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Abstract A mixed-model approach is proposed for iden-
tifying differential gene expression in cDNA microarray
experiments. This approach is implemented by two
interconnected steps. In the first step, we choose a subset
of genes that are potentially expressed differentially
among treatments with a loose criterion. In the second
step, these potential genes are used for further analyses
and data-mining with a stringent criterion, in which dif-
ferentially expressed genes (DEGs) are confirmed and
some quantities of interest (such as gene X treatment
interaction) are estimated. By simulating datasets with
DEGs, we compare our statistical method with a widely
used method, the z-statistic, for single genes. Simulation
results show that our approach produces a high power
and a low false discovery rate for DEG identification. We
also investigate the impacts of various source variations
resulting from microarray experiments on the efficiency
of DEG identification. Analysis of a published experi-
ment studying unstable transcripts in Arabidopsis illus-
trates the utility of our method. Our method identifies
more novel and biologically interesting unstable tran-
scripts than those reported in the original literature.

Keywords cDNA microarray - Gene expression -
Mixed-model approach - Arabidopsis

Introduction

Recent developments in microarray technology make it
possible to rapidly capture all of the gene expression
profiles in biological samples (Ross et al. 2000; Welsh
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et al. 2001; Bouton and Pevsner 2002; Guffanti et al.
2002). This technology results in large amounts of data,
the interpretation of which is a major bottleneck in
current studies. A natural step in extracting microarray
data information is to examine the extremes, for exam-
ple, genes with significant differential expression in two
samples (case vs control) or in a time-series (such as cell
cycles).

Microarray data are characterized by high dimen-
sionality (thousands of genes) and small sample size
(often <30). Systematic and stochastic fluctuations are
usually involved in microarray experiments (Schuch-
hardt et al. 2000). Therefore, the raw dye intensity or
ratio value has a high noise to signal ratio between
probes. The x-fold change approach may induce high
false positives and/or false negatives when used as a
simple criterion to determine the genes differentially
expressed between query and reference samples. Some
biologically important genes with small x-fold changes
are highly statistically significant when they are mea-
sured repetitively with high precision. Conversely, many
genes with large x-fold changes in one array and high
variability across multiple arrays have no statistical
significance (Wolfinger et al. 2001). Various statistical
methods have been proposed for identifying differen-
tially expressed genes (DEGs; Chen et al. 1997, 2002;
Ideker et al. 2000; Kerr et al. 2000; Newton et al. 2001;
Thomas et al. 2001; Wolfinger et al. 2001; Efron et al.
2001; Churchill 2002; Ibrahim et al. 2002; West 2003;
Smyth 2004), but none has yet gained widespread
acceptance for the analysis of microarray data. The most
basic statistical problem is that the measured differential
expression cannot completely reflect a real biological
shift in gene expression (Newton et al. 2001).

Discrimination and cluster analysis techniques have
been very useful for searching patterns of gene expression
that are highly correlated (Eisen et al. 1998; Spellman
et al. 1998; Golub et al. 1999; Tamayo et al. 1999; Hastie
et al. 2000). These methods are involved in using various
types of clustering algorithms, such as self-organizing
maps, k-means clustering and hierarchical clustering, to
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discriminate and characterize patterns of gene expres-
sion. However, such exploratory methods alone do not
provide the opportunity to engage in statistical inference.
Furthermore, the gene expression level or relative ratio
level with sampling errors within experiments is per-
formed directly in discrimination and cluster analyses;
and thus the distance between data-points cannot reflect
the true differential expression between genes.
Mixed-model approaches are widely used to partition
various sources of variability. They have the flexibility to
handle unbalanced data and can be easily extended to
more complicated biological models which have been
proven as powerful statistical tools in classic quantita-
tive genetic analyses (Searle et al. 1992). The objectives
of this paper are: (1) to propose a mixed-model
approach to analyzing variance components for cDNA
microarray data analysis, applying the method to
selecting a target subset of DEGs that are of biological
interest and (2) to assess the effectiveness of this method
by extensive computer simulations, specifically com-
pared with the widely used approach based on #-statis-
tics for single genes (Dudoit et al. 2000). Analyzing data
publicly available for the study of unstable transcripts in
Arabidopsis demonstrates the utility of our method.

Materials ad methods

Each datum in a microarray experiment is associated
with one particular combination of an array in the
experiment: a fluorescence dye (red or green), a treat-
ment and a gene. In our analysis, we used the logarithms
of the original fluorescence measurements as phenotypic
values, not the log ratio values, as used by some previous
studies (Kerr et al. 2000; Wolfinger et al. 2001).

To alleviate the computation burden, we propose a
two-step strategy for analyzing microarray data. In the
first step, we choose a subset of genes that are potentially
expressed differentially among treatments with a loose
criterion. In the second step, these potential genes are
combined for further analyses and data-mining with a
stringent criterion, in which DEGs are confirmed and
some quantities of interest (such as gene X treatment
interaction) are estimated. Both types of the aforemen-
tioned analyses are performed using a mixed-model
approach for a variance—component framework.

Choosing a subset of potential genes with differential
expression

We first normalized the original fluorescence data before
choosing a subset of genes. The purpose of normaliza-
tion is to minimize systematic experimental biases so
that the observed variation arises from biological dif-
ferences. Let y;; denote the logarithm of a measurement
from the ith array, the jth treatment, the kth dye and the
/th gene in a cDNA microarray experiment. The original
fluorescence data are normalized as:

Tijki = Yijkl — ()7, et Vg T Yk — 2)7)

The normalized data, r;;, can be viewed as a vari-
ation for each gene after removing systematic experi-
mental errors and are the input data for the following
single-gene model:

Figt = py + Ait + Tji + Dy + Yy (1)
Here, u; represents the overall average expression
level of gene / (a fixed effect), 4, is the ith array effect

of gene / (a random effect): 4;; ~ (O, ai(,)) T is the jth
treatment effect of gene [/ (a random effect):
Tj ~ <0, azm)); Dy, is the kth dye effect of gene / (a

random effect): Dy, ~ (0, 03(1)>; Yim 18 the residual
error of gene [y, ~ (0, 03(1))- The array effects

account for differences among arrays. Differences
among arrays may arise from differences in print
quality or from differences in the ambient conditions
when the plates were processed, which may increase or
reduce the hybridization efficiencies of labeled cDNA.
The treatment effects account for differences among
treatments. Such differences can arise when some
treatments (e.g., a specific cell line) have more tran-
scription activity in general than others. The dye effects
account for fluorescent signal differences. One dye may
show consistently higher signal intensity than another.
The single-gene model is fitted separately to the nor-
malized data from each gene, allowing an elementary
inference to be made, using a separate estimate of
variability. The methods described here are for the
prejudication of a subset of genes with differential
expression. This procedure is similar to a variation filter
that is commonly used to exclude genes with less than a
certain x-fold variation among the collected samples
(Golub et al. 1999). However, the x-fold variation filter
is usually based on total gene expression variations.
Instead, our procedure focuses on total treatment ef-
fects, which may increase the filter efficiency.

Combining analysis of multiple genes

A subset of genes potentially expressed differentially
between one or more pairs of samples in the dataset can
be used for further analysis as follows:

Vijki = U+ G +A4;+ T} + Dy + GAy; + GT]j + GDy;
+ &ijki

(2)

where p is the average of overall expression levels (a
fixed effect), G, is the fixed effect of the /th gene, A; ~
(0, ¢%) is the random effect of the ith array, Tj~
(0, %) is the random effect of the jth treatment and
Dy ~ (0, 67,) is the random effect of the kth dye. GA;; ~
(0,0%,) is the interaction between the /th gene and the
ith array, GT; ~ (0,6%;) is the interaction between the

Ith gene and the jth treatment and GDy ~ (0, 67;p) is the
interaction between gene / and dye k. The random error



term g, is the residual effect: & ~ (0, 2). Interpre-
tations of 4;, T; and D are similar to those in Eq. 1. The
gene effects, G;, account for differences in transcription
level among the genes. Some genes may be inherently
more active in mRNA transcription than others. The
gene X array interactions, GA4y;, account for the average
effect of the spot on the ith array for the /th gene. It is a
“spot” effect due to the potential incomplete control
over the amount and concentration of cDNA immobi-
lized from one array to the next. The gene X dye inter-
actions, GDy, are gene-specific dye effects and account
for the average effect of the kth fluorescence dye for the
/th gene. This may contribute to the differential
hybridization efficiencies of two chemically different
fluorescence dyes for the same probe. The gene x treat-
ment interactions, GTj, are of interest in microarray
experiments. These effects capture the departure from
the overall averages that are attributable to the specific
combination of the jth treatment and the /th gene.

Similar interpretations of the aforementioned fac-
tors were also detailed by Kerr et al. (2000). Whether
a specific factor is regarded as fixed or random de-
pends not only on the levels of source variation but
also on the investigator’s particular interest in the
study. A fixed effect is one that is repeatable. That is,
if other researchers repeat a specific microarray
experiment, they are estimating the same effects. A
random effect is one that is not repeatable. That is,
another researcher will not (probably cannot) estimate
the same effects, but can estimate the variance of the
effects from another sample. In our study, we treated
gene effects as fixed, while others were treated as
random. For example, the print quality of the arrays
and the ambient conditions under which the arrays
were probed varied from one microarray experiment to
another. Such array effects may not be repeatable
among different microarray experiments and thus are
treated as random effects. The basic mRNA tran-
scription level for a specific gene may remain inher-
ently similar among different microarray experiments
when there are no interference factors such as those
from arrays and treatments. Such a basic transcription
level is estimable with suitable experimental designs.
Therefore, the gene effects are treated as fixed effects
in our model.

Statistical assessment of gene significance
Both types of the above models can be analyzed by a

mixed-model approach. The single-gene model (Eq. 1)
can be rewritten in the following matrix form:

vy =1y +Usneany +Urppery) +Upppepu) + e

: (3)
=1+ Uineun ~N (ﬂ<z>’V<l>>
u=1

with this variance—covariance matrix:
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Var(r()) = V)
= G§(1>UA(1)U§(1) + JZT(z)UTU)U}(z)
+ U%)(l)UD(l)UE)(l) + 55(1)1

where 1) is the population mean over all entries of gene
[, e, 1s the vector of random effects: e, ~
(0, ai( [)I); U, () is the known incidence matrix relating to
the random vector e, UuTI is the transposition of
U,(1); Uy = Lis an identity matrix. Similarly, the multi-
gene model (Eq. 2) can also be expressed as the matrix
form.

Variance components of the aforementioned models
can be estimated using maximum likelihood estimation
(ML), restricted maximum likelithood estimation
(REML), and minimum norm quadratic unbiased esti-
mation (MINQUE; Searle et al. 1992). Among these
three methods, MINQUE possesses the advantages of
unbiasedness, no assumption of normal distribution and
less computation (Zhu and Weir 1994a). The prediction
of random effects can be obtained using methods for best
linear unbiased prediction (BLUP; Henderson 1963),
linear unbiased prediction (LUP; Zhu and Weir 1994a)
and adjusted linear unbiased prediction (AUP; Zhu 1993;
Zhu and Weir 1996). The fixed effects can be obtained
through the ordinary least square estimation (OLSE)
method or the generalized least square estimation
(GLSE) method. The Jackknife resampling procedure
(Miller 1974; Searle et al. 1992) can be used for estimating
the sampling variance of estimated variance components,
predicted random effects and estimated fixed effects; and
a r-test is then used for the significance test.

Microarray data are characterized by high dimen-
sionality and small sample size, which may not warrant
normal distribution of the data and usually requires
intensive computation for ML or REML estimators.
From this reason, MINQUE(1), an unbiased MINQUE
method with all the prior values set at one (Zhu and
Weir 1996), was used to estimate the variance compo-
nents and the Jackknife resampling procedure was used
for significance tests in our method. The AUP and
OLSE methods were used for predicting random effects
and estimating fixed effects, respectively.

In the single-gene model, a series of hypotheses can
be made about the variance of treatment: H0:O'2T(/) =0vs
H]ZO'ZT(/) =0. If Hy in the null hypothesis about gene / is
rejected, the observation of this gene is retained for
further analysis in the multi-gene model. In the sub-
sequent multi-gene model, a -test following the Jack-
knife resampling procedure is applied to test the null
hypothesis of a specific gene without differential
expression, that is, the gene X treatment interaction
effect (i.e., egr) is not significantly different from zero.
However, if at least one of the eg7 of gene / is not equal
to zero, the gene / is considered a DEG. This resample-
based #-test in the multi-gene model can capture the
departure from the overall average that is attributable to
the specific combination of the jth treatment and the /th
gene.
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Simulation design

A series of simulations for cDNA microarray experi-
ments was conducted to evaluate the performance of the
proposed approach. The loop design was adopted in our
simulated experiments. The loop design involves con-
structing a cyclic sequence of n treatments on n arrays,
with each treatment represented twice, each time labeled
with a different fluorescence dye (Kerr and Churchill
2001). In all the simulations conducted, there were 4,000
genes and six treatments. The six treatments were di-
vided into two groups of three each. Treatments T|-T;
were in one group and treatments T4,—Tg were in an-
other. For the first group, in the first array treatment T,
was marked with Cy3 dye and treatment T, was marked
with Cy5 dye, in the second array treatment T, was
marked with Cy3 dye and treatment T3 was marked with
CyS5 dye and in the third array treatment T5 was marked
with Cy3 dye and treatment T, was marked with Cy5
dye. Note that in spotted cDNA microarrays the two
treatments under comparison are labeled with two dif-
ferent dyes and co-hybridized to the same array. The
design was similar for another group with treatments
T4Tg (Table 1). Each of them was replicated three
times, giving 18 arrays in total.

Generating gene-expression data

To generate each dataset, we preset different magnitudes
of source variations (i.e., variance components) in the
simulated microarray experiments. The gene X treat-
ment interaction variance was set as 50 and the ratio of
the gene X treatment interaction variance (Vg7) to the
total phenotypic variance (Vp), that is, Vg7/Vp, varied
from 0.1 to 0.9 in all of the simulations. Four configu-
rations of the remaining variance components (V 4, Vp,
Vi, Voua, Vap, Ve) were simulated for the remainder of
the phenotypic variation (i.e., Vp—Vs7): (1) the effects of
A, D, T, GA, GD and & contribute equally to the
remainder of phenotypic variation, that is,
ViV VirVeaVep:Ve=1:1:1:1:1:1 (denoting EQUAL),
(2) the A and GA effects dominate in the remainder of

phenotypic variation, that is, (V,+ Vg )/(Vp—
Ver)=0.9 and Vp:VyVep:Ve=1:1:1:1 (denoting
Table 1 Experimental design of simulations
Array Dye
Dy (Cy3) D (Cy5)

Group 1

4, T, T

A2 T2 T’%

As T3 T,
Group 2

A4 T4 T5

As Ts Ts

A6 T6 T4

ARRAYDOM), (3) the D and GD effects dominate in
the remainder of phenotypic variance, that is, (Vp+
VGD)/(VPfVGT):O-9 and VA:VT:VGAZVSZIZIZIJ
(denoting DYEDOM) and (4) the T effects dominate the
remainder of phenotypic variation, that is, Vg/(Vp—
Ver)=0.9 and V. Vp: Vg Vep:Ve=1:1:1:1:1 (denoting
TREATDOM). Note that the efficiency of identifying
DEGs is dependent on the relative proportions among
different source variations rather than on the absolute
magnitude of each of them. We assumed that there were
only 40 DEGs among a total of 4,000 genes tested in the
experiment (representing 1% of total genes), that is,
40 genes had gene x treatment interaction effects. The
gene-expression value was obtained by the multi-gene
model (Eq. 2) and the random effects in the model were
drawn by generating a pseudo-random normal deviate
with zero mean and different known variances.

Efficiency of identifying differentially expressed genes

We compared the proposed method with the conven-
tional two-sample ¢-test method (Dudoit et al. 2000). For
the 7-test method, simulations were performed with and
without x-fold filter. In the former case, we first excluded
those genes with maximum x-fold changes of less than
two among different treatments and then performed the
t-test method on the remaining dataset. In the latter case,
we performed the z-test method directly on the whole
dataset. Power, false discovery rate and false number
were used to evaluate the efficiency of these methods for
identifying DEGs. Power refers to the probability of
declaring a statistical significance when a true DEG ex-
ists. False discovery rate is the proportion that genes
declared to be differentially expressed which are not dif-
ferentially expressed in reality. False number is the total
number of false positives (genes declared to be differen-
tially expressed which in reality are not) and false nega-
tives (genes truly differentially expressed but not declared
as such). Global significant level was set at 0.05; and
multiple testing was adjusted by Bonferroni’s correction
in both the mixed-model and the #-test methods.

Efficiency of predicting random effects and estimating
fixed effects

We then evaluated the efficiency of predicting random
effects and estimating fixed effects with our models,
using the proportion of bias, (0 — 0)/|0|, where 0 is the
true effect value and 0 is the mean of the predicted
random effect or estimated fixed effect.

Results

Monte Carlo simulations were run 200 times for each
case and the mean results of the 200 simulations are
presented below.



Identifying DEGs

We first evaluated the performance of the mixed-model
approach and r-test methods under different source
variations resulting from microarray experiments.
Powers and false discovery rates are summarized in
Fig. 1 and false numbers are summarized in Fig. 2.
There is a general tendency: the larger GT interactions
account for the gene differential expression, higher
power and lower false discovery rate; and fewer false
numbers are achieved by each of these methods. Their
efficiencies in identifying DEGs are apparently depen-
dent on various source variations in the microarray
experiments. In addition, the z-test method with the fil-
tration procedure worked a little better than that with-
out the filtration procedure in most cases, but the
difference was quite small. For a simpler and clearer
presentation of the results, in the following comparisons
we applied the z-test methods to both of the above two
methods, that is, f-test methods with and without the
filtration procedure.

When the variances of A, D, T, GA, GD and ¢ are
of similar magnitude (EQUAL), our method achieved
consistently higher powers and lower false discovery
rates than the z-test method. When the 4 and GA
effects dominated in the remainder of the phenotypic
variance (ARRAYDOM), our method produced dra-
matically higher powers and lower or similar false
discovery rates than the -test method. When the D
and GD effects dominated in the remainder of
phenotypic variance (DYEDOM), our method still
gave dramatically higher powers than the ¢-test meth-
od. The false discovery rates of our method were
slightly higher than the ¢-test method when the Vgq/
Vp exceeded 0.3. When the T effects accounted for a
majority of the remainder of the phenotypic variance
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(TREATDOM), the t-test method showed a higher
power than our method but at the cost of extremely
higher false discovery rates. In all of the four cases
studied, our method always produced fewer false
numbers than the #-test method. In particular, in the
case of TREATMENT, about 2,500-3,000 genes of the
total 4,000 genes were false positives or false negatives
by the r-test method, while only 4-40 genes were false
positives or false negatives by our method. These re-
sults indicate that, in most cases, our approach has a
higher efficiency of identifying DEGs, while the odds
of falsely declaring DEGs are lower.

We then classified differential expression into three
categories with regard to individual GT variance of a
specific gene: genes with a large GT variance, genes
with a medium GT variance and genes with a small
GT variance. Powers of the mix-model and the z-test
method for identifying each of the three groups of
genes are shown in Table 2. All methods showed
higher powers of identifying DEGs having a large GT
variation. Specifically, those genes with GT variation
>3% of the total GT variation of all genes were more
frequently declared to be differentially expressed in our
simulated experiments. When Vg7/Vp=0.8, the powers
for identifying DEGs with a large GT variation were
similar in these methods. The differences in statistical
powers between these methods were due to their
ability to identify genes with medium or small GT
variation. When Vg/Vp=0.4, neither method could
efficiently identify the DEGs with a medium or small
GT variation, but there were differences in statistical
powers for identifying genes with large GT variation.
In the simulated experiments, our method gener-
ally had high efficiency in identifying genes with
medium to large GT variation in most cases when
VGT/ Vp >(0.6.

Fig. 1 False discovery rates & 1.0- EQUAL -0 & ARRAYDOM -1.0
(FDR) and powers of o s 2 C10d & o« o H
identifying DEGs using the 0.8 os & / Log &
mixed-model approach (circles)
and the 7-test method with 0.6+ 0.6 0.6
(squares) and without (triangles)
the filtration procedure. Dotted 0.4+ 04 04
lines are false discovery rates
and solid lines are powers 0.2+ ro2 ro2
= s BE EE E 0.0
0.0 1.0 00 02 04 06 08 10
VGTIV P VGTNP
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o A —— i L1.0 3
[ . ® - S K104 a-m-m-A-AR e 1.0
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Fig. 2 False numbers (FN) = 45 EQUAL 45 DYEDOM
when identifying DEGs by the L 40 ——ya i 40
mixed-model approach (circles) a5 \-\ 351
and the 7-test method with . 301
(squares) and without (triangles) 301 \. o5
the filtration procedure 251 \ 1
20 . 201
151 \ 151
104 .\ 101
5 51 \.\'\o\
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
VGTIV P VGTIVP
45 - ARRAYDOM TREATDOM
z 40 s<g—a—a_ £ 3000+ -—-/\a—a—a—ﬁta—A
35 1 o, 2500 A L]
304 \‘\ 2000
25 . A
20] AN 1500
o,
151 \ 1000
10
5] \o\: 5001
0 T T - T . 0 2—4 * ’ ' "
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
VGTIV P VGTIVP
Table 2 Effects of individual . a
GT variance on powers for Vsr/Vp, Variance component > 0.03" 0.01-0.03 <0.01
ﬁzrézlf y;gﬁrgi}?si-?gs%%:;d_ MM  -testF stest MM r-testF rtest MM t-testF  #-test
method with filtration
procedure, ¢-fest -test method 0.8 EQUAL 0.978 0.893 0.937 0.800 0.584 0.590 0.160 0.073  0.066
without filtration procedure ARRAYDOM 0.989 0.799 0.854 0916 0.404 0.345 0.493 0.037 0.019
DYEDOM 1.000 0.880 0.860 0.976 0.748 0.670 0.835 0.439 0.349
TREATDOM 0.991 1.000 1.000 0.945 0.996 0.998 0.729 0.932 0.944
0.4 EQUAL 0.320 0.074 0.116 0.073 0.016 0.021 0.005 0.000 0.000
. o ARRAYDOM 0.659 0.016 0.031 0.263 0.001 0.002 0.021 0.000 0.000
The number indicates the pr- DYEDOM 0.983 0.401 0.434 0.809 0.223 0214 0.184 0.033 0.017
oportion of individual variance TREATDOM 0.813 0.947 0.964 0.523 0.884 0.898 0.104 0.773 0.778

of GT to total variance

Predicting random effects and estimating fixed effects

Table 3 shows the proportion of bias for GT effects
predicted by the AUP method and for gene effects
estimated by the OLSE method, respectively. For GT
effects with large absolute sizes, the biases of their
predictors were reasonably small (ca. 5%). However,
for GT effects with small absolute sizes, the biases of
their predictors were considerably larger. Similar results
were also observed in the estimation of gene effects.
These results suggest that our method can well predict
GT effects with large absolute values, while prediction
of GT effects with small absolute values should be
treated with caution. This is also true for the estimation
of gene effects.

Real example

We applied our method to analyze the publicly available
datasets from the study of Gutiérrez et al. (2002), who
examined mRNA degradation in intact Arabidopsis
thaliana by cDNA microarrays containing 11,521 clones.

In their study, three independent cordycepin treatments
(biological replicas) were analyzed. Each pair of samples
from 0 min and 120 min after cordycepin treatment was
used in two microarray hybridizations, the second with
reverse labeling relative to the first (technical replicas).
Statistical analyses of the ratios were performed using
the z-test. The data are available online at the Stanford
microarray database (http://genome-www5.stan-
ford.edu/; ExptID: 11374, 11333, 11339, 11323, 11375,
11342).

When using the f-test and the conservative Bonfer-
roni method to adjust P values, 100 genes with unstable
transcripts showed significantly different ratios from the
mean of the population at « <0.0001 (see Gutierrez et al.
2002, supporting table 2). For a comparison of the re-
sults, the significance level of «=0.0001 was also adop-
ted for single tests using the mixed-model approach. We
found 90 genes with significant mRNA degradation
from 0 min to 120 min, including 51 genes identified by
both methods and 39 genes identified only by the mixed-
model approach (Table 4).

Gutiérrez et al. (2002, Table 1) listed some
Arabidopsis genes with unstable messages, including the
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Table 3 Bias proportion of GT

effects predicted by AUP and Vgr/Vp  Variance component  GT effect Gene effect
%eﬁee%ﬁ;;:st Saensélr;:rfzigfz:}ctos];srg Large Medium  Small Large Medium  Small
divided into large, medium and
small, according to their true 0.8 EQUAL 0.058 0.140 0.650 —0.015 0.138 0.966
absolute size ARRAYDOM 0.041 0.106 1.309 0.064 0.157 1.741
DYEDOM 0.040 0.118 0.992 0.063 0.116 1.046
TREATDOM 0.040 0.132 0.896 0.070 0.160 1.451
0.4 EQUAL —0.058  0.182 0.687 0.026 0.183 —1.178
ARRAYDOM 0.035 0.091 1.152 0.044 0.133 1.888
DYEDOM 0.061 0.138 0.536 0.025 0.088 —0.645
TREATDOM 0.065 0.166 —0.518  0.058 0.132 1.814
DNA-binding protein RAV1 gene at locus Atlgl3260 — ]
Discussion

and the homeodomain transcription factor (ATHB-6)
gene at locus At2g22430. AA395830 and N37328 are
two expressed sequence tags (ESTs) from the gene at
locus Atlgl3260; and H77088 and T04337 are two
ESTs from the gene at locus At2g22430. They were all
identified as unstable transcripts by our method, while
only N37328 and T04337 were found by the #-test.
AA720100, AA720105 and T76004 are all from the
nucleotide sugar epimerase gene at locus At4g30440;
and T20600, N65459 and T75944 are all from cyto-
chrome P450 monooxygenase gene at locus At4dg31500.
The #-test only found that AA720100 and T20600 were
unstable, whereas AA720105, T76004, N65459 and
T75944 were identified as unstable genes by our meth-
od. T20543, AA720239 and AA720240 are three ESTs
from the gene at locus At5g64260 which were identified
as unstable genes by our method but not by the r-test.
AA067525 and AA067498 are both from the calmod-
ulin-related protein 2 gene at locus At5g37770,
AA597715 and H36178 are both from the ethylene
responsive element binding factor-like gene at locus
At5g61590 and both AAS597849 and T46143 are from
the gene at locus Atlg72450. Both of the methods
identified one transcript from each of the three genes,
respectively. However, the #-test did not find multiple
transcripts from the same gene that were not found by
the mixed-model approach. These EST identifications
were searched in the A. thaliana annotation database
and the A. thaliana gene index at the Institute for
Genomic Research (http://www.tigr.org). Finding sev-
eral unstable transcripts from the same gene is to be
expected since the probes, coding for the same gene,
should display very similar expression profiles (Liu
et al. 2003). From this aspect, the mixed-model ap-
proach can identify more reasonable unstable tran-
scripts.

In addition, polyA may play an important role in the
translation of mRNA by increasing the stability of
mRNA and allowing mRNA to function normally.
Half-lives for histone mRNA that lacks a polyA tail
were considerably lower than 30 min (Greenberg 1972).
Two histone-related ESTs (H76940, AA720291) that
were not identified as unstable genes by the #-test were
found by our approach.

Genome-wide identification of DEGs using conven-
tional molecular techniques (e.g., Northern blot analy-
sis) is expensive and time-consuming. Microarray
technology represents one of the latest breakthroughs in
experimental molecular biology which allows the moni-
toring of gene expression for tens of thousands of genes
in parallel. It is already producing huge amounts of
valuable data (Brazma and Vilo 2000). Many standard
statistical methods have been used to mine such data. In
the present study, we propose a method for microarray
data analysis based on a mixed-model approach. As
compared with the conventional #-test approach, our
method tends to have a higher efficiency in identifying
DEGs, while the odds of falsely declaring genes with
differential expression are lower. Furthermore, some
quantities of interests can be obtained by the AUP
method for random effects or by the OLSE method for
fixed effects. The method developed here has been
implemented in the Windows-interface software QGA
Station that is available at http://www.cab.zju.edu.cn/
english/ics/faculty/zhujun.html.

Our method is an extension of recent groundwork by
Kerr et al. (2000) and Wolfinger et al. (2001). The
rationale underlying these methods is that total gene
expression is partitioned into various source variations
due to different factors, attempting to minimize and/or
eliminate inherent ‘“‘noise’” in microarray experiments.
However, the mixed linear models employed in our
method are of a different form from previous studies.
We implemented our method in two interconnected
steps using a concise algorithm, MINQUE, with no
requirement for assuming a normal distribution in the
microarray data. In the first step, we choose a subset of
potential DEGs, using the single-gene model. This pro-
cedure is similar to a x-fold variation filter. However, the
x-fold variation filter is usually based on total gene-
expression variations, while our procedure uses total
treatment effects, which may increase the filter efficiency.
In the second step, multiple gene-expression profiles are
analyzed simultaneously and some interesting effects are
estimated, using the multi-gene model. In our study,
Bonferroni’s method was used to set the cutoff for a



Table 4 A. thaliana genes with unstable transcripts identified by the mixed-model approach. Expressed sequence tags (Locus) were identified as differentially expressed genes by both the
mixed-model approach and the #-test method

Accession  Locus Gene information  p-value Accession  Locus Gene information  p-value Accession Locus Gene information  p-value

AA042089 AT4g02380 Similar to several 3.58E—06 AA720291 Atlg08880 Strong similarity 6.77E—06 R30283 “AT4g31550 (AL080283) 2.35E-06
small proteins to Picea histone putative DNA-

(ca. 100 aa) that H2A (gb|X67819). binding protein
are induced by ESTs ATTS3874, [A. thaliana)
heat, auxin, T46627,T14194
ethylene and come from this gene
wounding
AA042408 *AT4g29950 Putative protein 5.07E—-06 AA713153 At3g51360 Putative protein 7.88E—06 R29917 #At4g17230  Scarecrow-like 2.55E-05
13 (SCL13)

AA042412 *Atlg32130 Unknown protein 6.79E—07 AA720105 At4g30440 Nucleotide sugar 1.30E—06 R30557 At5g42380  Putative protein 4.35E-05

epimerase protein

AA042669 “At1g75900 Anter-specific 4.80E—05 AA720239 At5g64260 (AB018441) phi-1 7.10E—06 R64946  *At3g57930 Putative protein 3.27E-05
proline-rich [Nicotiana
protein apg tabacum)

(protein cex)

AA067498 At5g37770  Calmodulin-related 3.11E—07 AA720240 At5g64260 (AB018441) phi-1 2.79E-05 R65120  At2g37940  (AC007661) 1.96E—05
protein 2, [N. tabacum) unknown protein
touch-induced [A. thaliana]

AA394319 *AT3g56880 Putative protein 1.03E—05 AA713007 * At2g41410 Calmodulin-like 3.26E—-05 R&87001 ?AT5g61600 EREBP-4 1.68E—05

protein [N. tabacum)

AA394366 At3g15450  (AL078467) 3.43E—-05 AI100427 * AT4gl5760 (Z97339) 7.79E—07 R89921 AT5g19190 Putative protein 1.28E—06
putative protein hypothetical pro-

tein

AA394409 At4gl7090  Putative 9.50E—05 AI100650 “Atlg01550  Hypothetical 2.04E—07 R90579  At5g04610  Putative protein 5.94E-05
beta-amylase protein

AA394587 *AT5g41080 Putative protein 2.92E—-05 H36178 At5g61590 Ethylene responsive 5.47E—06 T13984 At5g56980  Putative protein 1.38E—06

element binding
factor-like

AA394829 At4g36500  (Z99708) putative 3.84E—05 H36428 AT3gl1410 Protein 2.73E—05 T13839 AT3g15450 Unknown 1.07E—05
protein phosphatase 2C [Arabidopsis
[Arabidopsis (PP2C) thalianal
thalianal

AA395006 *AT3g45970 (AL035539) 1.13E-06 H76905 At2g24790 (AC006585) 1.07E—05 T04337 #At2g22430 Homeobox-leucine 2.86E—07
putative pollen CONSTANS-like zipper protein
allergen B-box zinc ATHB-6 (HD-ZIP
[A. thaliana] finger protein protein ATHB-6)

AA395343 *At2g23810 Similar to 6.88E—05 H36869 “AT3g56360 Putative protein 1.59E—05 T13991 ?At2g29450  Glutathione 2.03E-06
senescence- S-transferase
associated 103-1A

AA395351 *AT5g67480 (AL035605) 5.03E—05 H37631 “AT5g63790 ATAF?2 protein 5.99E—05 T14209 “Atlgl9180 Unknown protein  6.05E—09
putative protein [-A. thaliana]

AA395830 Atlgl3260 (AB013886) RAV1 3.07E—07 H76698 4AT5g05440 Putative protein 3.98E—06 N96483  *At2g32150 (AC006223) 1.28E—05

putative hydrolase

AA395910 *AT3g62550 Putative protein 1.57E—05 H36431 % AT4g32020 Putative protein 9.84E—06 T20543 At5g64260  (AB018441) 5.29E—08

Phi-1 [Nicotiana
tabacum)

8¢C1



AA585854

AAS585971

AA597384

AAS597420
AA597982

AA598115

AA598137

AA605453

AA605476

AA650871

AA651102

AA651342

AAT12424

AAT712786
AAT12865

*AT3g54810

At2¢32150

Atlg19180

TAL1274950
A 15203430

At5g61900

At1g07280

AA12¢26190

At5¢53050

Atlgl9180

*AT5220880

*AT3g47960

AA 1249500

At5g61900
AA 11232920

Similar to GATA
transcription
factor 3

Putative hydrolase

Unknown protein

Unknown protein
Putative protein

Copine-like protein

Unknown protein

Unknown protein

Hydrolase alpha/
beta fold family
protein

Unknown protein

Expressed protein

(AL049658)
putative peptide
transporter
[Arabidopsis
thalianal

Unknown protein

Copine-like protein
Unknown protein

4.73E-09

5.58E—-06

1.22E—-05

9.10E—06
6.19E—-06

3.50E—06

1.66E—05

2.88E—05

1.90E—05

1.85E—06

5.36E-07

8.67TE—05

1.16E—05

1.33E-05
3.34E-07

H76940

H77088

N37308

N37328
N37850

N37995

N38405

N65459

N95945

N95988

N96265

R29894

T20525

N97061
N96457

At1g06760

At2g22430

At1g63090

* Atlgl3260
* At1g69890

4AT5g56190

*At1g37130

At4g31500

At2g18440

*A1g25550

* AT4g18010

A 12240000

*AT3g52400

Atl1g75860
* AT5g64260

Histone H1.1

Homeobox-leucine
zipper protein

ATHB-6 (HD-ZIP

protein ATHB-6)

Unknown protein

(AB013886) RAV1

T7N9.12
[Arabidopsis
thalianal)

F2202.16
[Arabidopsis
thaliana)

Nitrate reductase2
(NR2)

(D78598)
Cytochrome P450
monooxygenase

Unknown protein

Hypothetical
protein

Putative inositol
polyphosphate
5-phosphatase
At5P2

(AF002109)
putative
nematode-
resistance protein

(AJ245407) putative

syntaxin protein
[A. thaliana)

Unknown protein
Phi-1-like protein

2.23E-06

2.74E-06

2.86E—05

7.93E-06
3.85E-07

9.84E—05

1.55E-05

4.44E—-05

7.02E-07

6.89E—-07

3.78E—09

2.71E-07

3.08E—-07

3.59E-06
1.97E-06

T20842

T21879

T21700

T22403
T22424

T22441

T45380

T41662

T46143

T76004

T75944

T76090

T76263

T76510
W43654

At5¢21940

*AT5204340

“At1g09070

Atlg66180
*Atlgl 7420

At5g63160

At1g62180

Atdg16920

Atl1g72450

Atdg30440

At4g31500

“AT3g15210

AAT4g24570

AAT3g55240
At3g59350

Expressed protein

Putative c2h2
zinc finger
transcription

factor [Arabidopsis

thalianal
(AJ007586)
src2-like protein
[Arabidopsis
thalianal
Unknown protein
Lipoxygenase
[Lycopersicon
esculentum|
Putative protein

APS reductase
[A. thaliana)

(Z97342) Disease
resistance

RPPS- like protein

[Arabidopsis
thalianal
Unknown protein

Nucleotide sugar
epimerase protein

(D78598)
cytochrome P450
monooxygenase

(AB008106)
ethylene
responsive
element binding
factor 4

(AL035356)
putative
mitochondrial

uncoupling protein

Putative protein
Protein kinase-like
protein

7.90E—05

2.18E—06

9.01E-07

1.89E—-07
2.73E-06

1.70E—05

9.86E—06

1.43E-05

2.53E-05

1.58E—-08

4.69E—-05

2.94E-05

1.17E-05

3.59E-07
8.54E—05

6¢C1
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significant P-value in both the single-gene and multi-
gene models. The significance level, «, can be a little
larger in the former than in the latter, which may reduce
the risk of losing some interesting DEGs during the
filtration procedure and thus increase statistical power.
Other criteria such as Benjamini and Hochberg’s
procedure can also be used to adjust the P-value to
control false discovery rates in these two models
(Benjamini and Hochberg 1995). Our method can also
handle designs with more than two dyes that can
decrease the experimental costs (Forster et al. 2004).
Another advantage of our method is its ability to handle
missing data, a common problem in microarray experi-
ments.

Replications of spot measurements either within or
between arrays are essential in our method. Our method
can be applied to the reference design and loop design
and their modifications with replications. Replication is
an important aspect of a good microarray design. There
are basically two types of replication: (1) biological
replication in which RNA samples from independent
sources are used and (2) technical replication in which
the same RNA sample is applied to different arrays.
Whether biological or technical replication or both are
used in microarray experiments depends on the relative
magnitude of the biological and technical variability in
the sample. Repeated spots on the same array are a kind
of replication but apply the same RNA samples within
the same array. This can reduce array effects due to the
quality of robot-fabricated immobilized cDNA probes
within the same array. Lee et al. (2000) recommended
that at least three replicates be used in designing
experiments using cDNA microarrays. In our simulated
experiments with three replicates, although our method
performed reasonably better than the ¢-test method, only
those DEGs with large GT variation were consistently
identified in most cases. Therefore, the number of genes
identified in most microarray experiments likely repre-
sents an underestimate of DEGs when using a conser-
vative significant level. If experimental outlay and
sample are enough, six to eight replicates are likely the
best (Pan 2002).

Various clustering methods are commonly used in
microarray data analysis (Eisen et al. 1998; Spellman
et al. 1998; Golub et al. 1999; Tamayo et al. 1999; Hastie
et al. 2000; Pan 2002). In these methods, expression
levels or ratios with sampling errors within experiments
are usually analyzed directly, which may introduce noise
and even bias in identifying groups of genes and thus
result in the false interpretation of gene-expression pat-
terns. Our method is complementary to the current
clustering methods. In our method, interesting effects
(such as the gene X treatment interactions here) can be
predicted and/or estimated. Investigators can use these
genetic effects in clustering to make sure the inputs are
biologically meaningful. In our previous study, we also
proposed a dissimilarity coefficient for clustering popu-
lations, using mixed linear models (such as the models
proposed in our microarray study). The dissimilarity

coefficient has two parameters, for squared difference of
marginal mean and variance component of interaction,
and has appropriate statistical properties (Zhu and Weir
1994b). Incorporation of such techniques in our method
specifically for microarray data is straightforward and
awaits further investigation.

In our simulations, we investigated the impact of
various source variations on the efficiency of identifying
genes expressed differentially among different treat-
ments. We found that the same method resulted in
dramatically different efficiencies (power, false discovery
rate) under different configurations of the remaining
source variations, given that the proportion of GT
interactions accounting for the total gene-expression
variations was fixed. For example, when Vs7/Vp=0.6,
the t-test method had 40% power in identifying DEGs
when the dye effect and gene-specific dye effect ac-
counted for a majority of the remainder variation, while
this method had less than 10% power when the array
effect and spot effect dominated the remainder variation
(Fig. 1). A similar trend was observed in our method.
This suggests that the efficiency of detecting DEGs is
more affected by the systematic variation arising from
arrays than that from dyes. If the experiment is finished
for several batches within each array, the batch effects in
the arrays may be considered to diminish the systematic
errors. Modeling such effects or other appropriate effects
in the single- and multi-gene models is straightforward
in our method. Our studies have an important implica-
tion for the experimental design and execution of
microarray studies. A desirable experimental design of a
microarray should keep experiment-wise systematic
errors as low as possible and, at the same cost, selectively
diminish the systematic errors of some specific factors
(such as the arrays here) that have more effect on the
efficiency of detecting DEGs.

Treatments, genes, dyes, arrays and their interac-
tions are well known as the source of effects contrib-
uting to variations in microarray data (Kerr et al. 2000;
Churchill 2002). However, simulations of microarray
data have not gained wide acceptance because, in the
real world, a potential complexity may be involved in
these source variations. This also makes difficulties for
theoretical justifications of different statistical methods.
In our study, in addition to simulated data, we
compared experimentally the mixed-model approach
with the t-test, using a real dataset for identifying
unstable transcripts (Gutiérrez et al. 2002). The results
showed that our method can identify more unstable
transcripts than the z-test. We suggest researchers check
their data distribution and pre-analyze various source
variations in their experiments. Our method can be a
competing candidate approach for those datasets which
depart from normality and have moderate experimental
errors.
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