
Euphytica 140: 171–179, 2004.
C© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

171

Genetic association of yield with its component traits in a recombinant
inbred line population of cotton�

Jixiang Wu1, Johnie N. Jenkins2,∗, Jack C. McCarty Jr.2 & Jun Zhu3

1Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, U.S.A.;
2Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS 39762, U.S.A.; 3College of Agriculture
& Biotechnology, Zhejiang University, Hangzhou 310029, China;
(∗author for correspondence: e-mail: jjenkins@msa-msstate.ars.usda.gov)

Received 5 December 2003; accepted 13 August 2004

Key words: contribution effect, contribution ratio, lint yield, mixed linear model approach, multivariable conditional
analysis, upland cotton

Summary

Lint yield of upland cotton (Gossypium hirsutum L.) is determined by its component traits, boll number, boll weight,
and lint percentage. Selecting high yielding lines is based on the ability to manipulate component traits. In this study,
188 recombinant inbred lines and two parental lines were grown in 1999 and 2000 at Mississippi State University.
Lint yield and its three component traits were measured and analyzed by an extended conditional mixed linear
model approach. Boll number unit-area−1 made the largest contribution to genotypic and genotype × environment
(G × E) variations for lint yield. Both boll number and lint percentage, and boll number and boll weight jointly
accounted for more than 70% of the genotypic and G × E variations in lint yield. Ninety-nine percent of the genetic
and phenotypic variation in lint yield could be explained by the three component traits, indicating that lint yield
was mainly dependent on its three component traits. Small phenotypic variation in lint yield could be accounted for
by effects of genotype, G × E interactions of boll number or boll number combined with other component trait(s)
(Table 5). For boll number unit-area−1 a wider distribution of genotypic contribution effects was detected than for
lint percentage and boll weight in this study. Boll number and boll weight interacted to affect lint yield, indicating
that balanced selection for boll weight and boll number is needed in high-yielding line development. Comparative
results with other approaches were also discussed in this study.

Introduction

A complex trait like cotton (Gossypium hirsutum L.)
lint yield depends on the joint contribution of its sev-
eral component traits. The existence of correlations
between a complex trait and its components is an in-
dication of gene association or pleiotropism (Kebede
et al., 2001; Dilday et al., 1990). Correlation analysis,
multiple linear regression analysis, and path coefficient
analysis are three common methods used to evaluate the
relationships between a complex trait and its compo-
nent traits (Bora et al., 1998; Ball et al., 2001; Cramer
& Wehner, 2000; Samonte et al., 1998). A simple

�The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.

phenotypic relationship between a complex trait and
each of its component traits can be detected by corre-
lation analysis. Multiple linear regression analysis can
reveal single or joint contributions from component
traits to the complex trait. Simple correlation coeffi-
cients can be partitioned into direct and indirect effects
to the target trait by the path analysis (Wright, 1920).
In most cases, both the complex trait and its component
traits are random variables. Jobson (1991) proposed a
conditional multiple linear regression method based on
the normal conditional distribution theory. Several ap-
proaches have been proposed for analyzing a complex
trait with multiplicative component traits (Sparnaaij
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& Bos, 1993; Melchinger et al., 1994; Piepho, 1995).
Both the complex trait and its component traits could
be influenced by several factors such as environment,
genotype, and genotype by environment interaction ef-
fects. Thus, it is necessary to partition the phenotypic
values of the component traits into contributions due
to different effects; however, the above methods are
unable to analyze data for these complicated cases.

The total variation for a complex trait consists of
variations in the component trait(s) as well as other fac-
tors (Jobson, 1991). Conditional analysis can remove
the variation due to component trait(s) and obtain the
remaining variation (conditional variances) (Graybill,
1976; Krzanowski, 1988; Jobson, 1991). Variation
due to component traits can be obtained accordingly
(Jobson, 1991). The expectation and the variance–
covariance matrix for a conditional random vector can
be derived (Graybill, 1976; Krzanowski, 1988); how-
ever, neither the conditional variance components nor
the conditional effects under a mixed linear model are
directly obtainable. Zhu (1995) proposed a method that
could be used to analyze the conditional effects and
the conditional variance components for single devel-
opmental traits. This conditional model approach also
helped analyze the contribution of each component trait
to a complex trait; however, this conditional model ap-
proach is only for single-variable analysis.

Cotton lint yield is determined by boll number unit-
area−1, boll weight, and lint percentage. Worley et al.
(1974) reported that boll number unit-land-area−1 was
the largest contributor to lint yield. Maintaining a high
lint percentage was necessary to ensure high lint yield
(Culp & Harrell, 1974). Covariance component analy-
ses have shown that lint yield was significantly depen-
dent on each of these three yield components due to
different genetic effects (Wu et al., 1995; Tang et al.,
1996; McCarty et al., 1998). Conditional analysis by
a mixed linear model showed that number of bolls per
plant contributed∼45% of the variation in lint yield due
to additive genetic effects and additive genetic by envi-
ronment interaction effects, while 2% of the variation
in lint yield was due to dominance effects and domi-
nance by environment interaction effects (Zhu, 1995).
If component traits independently contribute to a com-
plex trait, then Zhu’s (1995) approach can be used re-
peatedly to obtain multivariable conditional variance
components. Previous research, however, has shown
that yield components have significant genetic correla-
tions (Wu et al., 1995; Tang et al., 1996; McCarty et al.,
1998), which complicates the multivariable conditional
analysis. Therefore, a more general conditional model

approach that allows for multiple conditional analyses
for more than one component trait is needed.

In this study, Zhu’s (1995) conditional model is
extended for multiple conditional variance and condi-
tional effect analyses. Two-year data for lint yield and
three yield components from 188 upland cotton recom-
binant inbred (RI) lines and two parental lines were an-
alyzed based on the extended model. Conditional vari-
ance components, contribution ratios, and contribution
effects for different component traits were determined.
These data should provide a better understanding of lint
yield components and their relationship with lint yield
and provide important information for the improve-
ment of lint yield and other complex traits in breeding
programs.

Materials and methods

Materials

One hundred eighty-eight RI (F8) lines were developed
by the single-hill procedure (Fehr, 1987) from the cross
HS46 (P1) × MARCABUCAG8US-1–8 (P2). These
RI lines with their two parental lines were planted at
the Plant Science Research Center, Mississippi State,
MS in 1999 and 2000. The experimental design was a
randomized complete block with four replicates. Plot
size was two rows 12 m in length with a between-row
spacing of 0.97 m and an intra-row spacing of approxi-
mately 10 cm. The soil type was a Leeper silty clay loam
(Fine, smectics, nonacid, thermic Vertic Epiaquepts).
Planting date was 12 May for each of the two years.
Standard cultural practices were followed throughout
the growing season. A 50-boll sample was collected
from each plot before machine harvest to determine
boll weight (BW, g) and lint percentage (LP, %). Boll
number per ha (BN) was calculated by dividing seed
cotton yield per ha by average boll weight (Tang et al.,
1996). Lint yield per ha (LY, kg) was determined by
multiplying seed cotton yield by lint percentage. Thus
the relationship between LY and three component traits
is LY = BN × BW × LP.

Genetic model and statistical methods

The random effects linear model was used for data anal-
ysis for each trait,

y = 1µ + UE eE + UGeG + UG E eG E + UBeB + e

= Xb +
5∑

u=1

Uueu (1)
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where, µ is the fixed population mean; 1 is a vector
with all 1520 elements equal to 1; eE is the random
environmental effect vector with dimension of 2, eE ∼
N (0, σ 2

E IE ); UE is the known design matrix for eE with
dimension of 1520 × 2; eG is the random genotype ef-
fect vector with dimension of 190, eG ∼ N (0, σ 2

GIG);
UG is the known design matrix for eG with dimension of
1520×190; eGE is the random G × E interaction effect
vector with dimension of 380, eGE ∼ N (0, σ 2

GEIGE);
UGE is the known design matrix for eGE with dimension
of 1520×380; eB is the random block effect vector with
dimension of 8, eB ∼ N (0, σ 2

BIB); UB is the known de-
sign matrix for eB with dimension of 1520 × 8; e is the
random error with dimension of 1520, e ∼ N (0, σ 2I);
and I is an identity matrix with different sizes.

Suppose that lint yield and the s component vectors
have a joint normal distribution and that each of them
follows the same mixed linear model (Equation 1), then
the conditional vector of target trait y (T ) on the s com-
ponent traits of y(1), y(2) ,. . . , j(s) (s = 1, 2, 3) is defined
as y(T |1,2,...,s). This vector can be expressed in terms of
matrices and vectors as follows:

y(T |1,2,...,s) = Xb(T |1,2,...,s) +
5∑

u=1

Uueu(T |1,2,...,s)

(2)

where y(T |1,2,...,s) is normally distributed with
expectation

Xb(T |1,2,...,s) = Xb(T ) + (
C(T,1)C(T,2)...C(T,s)

)

×
−1∑

(1,2,...,s)




y(1) − Xb(1)

· · ·
y(s) − Xb(s)


 (3)

and variance–covariance matrix

V(T |1,2,...,s) = V(T ) − (
C(T,1) C(T,2) . . . C(T,s)

) −1∑
(1,2,...,s)

×(
C(1,T ) C(2,T ) . . . C(s,T )

)T =
5∑

u=1

σ 2
u(T |1,2,...,s)UuUT

u

(4)

where C(i, j) = cov(y(i), y( j)) = �5
u=1σu(i, j)UuUT

u is
the covariance matrix between traits y(i) and y( j) with
dimension size of 1520 × 1520;

∑
(1,2,...s)

= var




y(1)

· · ·
y(s)


 =




V(1) · · · C(1,s)

· · · · · · · · ·
C(s,1) · · · V(s)


 ,

which is a sn × sn symmetric matrix and has an in-
verse matrix (in this study, n is 1520 and s could be 1,
2, and 3); and V(i) = ∑5

u=1 σ 2
u(i)UuUT

u is variance ma-
trix of trait y(i) (either target or component trait) with
dimension size of 1520×1520 and σ 2

u(i) is the variance
component for trait y(i).

The conditional variance in (4) and conditional ran-
dom effects in (2) cannot be directly obtained due to
five items of random effects in (2); however, the new
vector in (5) is independent of all s (s = 1, 2, 3) com-
ponent variables with the same multiple conditional
variance and covariance matrix as in (4)

y∗
(T |1,2,...,s) = y(T ) − (

C(T,1) C(T,2) . . . C(T,s)
)

×
−1∑

(1,2,...,s)




y(1) − Xb(1)

· · ·
y(s) − Xb(s)


 (5)

The vector in (5) can be expressed in terms of matrices
and vectors as in Equation (1):

y∗
(T |1,2,...s) = Xb∗

(T |1,2,...,s) +
5∑

u=1

Uue∗
u(T |1,2,...,s)

∼N

(
Xb∗

(T |1,2,...,s),

5∑
u=1

σ∗2
u(T |1,2,...,s)UuUT

u

)

(6)
Thus, our statistical idea is to construct the new vec-
tor in (5) to obtain σ ∗2

u(T |1,2,...,s) and e∗
u(T |1,2,...,s) in (6),

which can be regarded as equivalent to the conditional
variance component σ 2

u(T |1,2,...,s) and the conditional ef-
fect vector eu(T |1,2,...,s). However, Xb∗

(T |1,2,...,s) is not the
conditional expectation of y(T |1,2,...,s). In practice, it is
computationally difficult to directly obtain the new vec-
tor in (5) because of the large inverse matrix of �(1,...,s)

when s is greater than 1, a recursive approach is recom-
mended (Wu, 2003). The new vector in (5) obtained by
the recursive method can be used for detection of con-
ditional variance components and conditional random
effects. In this study, the new vector in (5) was ob-
tained by the recursive approach (Wu, 2003; Wu et al.,
in press).

Conditional and unconditional variance compo-
nents were estimated by minimum norm quadratic un-
biased estimation (MINQUE) in which all prior values
were set 1.0 (Zhu, 1989). Conditional and uncondi-
tional effects were predicted by the adjusted unbiased
prediction (AUP) approach (Zhu, 1993). The pheno-
typic variance (VP ) was defined as VP = σ 2

G + σ 2
GE +

σ 2
e where, σ 2

G for genotypic effects, σ 2
GE for G × E in-

teraction effects, and σ 2
e for random errors. Based on
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unconditional and conditional variance and random ef-
fects, the following parameters were derived: (1) the
quantity 1.0 − VP(LY|component(s))/VP(LY) is defined as
the phenotypic contribution ratio CRP(component(s)−>LY)

from single or multiple component traits to lint yield;
(2) the quantity 1.0 −σ 2

u(LY |component(s))/σ
2
uLY is defined

as the contribution ratio CRu(component(s)−>LY ) from sin-
gle or multiple component traits for the u-th ran-
dom effect to lint yield (Zhu, 1995); (3) the ratio
(σ 2

u(LY) −σ 2
u(LY|component(s)))/VP(LY) is defined as the pro-

portional contribution ratio PCRu(component(s)−>LY) to
the phenotypic variance for lint yield from single or
multiple component traits for the u-th random effect;
and (4) the vector eu(LY) −eu(LY|component(s)) is defined as
the u-th contribution effect vector, eu(component(s)−>LY ),
from single or joint yield components to lint yield,
where the arrow → means “contributed to lint yield
due to a single or multiple component trait(s)”. A re-
sampling (jackknifing) method was applied to calculate
the standard error (SE) for each parameter by removal
of each block within year (Miller, 1974). An approxi-
mate t-test was used to evaluate the significance of each
parameter (Miller, 1974). In this study the degrees of
freedom were 7 because there were four replications
in each of two years. All data analyses were conducted
using a self-written program in C++.

Results

Means for lint yield and component traits within years
and across years are summarized in Table 1. P1 had
more bolls ha−1, higher lint percentage, and greater lint
yield but a smaller boll weight than P2. Mean lint yield
and means of the three yield components over all re-
combinant inbred lines were between the two parental
lines; however, they were more similar to P2 than
to P1.

All correlation coefficients between the con-
structed random variables of lint yield (vector in (5))
and the component trait(s) were small (−0.01 ∼ 0.01).
This suggested that the new constructed random
variables were independent of all component traits.
Therefore, they were appropriate for multivariable
conditional analyses.

Variance components and contribution ratios

Lint yield and the three component traits were
controlled by both genotypic and G × E interaction
effects (Table 2). Genotype effects were significantly

Table 1. Means for lint yield and yield components

Genotype Year BN(105/ha) LP(%) BW(g) LY(kg/ha)

P1 1999 10.16 38.48 5.00 1951

2000 8.21 38.23 4.93 1549

Mean 9.18 38.36 4.97 1750

P2 1999 7.06 35.16 5.23 1293

2000 6.17 35.61 5.40 1188

Mean 6.62 35.39 5.32 1240

RI 1999 7.78 35.80 5.14 1427

2000 6.68 35.50 5.25 1245

Mean 7.23 35.65 5.20 1336

P1: HS46; P2: MARCABUCAG8US-1-88; RI: recombinant inbred;
BN: boll number; LP: lint percentage; BW: boll weight; LY: lint
yield.

Table 2. Proportions of estimated variance components to phenotypic
variance for lint yield and yield component traits

Ratio BN LP BW LY

VG/VP 0.32∗∗ 0.69∗∗ 0.46∗∗ 0.32∗∗

VGE/VP 0.18∗∗ 0.05∗ 0.07∗ 0.18∗∗

Ve/VP 0.50∗∗ 0.26∗∗ 0.47∗∗ 0.51∗∗

BN: boll number; LP: lint percentage; BW: boll weight; LY: lint
yield.
∗Significant at 0.05 probability.
∗∗Significant at 0.01 probability.

more important than G × E interaction effects for
all traits, indicating these RI lines were relatively
stable across the two years with respect to these traits.
Experimental errors accounted for approximately 50%
of the phenotypic variance for all traits except lint
percentage (26%).

Conditional genotypic (or G × E) variance for lint
yield given component trait(s) measures the amount of
genotypic (or G×E) variance in lint yield not explained
by the genotypic (or G × E) effects of the component
trait(s). Compared with the unconditional variances for
lint yield, the conditional variances (both variance com-
ponents and phenotypic variance) for lint yield given
boll number were much smaller than those given lint
percentage or boll weight (Table 3). For example, only
42% (5168/12327) of genotypic variance in lint yield
was not explained by genotypic effects of boll number,
while 89% (10931/12327) or 96% (11883/12327) of
the genotypic variance in lint yield was not explained by
genotypic effects of lint percentage or boll weight. The
data suggested that boll number plays a more important
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Table 3. Unconditional and conditional variance components for lint
yield

LY LY–BN LY–LP LY–BW

σ 2
G 12327∗∗ 5168∗∗ 10931∗∗ 11883∗∗

σ 2
GE 6884∗∗ 1103∗∗ 6866∗∗ 6184∗∗

σ 2
e 19915∗∗ 4619∗∗ 19036∗∗ 18257∗∗

VP 39126∗∗ 10890∗∗ 36833∗∗ 36324∗∗

LY–BN&LP LY–BN&BW LY–LP&BW LY–BN&LP&BW

σ 2
G 3327∗∗ 1890∗∗ 10412∗∗ 10∗

σ 2
GE 590∗∗ 230∗∗ 6177∗∗ 85∗∗

σ 2
e 3623∗∗ 865∗∗ 17573∗∗ 172∗∗

VP 7540∗∗ 2991∗∗ 34161∗∗ 276∗∗

LY: lint yield; BN: boll number; LP: lint percentage; BW: boll weight
σ 2

G , σ 2
GE , and σ 2

e for LY are the unconditional genotypic, genotype ×
environment interaction, and residual variance components for lint
yield, respectively; VP for LY is the unconditional phenotypic vari-
ance for lint yield.
σ 2

e for LY—component trait(s) = genotypic variance in lint yield that
cannot be explained by the genotypic effects of component trait(s);
σ 2

GE for LY—component trait(s) = genotype × environment interac-
tion variance in lint yield that cannot be explained by the genotype ×
environment interaction effects of component trait(s); σ 2

e for LY—
component trait(s) = residual variance in lint yield that cannot be ex-
plained by the residual of component trait(s); VP for LY—component
trait(s) = phenotypic variance in lint yield that cannot be explained
by phenotypic values of component trait(s).
∗Significant at 0.05 probability level.
∗∗Significant at 0.01 probability level.

role in lint yield than the other two component
traits.

Contribution ratio (CR) for the u-th effects mea-
sures the proportion of variance in lint yield for the
u-th effects explained by the respective effects in com-
ponent trait(s). Boll number contributed 58% of the
genotypic variance and 84% of G × E variance in lint
yield (Table 4). Less than 20% of genotypic and G × E

Table 4. Contribution ratios (CR) to lint yield from yield components

CR BN LP BW BN & LP BN & BW LP & BW BN & LP & BW

G 0.58∗∗ 0.11∗ 0.04 0.73∗∗ 0.85∗∗ 0.16∗∗ 1.00∗∗

GE 0.84∗∗ 0.00 0.10∗ 0.91∗∗ 0.97∗∗ 0.10 0.99∗∗

e 0.77∗∗ 0.04∗∗ 0.08∗∗ 0.82∗∗ 0.96∗∗ 0.12∗∗ 0.99∗∗

P 0.72∗∗ 0.06∗∗ 0.07∗∗ 0.81∗∗ 0.92∗∗ 0.13∗∗ 0.99∗∗

BN: boll number; LP: lint percentage; BW: boll weight; CRu for component trait(s) = proportion of
variance in lint yield for u-th effects accounted by the u-th effects of component trait(s); example for
calculation: CRG for BN = 1.0-5168/12327 = 0.58.
∗Significant at 0.05 probability level.
∗∗Significant at 0.01 probability level.

variance in lint yield was explained by lint percent-
age and boll weight, separately and jointly (Table 4).
More than 70% of genotypic variance in lint yield was
explained jointly by boll number and lint percentage
(73%) or boll number and boll weight (85%). More
than 90% of G × E variance in lint yield was explained
jointly by boll number and lint percentage (91%) or boll
number and boll weight (97%). Ninety nine percent of
genotypic and G × E variances in lint yield was ac-
counted for by the three component traits, suggesting
that lint yield in this RI population was mainly depen-
dent on these three component traits. A large propor-
tion of residual variance in lint yield was related to the
residual variance in boll number alone or boll number
combined with other component traits (Table 4). For
example, 77% of the residual variance in lint yield was
contributed by boll number. The residual variance in
lint yield could be explained by boll number and lint
percentage, or boll number and boll weight with 82 and
96% of the variance, respectively. A large proportion
of phenotypic variance in lint yield was due to boll
number (72%) or boll number combined with other
component trait(s) (81, 92, or 99% for lint percent-
age, boll weight, and lint percentage with boll weight,
respectively).

Based on the conditional and unconditional vari-
ances for lint yield, the phenotypic contribution ra-
tio (CRP) can be partitioned into different proportional
contribution ratios (PCR). The parameter PCRu mea-
sures the percentage of the phenotypic variance ex-
plained by the u-th effects in component trait(s). Geno-
typic and G × E effects of boll number contributed 18
and 15% of the phenotypic variance in lint yield; how-
ever, 39% of the phenotypic variance in lint yield was
from the residual effects for boll number (Table 5).
Genotypic effects for boll number and lint percent-
age, and boll number and boll weight made similar
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Table 5. Proportional contribution ratios (PCR) to lint yield from yield components

PCR BN LP BW BN & LP BN & BW LP & BW BN & LP & BW

G 0.18∗∗ 0.04∗∗ 0.01 0.23∗∗ 0.27∗∗ 0.05∗∗ 0.31∗∗

GE 0.15∗∗ 0.00 0.02∗ 0.16∗∗ 0.17∗∗ 0.02 0.17∗∗

e 0.39∗∗ 0.02∗∗ 0.04∗∗ 0.42∗∗ 0.49∗∗ 0.06∗∗ 0.50∗∗

BN: boll number; LP: lint percentage; BW: boll weight.
PCRu for component trait(s) = proportion of phenotypic variance in lint yield accounted by the u-th effects
of component trait(s); example for calculation: PCRG for BN = (12327–5168)/39125.96 = 0.18.
∗Significant at 0.05 probability level.
∗∗Significant at 0.01 probability level.

contribution to the phenotypic variation in lint yield
(23 and 27%, respectively). This was also observed for
the G × E effects.

Contribution effects

Genotype and G × E interaction contribution effects to
lint yield were predicted. Correlation coefficients be-
tween unconditional effects for lint yield and contribu-
tion effects to lint yield are summarized in Table 6. The
squared correlation coefficients were similar to the con-
tribution ratios for the yield component traits (Table 4),
indicating that the contribution effect prediction was in
good agreement with the contribution ratio estimation.
This suggests the model and the method used in this
study were appropriate.

Genotype contribution effects to lint yield due to
boll number, lint percentage, and boll weight ranged
between −263 and 337 (kg/ha), −93 and 112 (kg/ha),
and −71 and 69 (kg/ha), respectively. The ranges of
joint contribution effects for boll number and other
component trait(s) were similar to the range for boll
number. The genotypic effect range due to boll number
was wider than those due to the other two component
traits (data not provided). The range for joint geno-
typic contribution effects was wider than those due to
a single trait. The results were in agreement with the
conditional variance estimates (Table 3).

Table 6. Squared coefficients of correlation between contribution effects for component traits and uncon-
ditional effects of lint yield

Effect BN LP BW BN & LP BN & BW LP & BW BN & LP & BW

Genotype 0.60 0.11 0.04 0.74 0.86 0.11 1.00
G × E 0.83 0.06 0.14 0.91 0.97 0.15 0.99

Note: all correlation coefficients are significant at 0.01 level of probability; BN: boll number per unit area;
LP: lint percentage; BW: boll weight.

Discussion

Cotton lint yield is determined by boll number, boll
weight, and lint percentage. Both the unconditional lin-
ear regression method (Myers, 1990) and conditional
linear regression method (Jobson, 1991) can be used to
dissect the relationship between lint yield and its com-
ponent trait(s). Numerically, the coefficients of mul-
tiple determination (R2) obtained by these two linear
regression methods should be equivalent although the
mean square errors (MSE) are different; however, the
R2 values obtained by these two methods only rep-
resent the phenotypic relationships between lint yield
and its component trait(s). In this study, both lint yield
and its component traits were significantly affected by
genotype, G × E interaction, and experimental error
(Table 2); however, the above methods were not able
to analyze the data under the mixed linear model used
in this study. A mixed model based conditional ap-
proach was used in this study to determine the con-
ditional variance components, contribution ratio, pro-
portional contribution ratio, and the contribution ef-
fects. The phenotypic contribution ratios obtained by
this mixed-model-based conditional approach (bottom
line of Table 4) are equivalent to the R2 values obtained
from both conditional and unconditional linear regres-
sion analyses (first two lines of Table 7). The slight dif-
ferences might be due to the fact that environmental and
block variance components were not included in the
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Table 7. Coefficients of determination (R2) for lint yield on yield component(s) obtained by conditional and
unconditional linear regression models

BN LP BW BN & LP BN & BW LP & BW LP & BN & BW

Unconditional 0.65 0.10 0.06 0.77 0.88 0.15 0.99

Conditionala 0.65 0.10 0.06 0.77 0.88 0.15 0.99

Piepho’s model 0.77 0.13 0.16 0.89 0.92 0.28 1.00

BN: boll number per unit area; LP: lint percentage; BW: boll weight.
a Using Jobson (1991) model.

phenotypic variance. Our results were also compared
with those obtained by Piepho’s approach (1995) (bot-
tom line of Table 7). The contribution ratios obtained
by his approach were in a good agreement with our
phenotypic contribution ratios for boll number or boll
number combined with other component traits (Tables
4 and 7), indicating that Piepho’s approach is workable
for detecting the relationship between a complex trait
and its multiplicative component traits using the loga-
rithmic transformation. The slight difference between
Piepho’s model and regression models or our model
may be due to the fact that additive models rather than
a multiplicative model were applied to regression mod-
els and our model.

Contribution ratio (CR) for the u-th effects mea-
sures the proportion of variance in lint yield for the u-th
effects explained by the respective effects in compo-
nent trait(s). Boll number unit-area−1 made the largest
contribution to genotypic and genotype × environ-
ment (G × E) variance for lint yield. Both boll num-
ber and lint percentage, and boll number and boll
weight jointly accounted for 73% or more of the con-
tributions to genotypic and G × E variations in lint
yield. The results agreed with the report by Worley
et al. (1974). Based on the conditional and uncondi-
tional variance components for lint yield, the pheno-
typic contribution ratio (CRP ), Table 4, could be par-
titioned into proportional contribution ratios (PCR).
The majority of phenotypic variation in lint yield could
be explained by phenotypic variation of boll number,
or boll number with other component trait(s); how-
ever, more than 50% of the variation in lint yield was
due to residual effects in boll number (0.39/0.72), or
boll number with other component trait(s) (0.42/0.81,
0.49/0.92, or 0.50/0.99, for lint percentage, boll weight,
and lint percentage with boll weight, respectively)
(Tables 4 and 5). The data indicated that it could
be less efficient to predict the phenotypic value of
lint yield for a genotype than to the predict geno-
typic value based on genotypic values of boll number,
or boll number with other component traits because

there were large residual contribution ratios and large
residual variation in lint yield (0.51 = 19915/39126)
(Table 3).

Another important contribution of this study is that
the conditional model allows the prediction of the geno-
type and G×E interaction contribution effects for yield
component trait(s). In this study the genotype contribu-
tion effects for boll number were greater than those of
boll weight and lint percentage (Table 4). Correlation
coefficients between unconditional effects for lint yield
and contribution effects for component trait(s) were
similar to the contribution ratios for the yield compo-
nent traits (Tables 4 and 6). This indicates that predic-
tion of contribution effects was in a good agreement
with estimation of contribution ratios.

The mixed-model-based conditional approach used
in this study offers several advantages over previous
methods: (1) the mixed linear model is extendable to the
other genetic models such as the additive-dominance
model (Cockerham, 1980), or the plant seed model
(Zhu & Weir, 1994), which may provide information
relevant for selection study; (2) this conditional ap-
proach allows for the partition of the phenotypic con-
tribution ratio into different contribution ratios and pre-
diction of contribution effects under a specific mixed
linear model; (3) this approach may provide an impor-
tant way to evaluate the relationship between a complex
trait and its hierarchical component traits (Worley et al.,
1976; Coyle & Smith, 1997).

If two component traits having contributions to lint
yield are due to a specific genetic effects (i.e. geno-
typic effects) and are independent, then the joint con-
tribution ratio due to this genetic component will be
approximately equal to the summation of the two sin-
gle contribution ratios. Joint contribution ratios from
boll number and boll weight were greater than the
sum of single contribution ratios from boll weight and
boll number for genotypic effects (Table 4). How-
ever, lint percentage appeared to be independent of
boll number or boll weight for its effect on lint
yield because their summation nearly equaled the joint
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contribution ratio. On the other hand, deviation of the
joint contribution effect for two component traits from
the sum of the two single contribution effects can
be equivalently considered as the interaction contri-
bution effects, namely, eu(Component1,Component2−>LY) −
eu(Component1−>LY)−eu(Component2−>LY ). Genotypic inter-
action contribution effects between boll number unit-
area−1 and boll weight could be seen (data not shown),
indicating that balanced selection for boll weight and
boll number is important for developing high yielding
lines, although boll weight itself only made a small
contribution to lint yield.

In practice, it is almost impossible to evaluate all
plants for boll number for each plot with such a large
number of RI lines. In this study, the total boll number
ha−1 was calculated following the method used by Tang
et al. (1996). Boll number could also be obtained by
multiplying the number of standing plants unit-area−1

with mean boll number per plant. The results may dif-
fer from this study if different genetic materials are
used; however, this study provides a new way to eval-
uate the genetic relationship for complex traits in plant
breeding.
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