}j�0

1

are the MLEs of parameters for the growth curve function and
the Legendre polynomial of order r, �v contains the MLEs of
the covariance parameters, and dimension(�G,�D,�v�r) repre-
sents the number of free parameters under order r. The optimal
order is one that displays the minimum AIC value.

Another model selection criterion to determine the optimal
order of the Legendre function is the Bayesian information
criterion (BIC) (30), which is calculated by

BIC � �2lnL��̂G,�̂D,�̂v�r�

� dimension ��G,�D,�v�r�ln�n�,
(13)

where all the parameters are defined similarly as above except
that n is the total number of observations at a particular time
point. Because the BIC adjusts the effect of sample size, the
model selected by the BIC will be more parsimonious. Other
criteria, such as those proposed for high-dimension parametric
models (25), can also be used.

Calculating Curve Heritability

It is easy to calculate the heritability level (H2) when traits
are measured at a single time point, but for longitudinal traits
heritability calculation is difficult. We propose two ways to do
it: 1) Calculate H2 at a single time point t where the traits show
the highest variation. For a backcross design, the genetic
variation is given by �G

2 � 1⁄4[u1(t) � u0(t)], where uj(t) (j �
1,0) is the genetic mean for genotype j at time t, and the
heritability H2(t) � �G

2 (t)/��
2(t) is calculated, where ��

2(t) is the
residual variance at time t.

2) Calculate H2 with the area under curve (AUC). Functional
mapping maps the dynamic gene effect over time. The genetic
variation explained by the entire measurement period is more
informative than that by individual time point. We propose to
calculate the genetic variation by �G

2 � 1⁄4(AUC1 � AUC0)2,
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where AUC1 and AUC0 are the AUC for two different geno-
types. The AUC is calculated by

AUCj � �
t1

t* aj

1 � bje
cj

dt � �
t1

t �T

Pr�t��vjdt�

�
aj

cj

ln�bj � ecjt*� �ln �bj � ecjt1�� � �
t�*

t �T

Pr�t��vjdt�

where t* is the transition time point, aj, bj, and rj are the growth
parameters for genotype j, Pr(t�) is a vector of LEP with order
r, uj is the base genotypic mean parameters, and t� is the
adjusted time point.

Hypothesis Testing

One of the major advantages of functional mapping is that it
allows for a number of hypothesis tests to examine the genetic
control mechanisms of growth throughout development and in
response to varying environmental or developmental clues. Wu
et al. (39) have formulated some of these hypothesis tests,
which include the global test of genetic effects on the entire
developmental process, the regional test of genetic control over
a particular developmental period of interest, and the point test
for the timing of developmental events. From a genetic per-
spective, we can also test how different genetic action modes
play a role in regulating the developmental process. With such
a complete set of tests, we are able to address biological
questions related to the genetic control mechanisms of PCD
traits.

Testing whether specific QTL exist to affect the PCD pro-
cess is a first step toward the understanding of the detailed
genetic architecture of complex phenotypes. The genetic con-
trol over the entire developmental process of PCD can be tested
by formulating the following hypotheses:

� H0: uG1 � uG0,uD1 � uD0

H1a: at least one of the above equalities does not hold
(14)

H0 states that there is no QTL affecting the dynamic PCD
process (the reduced model), whereas H1a proposes that such a
QTL does exist (the full model). The test statistic for testing the
hypotheses is calculated as the log-likelihood ratio of the
reduced to the full model as given below:

LR � �2[log L��̃�y,M� � log L��̂�y,M�], (15)

where �̃ and �̂ denote the MLEs of the unknown parameters
under H0 and H1a, respectively. The critical threshold value for
declaring the presence of QTL can be empirically calculated
based on the permutation tests (9).

Other hypotheses can be made to test whether the detected
QTL only controls the growth phase with the following alter-
native hypothesis:

H1b:uG1 � uG0 and uD1 � uD0 (16)

or whether the detected QTL only controls the death phase with
the following alternative:

H1b:uG1 � uG0 and uD1 � uD0 (17)

The critical thresholds for the above two hypotheses can be
determined with simulation studies. Only when both H1b and

H1c are rejected, is the detected QTL thought to pleiotropically
affect the growth and death phases.

The proposed model can be used to test the influence of QTL
on growth in different stages of development, lag, exponential,
declining growth, stationary phase, and death. These tests can
be based on the AUC during a time course of interest. Simu-
lation studies are used to determine the critical thresholds for
each test.

RESULTS

A Worked Example

We use the proposed model here to analyze a real data set of
rice. Two inbred lines, semidwarf IR64 and tall Azucena, were
crossed to generate an F1 progeny population. By doubling
haploid chromosomes of the gametes derived the heterozygous
F1, a doubled haploid (DH) population of 123 lines was
founded (20). Such a DH population is equivalent to a back-
cross population because its marker segregation follows 1:1.
With 123 DH lines, Huang et al. (20) genotyped 135 RFLP and
40 isozyme and RAPD markers to construct a genetic linkage
map, based on the Kosambi function, of length 2,005 cM with
an average distance of 11.5 cM, representing a good coverage
of 12 rice chromosomes.

The 123 DH lines and their parents, IR64 and Azucena, were
planted in a randomized complete design with two blocks.
Each block was divided into different plots, each containing
eight plants per line. Starting from 10 days of transplanting,
tiller numbers were measured every 10 days for five central
plants in each plot until all lines had headed. We used the
means of the two blocks for QTL analysis.

Figure 2 illustrates the dynamics of tiller numbers for each
DH line measured at 9 time points. Tiller growth is thought to
be an excellent example of PCD in plants (16) because it
experiences several developmental stages when rice grows. At
an early stage, tiller numbers increase dramatically, corre-
sponding to the vegetative phase in rice. During the reproduc-
tive phase, the increase of tiller numbers declines with the
initiation of the panicle, the emergence of the flag leaf (the last

Fig. 2. Dynamic changes of the number of tillers for 123 doubled haploid lines
of rice as an example of PCD in plants.

463MAPPING PROGRAMMED CELL DEATH

Physiol Genomics • VOL 25 • www.physiolgenomics.org

 on June 30, 2006 
physiolgenom

ics.physiology.org
D

ow
nloaded from

 

http://physiolgenomics.physiology.org


leaf), and booting, heading, and flowering of the spikelets.
Tillers that do not bear panicles are called ineffective tillers and
will be killed, leading to the death phase. The number of
ineffective tillers is a closely examined trait in plant breeding
because they are undesirable for commercial varieties. Ineffec-
tive tillers result in many unwanted problems in rice such as the
overconsumption of nutrition and competition of space. The
genetic control system plays an important role in reducing
overproduced tillers and balancing the rice metabolism system
for optimal use efficiency of nutrients.

Our semiparametric model was used to map specific QTL
that determine the dynamic changes of tiller number during
ontogeny. Although the growth phase of tiller number can be
well modeled by a logistic equation defined by parameters a,
b,and c (Eq. 5), no proper equation can be used to model the
death phase. For this reason, a nonparametric approach based
on the Legendre polynomial function is adopted in the frame-
work of QTL mapping. However, this encounters the issue of
order determination. To detect the best order of the Legendre
polynomial function for this rice data set, we calculated the
AIC and BIC for various orders (Table 1). Both criteria provide
the consistent result that the death phase of tiller number can be
best explained by a Legendre polynomial of order 3.

By genomewide scanning for QTL at every 2 cM within
each marker interval across 12 rice chromosomes, our model
identified three major QTL that trigger their effects on the
overall PCD process of tiller number. As shown by the ge-
nome-wide log-likelihood ratio (LR) profile in Fig. 3, these
three QTL are located between markers RG146 and RG345
and between markers RZ730 and RZ801 on chromosome 1 and
on marker RZ792 on chromosome 9. Of these three detected
QTL, the first is significant genome-wide, whereas the other
two are significant chromosome-wide, all at the 5% signifi-
cance level based on the critical thresholds determined from
the permutation tests.

To know more about the behavior of the detected QTL, we
tabulated the MLEs of curve parameters that specify the
growth phase and genotypic basis effects that specify the death
phase, along with the approximate standard errors of the
estimates (Table 2). All the parameters that specify the growth
and death phases for different QTL genotypes (j � 1 for QQ or
0 for qq in the DH population) are estimated with reasonably
high precision as shown by the standard errors, although the
estimation precision tends to be better for the growth param-
eters than for the death parameters (Table 2). The parameters
that model the structure of the covariance matrix based on the
M-C model can also be well estimated, suggesting good
behavior of our model.

Using the MLEs of parameters for the growth and death
phases, we draw the developmental trajectories of tiller number
for the two different QTL genotypes (Fig. 4). Each QTL shows
a unique developmental pattern over time. For example, the
dynamic process of genetic effects for the QTL located be-
tween markers RZ730 and RZ801 on chromosome 1 is differ-
ent from those for the other two QTL. Statistical tests based on
Eqs. 16 and 17 show that the QTL detected between markers
RG146 and RG345 on chromosome 1 and on marker RZ792 on
chromosome 9 merely control the growth phase, whereas the
second QTL on chromosome 1 controls the entire developmen-
tal process (P � 0.05).

Simulation

We performed a series of simulation studies to examine the
statistical properties of the model. Six equidistant markers are
simulated from a backcross population and are ordered as
M1–M6 on a linkage group with a length of 100 cM. The
Haldane map function was used to convert the map distance
into the recombination fraction. Different heritability levels
(H2 � 0.1 vs. 0.4) and different sample sizes (n � 100 vs. 200)
were considered in the simulation study to examine the mod-
el’s performances under different scenarios. The putative QTL
is located between markers M3 and M4, at 48 cM from the first
marker. Data are simulated by assuming that the QTL controls
the entire developmental process. The simulated data have nine
continuous time points. The means at different time points used
to model the covariance matrix based on the M-C model are the
average of the two genotypic means.

Table 3 lists the results from the simulation; the true param-
eters are given in the first column. In general, our model can
provide reasonable estimates of the QTL positions and the
growth and death parameters determined by the QTL, with
estimation precision depending on heritability level and sample
size. In all cases of different sample sizes and heritabilities, the
maximum values of the LR landscapes from 100 simulation
replicates are beyond the critical thresholds at the � � 0.001
level determined from 1,000 permutation tests for the simu-
lated data, suggesting that our model has 100% power to detect
QTL in these conditions. The precision of parameter estimation
is evaluated in terms of the square root of the mean squared
errors (SMSE) of the MLEs. The QTL positions and effects
can be better estimated when the PCD trait has a higher than
lower heritability or when the sample size is larger rather than
smaller (Table 3). However, the increase of H2 from 0.1 to 0.4
leads to more significant improvement for the estimation pre-
cision than the increase of n from 100 to 200. For example, the
SMSE of the growth parameter c0 for QTL genotype qq
reduces by more than onefold when H2 is increased from 0.1 to
0.4 for a given sample size, whereas such reduction is much
smaller when n is increased from 100 to 200 for a given
heritability. This suggests that in practice it is more important
to manage experiments to reduce residual errors (and therefore
increase H2) than to simply increase sample size.

DISCUSSION

The growth of any tissue, whether normal or malignant, is
determined by the quantitative relationship between the rate at
which cells proliferate and the rate at which cells die. Depend-
ing on how the rate of cell proliferation is compromised or

Table 1. Model selection for Legendre polynomial orders
based on AIC and BIC values under M-C
covariance-structuring model

Selection Criterion

Order

0 1 2 3 4

AIC 2437.8 1096 759.74 559.87 670.65
BIC 2453.9 1109.4 775.77 578.58 692.03

AIC, Akaike information criterion; BIC, Bayesian information criterion;
M-C, mean-covariance. The minimum values for AIC and BIC are shown in
boldface.
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coordinated with the rate of cell death, all tissues will under-
take two distinct processes, growth or death, throughout their
development (21). Unlike the detailed framework for cell
proliferation, understanding of the initiation of cell death and
the cellular mechanics of this process is still in its infancy. Cell
death can occur as an active and orderly process of develop-
ment, a process described by the term programmed cell death
(PCD) (19).

PCD, also referred to as apoptosis, appears to be a
universal feature of animal development, and abnormalities
in PCD have been associated with a broad variety of human

diseases, including certain cancers and neurodegenerative
disorders (17). In plants, PCD is also ubiquitous for essen-
tial development and survival, including xylogenesis, repro-
duction, senescence, and pathogenesis (16). To make PCD
control and execution efficient, particular genetic mecha-
nisms should be involved in regulating and modulating this
process in response to various developmental and environ-
mental stimuli. The use of organisms with simple structure
like the nematode C. elegans and Drosophila has led to the
identification of numerous genes responsible for PCD (13,
18, 19. 43). The 2002 Nobel Prize in Physiology or Medi-

Fig. 3. The profile of the log-likelihood ratios
(LR) between the full [there is a quantitative
trait locus (QTL)] and reduced (there is no
QTL) models for tiller number trajectories
across the 12 rice chromosomes. The genomic
positions corresponding to the peak of the curve
are the maximum likelihood estimates of the
QTL localization (indicated by arrows). The
threshold value for claiming the existence of
QTL is given as the horizontal dotted line for
the genome-wide level and the dashed line for
the chromosome-wide level. The positions of
markers on the linkage groups (20) are indicated
at ticks.

Table 2. MLEs of growth and death parameters for QTL genotypes QQ and qq at significant QTL detected on different
chromosomes for tiller numbers in a doubled haploid rice population

Parameters Chromosome 1 Chromosome 2* Chromosome 9*

QTL position, cM 120 198 119.1
Marker interval RG146–RG345 RZ730–RZ801 RZ792
Growth parameters

a0 10.5973 11.0824 10.7188
b0 7.4938 (0.1986) 7.5167 (0.2757) 7.8547 (0.3538)
c0 1.7257 (0.0230) 1.8486 (0.0276) 1.6747 (0.0365)
a2 12.3823 11.5461 11.5739
b2 9.6068 (0.3759) 8.9779 (0.3390) 8.3427 (0.3948)
c2 1.8834 (0.0321) 1.661 (0.0296) 1.8311 (0.0376)

Death parameters
u00 8.5001 (0.2190) 8.6888 (0.3173) 8.5837 (0.3191)
u10 �2.4290 �2.7785 �2.4647
u20 0.1008 (0.0529) 0.13257 (0.0713) 0.0989 (0.0668)
u30 0.5118 (0.0415) 0.5685 (0.0545) 0.5312 (0.0528)
u02 9.6225 (0.3701) 9.2706 (0.3111) 9.1128 (0.3525)
u12 �3.2068 �2.6222 �2.8732
u22 0.1472 (0.0829) 0.0964 (0.0669) 0.1030 (0.0706)
u32 0.6575 (0.0670) 0.5765 (0.0531) 0.5784 (0.0569)

Covariance parameters
�2 0.0493 (0.0051) 0.0508 (0.0038) 0.0535 (0.0051)
� 0.8747 (0.0120) 0.8738 (0.0055) 0.8786 (0.0112)

Values are maximum likelihood estimates (MLEs; with approximate SE in parentheses) for quantitative trait locus (QTL) genotypes QQ (subscript 2) and qq
(subscript 0) on chromosomes 1, 2, and 9. *Chromosome-wide significant QTL. See text for definitions.
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cine was awarded to three scientists because of their dis-
coveries of the genetic regulation of PCD (19).

Although the use of simple model systems can provide a
wealth of information about the genetics of PCD for more
complicated organisms like animals and higher plants, some
key questions cannot be addressed well without a direct use of
these organisms. Recent development of high-throughput mo-
lecular technologies has made it possible to generate a massive
amount of genetic and genomic data for any organism almost
without limit. This thus presents a pressing need for the
development of vigorous, detailed, and analytical approaches
to unravel the genetic control and regulation mechanisms that
underlie the PCD process. In this article, we have for the first
time developed a statistical model that can make a systematic
scan of QTL for PCD across the entire genome with a well-
covered genetic linkage map. This model has been validated by
a real example for the PCD process of tiller number in rice.
Three QTL were detected to affect tiller number trajectories
during a growing season in the field. The locations for two of
the QTL detected on chromosome 1 are consistent with those
estimated from basic interval mapping of single traits (42), but
the third QTL detected on chromosome 9 was previously
undetected by interval mapping. It seems that our model has
not been able to detect many other QTL detected by Yan et al.
(42), which may be due to the difference in the threshold
criteria used to claim the existence of a QTL between the two
approaches.

The rationale for this PCD mapping model is similar in
spirit to that established in earlier functional mapping of
growth curves (27, 39 – 41, 46). Both types of models for
functional mapping integrate the mathematical aspects of
biological principles into the framework for QTL mapping
constructed on the basis of Gaussian mixture models. Their
significant advantages compared with traditional genetic
mapping models (23) lie in increased model flexibility,
stability, and statistical power for QTL detection (reviewed
in Ref. 36). This is because functional mapping only needs
to estimate a few number of mathematical parameters that
define the curve, rather than estimating many genotypic
means at all time points. Functional mapping implemented
with PCD can provide a quantitative platform for testing the
interplay between gene actions and PCD processes. The
statistical power of functional mapping is further increased
by taking advantage of structuring the covariance matrix
with a much lower number of parameters.

It can also be seen that the PCD mapping model proposed
here is different from earlier published functional mapping
approaches purely based on parametric modeling. The
present model splits the PCD process into two sequentially
distinct phases— growth and death. As in a parametric
model, universal growth laws (34) are used to model the
growth phase, whereas nonparametric modeling is per-
formed for the death phase. This combination of paramet-
ric and nonparametric models, referred to as semiparamet-

Fig. 4. Two curves for the dynamic changes of tiller numbers, each presenting
two groups of genotypes, QQ and qq, at each of the three QTL, detected
between markers RG146 and RG345 (A) and between markers RZ730 and
RZ801 (B) on chromosome 1 and on marker RZ792 on chromosome 9 (C).
Tiller number trajectories for all the individuals studied are indicated in shaded
background.
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ric modeling, is aimed at overcoming the problem of a
death phase that cannot be described mathematically. Al-
though it is feasible for a nonparametric approach to model
any form of curve including the entire growth-death curve
as in Fig. 1, this approach does not make full use of
biological information contained in the growth phase and,
therefore, is likely to lose the advantages of parametric
functional mapping in the biological interpretation of results
(see Ref. 39).

The nonparametric part of our semiparametric model is
based on Legendre polynomial approaches. As shown by
Kirkpatrick and Heckman (22), Legendre polynomials have
several favorable properties for curve fitting which include
1) the functions are orthogonal; 2) they are flexible to fit
sparse data; 3) higher orders are estimable for high levels of
curve complexity; and 4) computation is fast because of
good convergence. Other nonparametric regression methods
using kernel estimates have been considered for the mean
structure of growth curve data by Altman (2), Boularan et al.
(6), Wang and Ruppert (33), and Ferreira et al. (14).

Relative to nonparametric modeling of the mean structure,
nonparametric covariance modeling has received little atten-
tion. Leonard and Hsu (24) derived a Bayesian approach for
nonparametric estimates of the covariance structure. Diggle
and Verbyla (11) used kernel-weighted local linear regression
smoothing of sample variogram ordinates and of squared
residuals to provide a nonparametric estimator for the covari-
ance structure without as assuming stationarity. It is appealing
to incorporate these nonparametric or semiparametric ap-
proaches into our functional mapping framework to increase
the model’s flexibility.

APPENDIX

The MLEs of the parameters � � (�u, �v) are derived as follows,
with the symbol * denoting the estimates of parameters from the

previous step. The values of (�u* �v*) estimated from the following
equations will be used to provide new estimators of (�u, �v) in the
next step.

The first derivative of the log-likelihood function in Eq. 2 with
respect to specific parameter �� is given by

�
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where we define

�j�i �
�j�i f j �yi���

	 j��0
1 �j��i f j��yi���

(A1)

The MLEs of the parameters contained in (�m, �v) are obtained by
solving

�

���

log L���y� � 0 (A2)

However, the MLEs cannot be obtained directly because of the
mixture distribution problem. The EM-Simplex algorithm was applied
to estimate the parameters. For the M-C covariance model with AR(1)
correlation structure, we have ¥ � �2u1⁄2R(�)u1⁄2, where u �
diag{ū2(1),. . ., ū2(T)}, ū(t) refers to the average mean for the two
genotypes at time t, and R(�) is the AR(1) correlation matrix. This
model has the following properties:

Table 3. MLEs of QTL position and model parameters derived from 100 simulation replicates

True Parameters

H2 � 0.1 H2 � 0.4

n � 100 n � 200 n � 100 n � 200

QTL position
s � 48 cM 46.222 (4.0302) 45.98 (3.1937) 46.02 (3.268) 46.06 (2.6907)
Growth parameters

a2 � 15.033
b2 � 8.324 8.3705 (0.3109) 8.3317 (0.2207) 8.3404 (0.1218) 8.3211 (0.0911)
c2 � 1.814 1.8085 (0.0354) 1.812 (0.0239) 1.8124 (0.0125) 1.813 (0.0097)
a0 � 10.926
b0 � 7.602 7.6648 (0.4536) 7.6559 (0.3050) 7.5957 (0.1809) 7.6274 (0.1348)
c0 � 1.522 1.5442 (0.0588) 1.5255 (0.0294) 1.5219 (0.0211) 1.5224 (0.0126)

Death parameters
u02 � 9.817 9.8818 (0.4282) 9.8442 (0.2480) 9.8363 (0.1515) 9.8257 (0.1001)
u12 � �6.453
u22 � �0.366 �0.3623 (0.0952) �0.3692 (0.0609) �0.3661 (0.0346) �0.3673 (0.0257)
u32 � 0.958 0.9695 (0.0841) 0.9554 (0.0532) 0.9589 (0.0326) 0.9565 (0.0231)
u00 � 7.893 8.1185 (0.4238) 7.9525 (0.2909) 7.8879 (0.1295) 7.9137 (0.1204)
u10 � �3.681
u20 � �0.208 �0.2127 (0.0932) �0.2164 (0.0584) �0.2056 (0.0343) �0.2109 (0.024)
u30 � 0.625 0.6461 (0.0812) 0.6277 (0.0605) 0.6247 (0.032) 0.6260 (0.0244)

Covariance parameters
�2 � 0.1194 0.1096 (0.0161) 0.1167 (0.0099)
�2 � 0.0199 0.0198 (0.002) 0.0197 (0.0015)
� � 0.85 0.8415 (0.0187) 0.8475 (0.0114) 0.8484 (0.0161) 0.8478 (0.0113)

Values are MLEs (square roots of mean square errors in parentheses). The location (s) of the putative QTL is described by the map distances (in cM) from
the first marker of the linkage group (100 cM long). H2, heritability level.
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Therefore, by solving Eq. A2, we have
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Estimation Procedures

1) E step: Given initial values for (�u, �v), calculate the posterior
probability matrix � � �j�i in Eq. A1.

2) M step: With the mean parameters contained in �u from the
previous step, calculate the mean vector u and update the covariance
parameters �̂2 and �̂. These updated covariance parameters are used in
the simplex step to maximize the mean parameters contained in �u.

3) The above procedures are iteratively repeated until a certain
convergence criterion is met. The converging values are the MLEs of
the parameters.
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