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ABSTRACT
The effects of quantitative trait loci (QTL) on phenotypic development may depend on the environment

(QTL � environment interaction), other QTL (genetic epistasis), or both. In this article, we present a new
statistical model for characterizing specific QTL that display environment-dependent genetic expressions
and genotype � environment interactions for developmental trajectories. Our model was derived within
the maximum-likelihood-based mixture model framework, incorporated by biologically meaningful growth
equations and environment-dependent genetic effects of QTL, and implemented with the EM algorithm.
With this model, we can characterize the dynamic patterns of genetic effects of QTL governing growth
curves and estimate the global effect of the underlying QTL during the course of growth and development.
In a real example with rice, our model has successfully detected several QTL that produce differences in
their genetic expression between two contrasting environments. These detected QTL cause significant
genotype � environment interactions for some fundamental aspects of growth trajectories. The model
provides the basis for deciphering the genetic architecture of trait expression adjusted to different biotic
and abiotic environments and genetic relationships for growth rates and the timing of life-history events
for any organism.

Anumber of statistical methods have been developed means of different QTL genotypes at different time points,
but rather fit these means using growth curves as ato map quantitative trait loci (QTL) affecting com-

plex traits in well-structured pedigrees (Lander and function of time. Thus, the estimation of QTL effects on
growth is equivalent to the estimation of model parametersBotstein 1989; Jansen 2000) or natural populations

(Wu et al. 2002a). These methods have been instrumen- describing the shape of growth curves. These models,
called functional mapping, have successfully detected dy-tal in the identification of QTL responsible for various

quantitative traits of agricultural, biological, or biomedi- namic QTL that affect developmental changes during
ontogenetic growth in a long-lived forest tree (Wu et al.cal value (Wu et al. 2000; Mackay 2001; Zimdahl et al.

2002). However, the derivations of these statistical meth- 2003) and the animal model system—mouse (Zhao et
al. 2004).ods that were based on a simplified assumption that

there is a direct relationship between the genotype and Current functional mapping models that have exam-
ined the effects of individual QTL on growth trajectoriesphenotype did not consider sequential developmental

pathways that form the phenotype. It is likely, therefore, have focused on a particular phenotype measured at a
finite set of time points in a single environment (Ma etthat these methods lead to biased estimation of QTL

positions and effects and have limited power to detect al. 2002; Wu et al. 2002b). Other studies have examined
genotype � environment interactions involving multi-QTL involved.

More recently, a host of new statistical models have ple environments (Piepho 2000), but have focused on
a single measurement of a phenotype and hence cannotbeen proposed to map a complex trait by taking into
provide a comprehensive picture of how a QTL affectsaccount its underlying developmental changes (Ma et al.
the dynamic process of growth under a range of environ-2002; Wu et al. 2002b, 2004a,b). These models integrate
mental conditions. Wu et al. (2004a) proposed a modeluniversal growth laws derived from fundamental biologi-
for characterizing the effects of epistatic QTL on growthcal principles and described by mathematical models
trajectories but did not incorporate environmental in-into a QTL mapping framework through statistics as a
fluences into the model.bridge. They do not directly estimate the expected

A great wealth of evidence suggests that different ex-
pressions of the same genotype across environmental
contexts, referred to as phenotypic plasticity (Wu 1998),1Corresponding author: Department of Statistics, 533 McCarty Hall C,
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two different but not exclusive genetic mechanisms, al- ally cease. von Bertalanffy also noted that the metabolic
rate of an animal [in fact, any organism, as observed bylelic sensitivity and gene regulatory control (Wu 1998;

Vieira et al. 2000). Yan et al. (1998) identified several succeeding researchers (West et al. 2001)], scales as the
kth power of its weight (Niklas 1994; West et al. 1997)QTL on the rice genome that display significant geno-

type � environment interaction effects on plant height but the catabolic rate is proportional to the weight itself.
Therefore, the growth rate, i.e., the difference betweenmeasured at multiple time points of development, al-

though their results were derived from interval mapping these two rates, becomes
of single phenotypes. In her seminal review, Mackay
(2001) claimed the existence of environment-specific dg(t)

dt
� �gk(t) � �g(t), (1)

QTL that direct organismic development toward the
best utilization of resources in heterogeneous environ- where g(t) represents the growth at time t and � and
ments. � are the constants of metabolism and catabolism, re-

In this article, we extend our previous functional map- spectively. For small values of k, integration of Equation
ping model to map QTL that display genotype � envi- 1 leads to the growth equation,
ronment interactions for developmental trajectories. Al-
though this extended model is similar to the previous g(t) � ��� � ��� � g 1�k

0 �e�(1�k)�t�
1/(1�k)

, (2)
epistatic model (Wu et al. 2004a) in modeling the mean
vector for time-dependent genotypic values, these two

where g0 is the growth at t � 0. This growth function ismodels are methodologically different in modeling the
sigmoidal (S-shaped), approaching asymptotically the(co)variance matrix for longitudinal measurements of
value (�/�)1/(1�k) as t → ∞. Such an S-shaped patterngrowth. The epistatic model needs to model only the
of growth includes an exponential growth stage, an as-structure of one (co)variance matrix, whereas the geno-
ymptotic growth stage, and the point of inflection attype � environment interaction model needs to model
which these two stages are connected (West et al. 1999).multiple (co)variance matrices each corresponding to
At the point of inflection, an organism displays maxi-an environment as well as to model the covariances
mum growth per unit time. After the substitutions,between different environments.

Our extended model for characterizing genotype �
a 1�k �

�

�environment interactions is constructed within the max-
imum-likelihood-based mixture model framework and
unifies the genetic effects of QTL expressed in different b � ���� � g 1�k

0 �ak�1

environments through biological principles and statisti-
cal models. We incorporate the EM algorithm to solve

r � (1 � k)� ,the mixture model and provide estimates of growth
curves specified by different QTL genotypes and of the where a is asymptotic (limiting) growth, b is a parame-
parameters for modeling the structure of (co)variance ter related to the growth at t � 0, and r is the “rate
matrices. Our model allows for the tests of a number constant” that determines the spread of the curve along
of biologically meaningful hypotheses regarding QTL � the time axis. Richards (1959) rewrites Equation 2 as
environment interactions on growth processes. We de-

g(t) � a(1 � be�rt)1/(1�k). (3)rive a general model for converting the effects of geno-
typic curves to additive, dominant, and/or epistatic vari- Equation 3, referred to as the Richards growth model
ance components. A real example with rice (Yan et al. or law, has the inflection point whose coordinates are
1998) validates our model that detects five environment- solved as [t � ln(b/(k � 1))/r, g � ak 1/(1�k)] (Richards
specific QTL responsible for plant height growth. When 1959; Nath and Moore 1992; Gregorczyk 1998). By
synthesized into evolutionary developmental biology letting k take different values, the Richards growth
(evo-devo; Raff 2000; Arthur 2002), our model helps model can be reduced to three well-known growth func-
to address an old but still unsolved question of how tions,
genetic factors regulate developmental processes in an
organism from embryo to adult.

g(t) �







a(1 � be�rt) Monomolecular curve when k � 0

ae�be�rt Gompertzian curve when k � 1
a

1 � be�rt
Autocatalytic or logistic curve when k � 2 .

THE GROWTH LAW

According to von Bertalanffy (1957), growth in The monomolecular curve actually describes the as-
ymptotic phase of the logistic growth curve. The logisticweight, length, or size will occur whenever the anabolic

or metabolic rate exceeds the rate of catabolism. Thus, curve is symmetric about the inflection point at which
t � (ln b)/r and g � a/2. Yet, the Gompertzian curvethe ratio of these two processes indicates the occurrence

and change of growth. When the ratio approaches and is not symmetric, with the inflection point occurring at
t � (ln b)/r and g � a/e . These three curves, withthen drops below unity, growth will decrease and eventu-
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different flexibilities, may best fit growth data collected The likelihood function: The likelihood function of
longitudinal data, y, measured for the backcross at dif-from a different species or organ or in a different envi-

ronment. ferent locations for the putative QTL is constructed as

L(�̃, φ, 	 |y) � �
n

i�1

��̃1 f1(yi ; φ1 , 	) � �̃0 f0(yi ; φ0 , 	)	 , (4)
THE STATISTICAL METHOD

where the mixture proportions (�̃j’s) denote QTL geno-Genetic design: There is a standard backcross design
type frequencies in the backcross, i.e., �̃1 � �̃0 � 1⁄2,with n progeny, initiated with two contrasting homozy-
and the multivariate normal distribution of progeny igous inbred lines. Suppose a genetic linkage map cov-
measured at 
 time points is expressed asering the genome has been constructed with polymor-

phic markers. The marker density and positions have been
f(yi ; φj , 	) �

1
(2�)
/2 |
 |1/2

exp��1
2

(yi � uj)
�1(yi � uj)T� , (5)known prior to QTL mapping. We consider a special case
in which each of the backcross progeny is clonally repli-

where yi � {yibl}B,L
b,l�1 � (yi11, . . . , yiB1, . . . , yi1L , . . . , yiBL)cated. It is possible to make clones for many plants such

is a vector of longitudinal observation composed of B � Las rice, poplar, and pine.
subvectors each for a location (l) and a block (b), with yibl �Field trials with the backcross are conducted at L
[yibl(1), . . . , yibl(
)], and component-specific parameters φjlocations. At each location all n progeny are planted
for genotype j are specified by uj � {uj bl}B,L

b,l�1 � (uj11, . . . ,in a randomized complete block design with B clonal
ujB1, . . . , uj1L , . . . , ujBL) for different locations and blocks.replicates. Each plant is measured for longitudinal
But since differences in growth curve are considered onlygrowth traits, such as plant height and tiller number,
at the location level, growth curves for different blocksat a finite set of time points (
) during the course of
within a location can be regarded as identical; i.e., we haveplant growth in the field. Our model allows for unevenly

spaced measurement time intervals and for discrepan- uj � (uj 1, . . . , uj 1 , . . . , u jL , . . . , u jL),
cies in measurement schedule among progenies.

Assume that there is a segregating QTL with alleles with uj l � [uj l(1), . . . , uj l(
)] for genotype j at 
 different
Q and q that affects growth curves or trajectories in points.
the backcross population grown at different locations. At a particular time t in block b and location l, the
There are two QTL genotypes in the backcross denoted relationship between the observation and expected mean
by j ( j � 1 for Qq and 0 for qq). A set of parameters can be described by a linear regression model,
describing the growth curve of genotype j at location l

yibl(t) � xi�jl(t) � eibl(t),(l � 1, . . . , L) is denoted by �lj . The comparisons of
these parameters among the two different QTL geno- where xi is the indicator variable denoted as 1 if progeny
types across different locations can determine whether i carries QTL genotype j and 0 otherwise; e ibl(t) is the
and how this putative QTL differently affects growth residual error that is iid normal with the mean of zero
trajectories at different locations. and the variance of 2

bl(t). The errors at two different time
The mixture model: The growth laws described in points, t1 and t2 , are correlated with the covariance of

the preceding section have been incorporated into a covbl(t1, t2). These (co)variances compose a (
 � 
) matrix
QTL mapping framework based on an finite mixture 
bl for block b and location l . A more general model is
model composed of different components (Ma et al. 2002; to let the errors among different blocks and locations be
Wu et al. 2002b). In such a mixture model, each observa- correlated for the same, cov[b1l1,b2l2](t), or different time
tion y is assumed to have arisen from one of J groups of points, cov[b1l1,b2l2](t1, t2). However, in our situations, it is
QTL genotypes, each group being modeled by a density reasonable to assume that there are no between-block
from the parametric family f (Lander and Botstein and between-location error correlations because differ-
1989). The population density function of y is ent clonal replicates of the same genotype are planted

in different environments. With this assumption thep(y|�, φ, 	) � �̃1 f1(y ; φ1, 	) � . . . � �̃J fJ(y ; φJ , 	),
(co)variance matrix 
, whose elements are the common

where �̃ � (�̃1, . . . , �̃J) are the mixture proportions parameter 	 of the mixture model (Equation 1), is sim-
that are constrained to be nonnegative and sum to unity; plified into a block-diagonal matrix with a B � L dimen-
φ � (φ1, . . . , φJ) are the genotype-specific parameters, sion and the likelihood of Equation 4 can then be rewrit-
with φj being specific to genotype group j ( j � 1, . . . , ten as
J ); and 	 is a parameter that is common to all genotype

L(�̃, φ, 	 |y) � �
L

l�1
�
B

b�1
�
n

i�1

��̃1 f1(yi b l ; u1l , 
b l) � �̃0 f0(yi b l ; u0l , 
b l)	 .groups. The mixture proportions denoted as the fre-
quencies of QTL genotypes depend on the marker ge- (6)
notypes of two flanking markers bracketing the QTL.
The normal density functions associated with different The determination of the value for the indicator vari-

able describing the genotypes of the QTL for progenyQTL genotypes are expressed in terms of the expected
value of each genotype and residual variance. i is not obvious. According to the interval mapping the-
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ory, it is possible to do so if we use the segregation may be more advantageous over the stationary AR(1)
model, but the choice of an optimal model in a particu-information of the known flanking markers that bracket
lar situation should be based on statistical tests, as de-the QTL. Suppose this QTL is bracketed by two flanking
scribed in Zimmerman and Núñez-Antón (2001).markers �� (with alleles M � and m �) and �� � 1 (with

Computational algorithms: As classified above, thealleles M ��1 and m ��1). Thus, the QTL genotype fre-
unknown parameters that build up the likelihood func-quencies in the backcross population (denoted by �̃j)
tion (Equation 7) include the curve parameters, matrix-should be expressed as the conditional probabilities of
structuring parameters, and the QTL genotype frequen-the unknown QTL genotypes given the known marker
cies specified by QTL position measured in terms ofgenotypes. Table 1 tabulated these conditional probabil-
the recombination fractions (�) between the QTL andities, generally expressed as �̃j|i, where j |i stands for QTL
its flanking markers (see Table 1). Arrayed by � �genotype j given a particular marker genotype for prog-
{�bl }B,L

b,l�1 � {�jl , �bl , �}B,L
b,l�1 , these unknowns can be esti-eny i. We rewrite the likelihood function of environ-

mated through differentiating the log-likelihood func-ment-specific longitudinal data (yibl) and marker infor-
tion of Equation 7 with respect to each unknown, settingmation genotyped for both sexes (�) as
the derivative equal to zero, and solving the log-likeli-

L(�̃, φ, 	 |y, �) � �
L

l�1
�
B

b�1
�
n

i�1

��̃1|i f1(yi b l ; u1l , 
b l) � �̃0|i f0(yi b l ; u0l , 
b l)	 . hood equations. This estimation process can be imple-
mented with the EM algorithm as described below.(7)

The log-likelihood function of growth and marker
Note that Equation 7 is different from Equation 6 as data for block b and location l based on Equation 7 is
the latter does not make use of marker information given by
whereas the former does.

log Lbl(�bl |ybl , �) � 

n

i�1

log��̃1|i f1(yib l , � ; �1l , �bl)Modeling the mean vector and (co)variance matrix:
The estimation of the mean vector ujl and the (co)vari-
ance matrix 
bl is statistically difficult because they in- � �̃0|i f0(yib l , � ; �0l , �bl)	 ,
volve too many unknown parameters given a possible

with the derivative with respect to any element ��,sample size. Also, such direct estimation does not take
into account the biological principles of growth and �

���

log Lb l(�bl | ybl , �)
development. We incorporate the universal growth law
into the estimation process of the likelihood function � 


n

i�1
� ��̃1|i

�

���

f 1(yibl , �; �1l , �bl)

(Equation 7). Thus, the mean value of QTL genotype
� �̃0|i

�

���

f0(yibl , �; �0l , �bl)�/��̃1|i f1(yibl , �; �1l , �bl )j in location l at time t is expressed by

� �̃0|i f0(yibl , �; �1l , �bl )� �ujl � ajl(1 � bjl e�rjl t)1/(1�kj l) ,
� 


n

i�1
� ��̃1|i f1(yibl , �; �0l , �bl)

�

���

log f 1(yibl , �; �1l , �bl)
where the growth parameter set �jl � (ajl , bjl , rjl , kjl)
describes the asymptotic growth, initial growth, relative � �̃0|i f0(yibl , �; �1l , �bl)

�

���

log f0(yibl , �; �1l , �bl)�/��̃1|i f1(yibl , �; �1l , �bl)

growth rate, and curve shape, respectively (Richards
� �̃0|i f0(yibl , �; �0l , �bl)��1959). With this growth equation, we need to estimate

only the growth parameters, rather than estimate geno- � 

n

i�1
��1|ibl

�

���

log f1(yibl , �; �1l , �bl) � �0|ibl
�

���

log f0(yibl , �; �0l , �bl)� ,

typic means at every point, to detect genotypic differ-
ences in growth. This can significantly reduce the num- where we define
ber of unknown parameters to be estimated, especially
when the number of time points is large. �j |ibl �

�̃j |i f j(yibl , �; �jl , �bl)

�̃1|i f1(yibl , �; �1l , �bl) � �̃0|i f0(yibl , �; �0l , �bl)
,

Similarly, the (co)variance matrix can be structured
(8)with an appropriate model. Statistical analysis of longitu-

dinal data has established a number of structural models
which is a posterior probability that progeny i carryingthat capture most of the information contained in the
a particular marker genotype with measurements frommatrix (Diggle et al. 2002). Here, we use a first-order
block b and location l is regarded as carrying QTL geno-autoregressive [AR(1)] model to model the structure
type j. We then implement the EM algorithm with theof the matrix, which is based on two assumptions, (1) the
expanded parameter set {�, �}, where � � {�j |ibl} (the Evariance 2 is constant over time, and (2) the correlation
step; Equation 8). Conditional on �, we solve fordecays in a proportion of � purely with time interval.

With the AR(1) model, we need to estimate only �bl � �

���

log Lbl(�bl |ybl , �) � 0 (9)(�bl, 2
bl), instead of all elements in the matrix. The advan-

tage of such a matrix-structuring model is to reduce
the number of unknown parameters, without losing the to get the estimates of � (the M step; Equation 9). The

estimates are then used to update �, and the process isinformation of the matrix. Many other structural models
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repeated between Equations 8 and 9 until convergence. After a significant QTL is detected, the next test is
about the effect of this QTL on growth in each location.The values at convergence are the maximum-likelihood

estimates (MLEs) of �. The iterative expressions of This will use the same form as shown in Equation 10, but
focusing on a location. It is interesting to test whetherestimating � from the previous step are given in Ma et

al. (2002) and Wu et al. (2004b). the same QTL genotype is expressed identically across
different locations to affect growth trajectories. Such aAs usual, the QTL position parameter can be viewed

as a known parameter because a putative QTL can be null hypothesis test can be formulated as
searched at every 1 or 2 cM on a map interval bracketed

�jl � �j , j � 1, 0, (12)by two markers throughout the entire linkage map. The
amount of support for a QTL at a particular map posi- which states that any two curves between the same QTL
tion is often displayed graphically through the use of genotypes from different sexes overlap. By combining
likelihood maps or profiles, which plot the likelihood- the test results from both QTL genotypes, this test can
ratio test statistic as a function of map position of the also be used to test for QTL � location interactions.
putative QTL (Lander and Botstein 1989). However, when location-specific curves with the same

QTL genotypes are approximately parallel to each
other, the area under curve (Ajl) is an appropriate crite-

HYPOTHESIS TESTS
rion for this QTL � location interaction test, expressed

Different from traditional mapping approaches, our as
functional mapping for longitudinal traits allows for the

Ajl � �



0

ajl(1 � bjl e�rjl t )1/(1�kjl)dt �
akj

ckj
�ln(bkj � e ckj
) � ln(b � 1)	 .tests of a number of biologically meaningful hypotheses

(Wu et al. 2004a). These hypothesis tests can be a global
test for the existence of significant QTL, a local test for In this case, the null hypothesis for testing QTL � loca-
the genetic effect on growth at a particular time point, tion interaction can be formulated as
a regional test for the overall effect of QTL on a particular

A1l � A0l � A1 � A0, l � 1, . . . , L ; (13)period of growth process, or an interaction test for the
change of QTL expression across times. These tests at

i.e., the difference between the areas under curves for
different levels can be formulated to test the effects of

two alternative QTL genotypes is set equal for all the L
QTL � location interaction on the shape of growth.

locations.
Global test: Testing whether specific QTL exist to

In addition to testing overall genetic effects on growth
affect growth trajectories is a first step toward the under-

trajectories, our model allows for the tests of the additive
standing of the genetic architecture of growth and devel-

and dominant effect as well as their interaction effects
opment. The genetic control over entire growth processes

with sexes. Wu et al. (2004a) proposed detailed proce-
can be tested by formulating the following hypotheses:

dures for making these specific tests, all of which can
be directly used or modified for this study.H0: �jl � �l , l � 1, . . . , L

Local test: The local test can test for the significance
H1: Not all these equalities above hold. (10)

of the genetic effect of QTL and QTL � location interac-
tion effect on growth traits measured at a time pointH0 states that there are no QTL affecting growth tra-
(t*) of interest. For example, the hypothesis for testingjectories and the two genotypic curves at each location
the effect of QTL on growth at a given time t* can beoverlap (the reduced model), whereas H1 proposes that
formulated assuch QTL do exist (the full model). The test statistic

for testing the hypotheses in Equation 10 is calculated
H0: u1l(t*) � u0l(t*), l � 1, . . . , L

as the log-likelihood ratio of the reduced to the full
model, H1: Not all the equalities hold, (14)

LR � �2[log L(�̃|y ; �) �log L(�̂|y ; �)], which is equivalent to testing the difference of the full
model with no restriction and the reduced model with(11)
a restriction as set in the null hypothesis.

where �̃ and �̂ denote the MLEs of the unknown pa- Regional test: Sometimes we are interested in testing
rameters under H0 and H1, respectively. The log-likeli- the difference of growth trajectories in a time interval
hood ratio (LR) is asymptotically �2-distributed with 4(L rather than simply at a time point. The question of how
� 1) d.f. An empirical approach for determining the a QTL exerts its effects on a period of growth trajectories
critical threshold is based on permutation tests, as advo- [t1, t 2] can be tested using a regional test approach based
cated by Churchill and Doerge (1994). By repeatedly on the areas,
shuffling the relationships between marker genotypes

Akj � �
t 2

t1

ajl(1 � bjl e�r j l t )1/(1�k j l )dt �
akj

ckj
�ln(bkj � e ck j

t1) � ln(b � e ck j t2)	 ,and phenotypes, a series of the maximum-log-likelihood
ratios are calculated, from the distribution of which the
critical threshold is determined. covered by load curves. The hypothesis test for the ge-
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Figure 1.—Genetic linkage maps con-
structed from 135 RFLP and 40 isozyme and
RAPD markers for 123 DH plants derived
from the tall Azucena and short IR64 parents.

netic effect on a period of growth process is equivalent The rejection of H0 implies that QTL genotypes are
expressed throughout growth processes differentlyto testing the difference between the full model with

no restriction and the reduced model with a restriction. across different environments.
Tests for differentiation in environment-dependent Interaction test: The effects of QTL may change with

genetic expression: How are the same QTL genotypes time, which suggests the occurrence of QTL � time
expressed across different environments? The solution interaction effects on growth trajectories. The differenti-
to this question helps select superior genotypes for a ation of growth with respect to time t represents growth
complex trait. We construct the following alternative rate. If the growth rates at a particular time point t*
hypotheses to test this: are different between the curves of different QTL geno-

types, this means that significant QTL � time interac-
H0: Ajl � Ajl , j � 1, 0

tion occurs between this time point and the next.
Test for biologically important parameters: A numberH1: Not all these equalities above hold. (15)
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Figure 2.—Plots of plant-
height growth vs. time for
between-block means of the
90 DH plants containing
complete marker and phe-
notype data derived from
the tall Azucena and short
IR64 parents grown in Han-
gzhou (A) and Hainan (B).
Plant heights were also log
transformed to display ap-
proximately constant vari-
ances across times (C and D).

of biological parameters can be used to evaluate the (Figure 1) for a doubled-haploid (DH) population of
123 lines derived from semi-dwarf IR64 and tall Azucenadevelopmental characteristics of growth. The logistic

growth curve can be used to determine the coordinates (Huang et al. 1997). This map is 2005 cM long with an
average distance of 11.5 cM between a pair of adjacentof a biologically important point in the entire growth

trajectory—the inflection point—where the exponential markers. The DH population with two genotypes at a
QTL, QQ and qq, is analytically identical to a backcrossphase ends and the asymptotic phase begins (Niklas

1994). The time at the inflection point corresponds to population, so that the model described above can be
directly used. The DH population was cloned and differ-the time point at which a maximum growth rate occurs.

The difference in the coordinates between different QTL ent clonal replicates of the same genotype were grown
in a randomized complete design with two replicates atgenotypes provides important information about the

genetics and evolution of growth trajectories (Niklas a spacing of 15 � 20 cm at two climatically contrasting
locations, Hangzhou (subtropical, 30� 16� N) and Hai-1994). The genotypic differences in time and growth at

the inflection point of maximum growth rate can be nan (tropical, 19� 57� N), China. The experiments in
both locations were carried out from late May to earlytested. The test for their genotypic difference is based

on the restriction November 1996. After 10 days of transplanting into the
field trial, plant heights (from the surface of the soil to
the tip of the plant) were measured every 10 days untilln(b1l/(k1l � 1))

r1l

�
ln(b0l/(k0l � 1))

r0l all lines had headed (Yan et al. 1998).
This study used 90 DH plants whose marker and growthfor tIjl

, and
data are complete for both locations. Figure 2 illustrates

a1l k1/(1�k1l )1l � a 0l k 1/(1�k0l )0l growth curves of the means of plant heights between two
blocks for these 90 DH plants separately for Hangzhou

for u(tIjl
). (Figure 2A) and Hainan (Figure 2B). On average, the

Hangzhou plants grew slightly better than the Hainan
plants, with two displaying different growth trajectories.

RESULTS
Substantial variation in growth curve among different

Our newly developed functional mapping model is plants in each location suggests that specific QTL may
used to map dynamic QTL in a model plant—rice. A be involved in shaping developmental trajectories.
genetic linkage map was constructed with 135 RFLP and As a general framework, we derived our functional

mapping model on the basis of a more flexible Richards40 isozyme and RAPD markers to cover 12 chromosomes
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Figure 3.—The profiles
of the log-likelihood ratios
(LR) between the full
model (there is a QTL) and
reduced model (there is no
QTL) for rice height growth
trajectories throughout the
rice genome composed of
12 chromosomes (10). The
genomic position corre-
sponding to the peak of the
curve is the maximum-likeli-
hood estimate of the QTL
location. Tick marks on the
x-axis represent the posi-
tions of microsatellite mark-
ers on each chromosome
(bar, 20 cM). The map dis-
tances between two markers
are calculated using the
Haldane mapping function.
The critical thresholds for
acclaiming the genome-wide
existence of a QTL are ob-
tained from permutation
tests. The 99.9th percentile
(indicated at horizonal
lines) of the distribution of
the maximum LR values ob-
tained from 1000 permuta-
tion tests is used as an empir-
ical critical value to declare
genome-wide existence of a
QTL at � � 0.001.

growth equation. However, this equation does not nec- constant variance for the AR(1) model may not be true
in our data, as indicated by increased variance with agesessarily work better in practice than the reduced logistic

equation (k � 2) because the former contains one more in both locations (Figure 2). Wu et al. (2004b) proposed
a transformation approach, called the transform-both-parameter than the latter. If both the equations provide

a similar likelihood of the data, the parsimonious logis- sides (TBS) model by Carroll and Ruppert (1984),
to reduce variance heteroscedasticity and, therefore,tic equation should be used. In this example, the logistic

equation is sufficient to fit our growth data and, there- increase the power of the model. This TBS-based map-
ping model can also preserve the biological meaningsfore, is employed to search for growth QTL through a

genome-wide scanning approach. The assumption of of curve parameters. In this study, we incorporate the
TBS-based model through log-transformation into the
functional mapping framework for analyzing QTL �

TABLE 1
location interactions. As shown in Figure 2, C and D,

The conditional probabilities of QTL genotypes given the log-transformation can lead to relatively constant
genotypes of two molecular markers bracketing variances in plant height growth at both locations, al-

the QTL in a backcross population though a more effective transformation approach should
be estimated simultaneously with the model parameters

QTL genotype (Box and Cox 1964; Carroll and Ruppert 1984).
Marker genotype QQ qq By comparing with the genome-wide critical thresh-

old determined by permutation tests, we detected five
M �m �M ��1m ��1 1 0

significant QTL (P � 0.001) on chromosomes 1, 3, 7,M �m �m ��1m ��1 1 � � 1
9, and 11 that were responsible for growth trajectoriesm �m �M ��1m ��1 1 1 � �
of plant heights (Figure 3). The estimated locations ofm �m �m ��1m ��1 0 1
these QTL correspond to the genome positions showing

No double recombination is assumed. � � r1/r , where r1 the maximum-log-likelihood-ratio test statistics. Table 1and r are the recombination fractions between marker ��
gives the estimates of the positions of the detected QTLand the QTL as well as between the two flanking markers M �

and M ��1. each bracketed by two flanking markers on respective
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Figure 4.—Four growth curves of the QTL ge-
notypes for the QTL detected on different chro-
mosomes for rice plants grown in two contrasting
locations (Hangzhou, red curves, and Hainan,
blue curves). The solid curves represent QTL ge-
notypes QQ, whereas the broken curves represent
QTL genotype qq. Allele Q is the allele inherited
from the tall Azucena parent and allele q is inher-
ited from the short IR64 parent.

chromosomes, as well as the estimates of the curve and on growth. As indicated by two divergent curves each
representing a different QTL genotype, QQ or qq, the de-matrix-structuring parameters.

We drew the age-dependent expression profiles of two tected QTL exhibited increasing effects on plant height
in both locations as rice grows. The difference betweendifferent QTL genotypes for each QTL identified from

our model for plant heights grown in Hangzhou and the areas under the growth curves of different genotypes
reflects the influence of the QTL on the overall growthHainan (Figure 4). These profiles were drawn using the

MLEs of growth curve parameters given in Table 2. The process of plant height. We use Equation 13 to test
whether a QTL interacts with locations to affect entireprofiles of gene expression allow for the characteriza-

tion of the developmental timing for a QTL to turn on growth trajectories. The test result indicated that none
of the five detected QTL displayed significant genotype �or turn off or the period for the QTL to trigger its effect

TABLE 2

The MLEs of the QTL position, QTL effects described by growth parameters � j l � (a jl , b jl , r jl),
residual variance (� l), and correlation (� l) in two different locations

QQ qq Residual

Marker interval a 2 l b 2 l c 2 l a 0 l b 0 l c 0 l 2
l �l

Chromosome 1
Hangzhou RG146-RG345 149.3 2.9667 0.3100 103.5 2.2418 0.3222 0.0164 0.7274
Hainan 125.6 3.9509 0.3688 90.3 3.7650 0.3439 0.0249 0.7479

Chromosome 3
Hangzhou RZ678-RZ574 149.9 2.8989 0.3025 104.7 2.3095 0.3244 0.0161 0.7325
Hainan 128.0 4.0358 0.3634 91.0 3.7509 0.3451 0.0249 0.7529

Chromosome 7
Hangzhou PGMS0.7-CDO59 103.5 2.2148 0.3367 153.0 3.0282 0.3011 0.0175 0.7412
Hainan 82.1 3.2240 0.4143 135.1 4.3052 0.3437 0.0276 0.7808

Chromosome 9
Hangzhou RZ206-RZ422 154.3 3.0062 0.3093 106.8 2.3113 0.3281 0.0174 0.7413
Hainan 130.0 3.9470 0.3707 91.1 3.5561 0.3602 0.0256 0.7635

Chromosome 11
Hangzhou RG247-RG103 161.6 3.1405 0.3032 109.8 2.3272 0.3262 0.0181 0.7516
Hainan 140.8 4.2344 0.3537 90.7 3.5237 0.3788 0.0255 0.7654
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environment interactions, suggesting that they are more ecology, and evolution. With this new strategy, two major
challenging questions in contemporary developmentalgeneral growth regulators. Using the hypothesis test in

Equation 15, we found that the time-specific growth QTL biology can be well addressed, which regard the exis-
tence of particular regulatory genes guiding growth dif-detected on chromosomes 1, 3, 9, and 11 are expressed
ferentiation during an entire biological process and theconsistently stronger in Hangzhou than in Hainan,
alteration of the genetic architecture of a complex traitwhereas the QTL on chromosome 7 displayed an oppo-
over developmental times.site expression pattern (Figure 4). As expected, at all

In this article, we extended our theoretical modelthe QTL, except for one on chromosome 7, the tall
for functional mapping to study dynamic patterns ofAzucena parent contributes height-increasing alleles in
genetic effects of QTL governing growth curves andboth locations, whereas the short IR64 parent contrib-
unravel the genetic machinery of organismic responsesutes height-decreasing alleles.
to different environments during the course of growthAdult height for rice can be genetically controlled
and development. This extended model was employedduring an early stage of development by mapping the
to study the genetic architecture of plant height growthQTL determining the timing of maximum growth rate.
trajectories in a plant model system—rice. We have suc-Such early genetic manipulation for height growth can
cessfully detected five QTL on different chromosomespotentially preserve more energy for later reproductive
that exert significant impacts on growth processes, withpropagation. The significant QTL detected for overall
similar patterns across sharply contrasting environments.growth trajectories were all observed to affect the timing
At four QTL, the tall parents contribute most favorableof maximum height growth rate (inflection point; Fig-
alleles to their progeny at these detected QTL. All theseure 4), all of which, except for the one on chromosome
five QTL are expressed differently throughout entire7, displayed significant genotype � environment inter-
growth processes between the two environments. Theseaction effects on this timing (P � 0.001). The QTL on
results suggest that it is possible to make efficientchromosomes 1, 3, 9, and 11 trigger significant effects
marker-assisted selection for rice varieties with reduced-on the timing of maximum growth rate for rice grown
height growth and, therefore, stronger resistance to windin Hangzhou, whereas no such effects were detected
and rain damage and higher grain yields through allocat-for Hainan.
ing more resources to the reproductive organs than to
vegetative tissues (Sakamoto et al. 2003).

In a comparison with previous results for growth QTLDISCUSSION
based on the same material by traditional interval map-

The advent of powerful genetic and molecular tools ping (Yan et al. 1998), we have several interesting find-
has made it possible to define the machinery of develop- ings. First, Yan et al. detected 11 QTL for plant height
ment in terms of gene action and interaction of individ- growth in rice. Many of these QTL were not detected
ual loci or QTL (Cheverud et al. 1996; Yan et al. 1998). by our functional mapping model, but do display clear,
A number of statistical methods have been proposed to although nonsignificant, peaks in our LR profile (Figure
map QTL underlying complex phenotypes primarily on 3). For example, Yan et al. detected a QTL bracketed
the basis of goodness of fit to observational data rather by markers Amy3D and E-RZ66 on chromosome 8 where
than on the basis of any biological mechanism (Lander our LR profile displays a peak. But according to our
and Botstein 1989). However, the degree of the suc- criterion, this QTL is not significant. This discrepancy
cessful identification of QTL depends on the power may be due to the low criterion these authors have used.
of QTL mapping techniques to analyze growth data Second, many QTL detected from our model were not
measured at many different time points and, more im- detected by traditional interval mapping (Yan et al. 1998).
portantly, on the construction of a conceptual framework But all of our QTL were detected to exist at similar loca-
for integrating biological principles of growth laws into tions for different rice materials with a larger sample
developmental processes through powerful statistical size (Li et al. 2003). For example, Li et al. found a signifi-
models. cant plant height QTL between RG345 and RG381 on

We have framed a new statistical strategy for QTL map- chromosome 1 that fails to be detected by Yan et al. but
ping through specific incorporation of biological laws is supported by our model. This may suggest that our
behind the phenotypic expression of complex traits. model displays greater power to detect growth QTL of
The new strategy, termed functional mapping (Ma et al. small effects. Third, as discussed in Ma et al. (2002) and
2002; Wu et al. 2002a), displays greater potential for Wu et al. (2004a), our functional mapping incorporat-
improving the precision, power, and resolution of QTL ing developmental principles allows for the tests of a
mapping in any organism, as compared with traditional number of biologically meaningful hypotheses at inter-
mapping approaches (Ma et al. 2002). Functional map- play between genetics and development.
ping grounds theoretical genetic models in integrated Growth for all organisms undergoes complex devel-
developmental networks or processes and, consequently, opmental stages. For example, rice growth includes veg-

etative (germination to panicle initiation), reproductivehas a direct impact on the interface of development,
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ics, conditional epigenetic variability and growth in mice. Genet-(panicle initiation to heading), and grain filling and ripen-
ics 147: 765–776.

ing or maturation (heading to maturity; Moldenhauer Box, G. E. P., and D. R. Cox, 1964 An analysis of transformations.
and Slaton 2003). Each of these stages determines J. R. Stat. Soc. Ser. B 26: 211–252.

Carroll, R. J., and D. Ruppert, 1984 Power-transformations whengrain yield by influencing the number of panicles per
fitting theoretical models to data. J. Am. Stat. Assoc. 79: 321–328.unit land area, the average amount of grain produced Cheverud, J. M., E. J. Routman, F. Duarte, B. van-Swinderen, K.

per panicle, and the average weight of the individual Cothran et al., 1996 Quantitative trait loci for murine growth.
Genetics 142: 1305–1319.grains. Our model can detect the genetic control of QTL

Churchill, G. A., and R. W. Doerge, 1994 Empirical thresholdover the length of any of these stages and any development values for quantitative trait mapping. Genetics 138: 963–971.
events. Coupled with the physiological and develop- Diggle, P. J., P. Heagerty, K. Y. Liang and S. L. Zeger, 2002 Analy-

sis of Longitudinal Data. Oxford University Press, Oxford.mental changes in various stages, our model will gain
Gregorczyk, A. R., 1998 Plant growth model. J. Agron. Crop Sci.better insights into the mechanistic bases of seed forma- 181: 243–247.

tion and grain yield regulation. Huang, N., A. Parco, T. Mew, G. Magpantay, S. McCough et al.,
1997 RFLP mapping of isozymes, RAPD and QTLs for grainOur model also has great implications for evolution-
shape, brown planthopper resistance in a doubled haploid riceary studies. The evolution of complex organisms such
population. Mol. Breed. 3: 105–113.

as animals and plants does not occur by direct transfor- Jaffrézic, F., and S. D. Pletcher, 2000 Statistical models for esti-
mating the genetic basis of repeated measures and other function-mation of adult ancestors into adult descendants. Rather,
valued traits. Genetics 156: 913–922.any evolutionary change includes modifications or al-

Jansen, R. C., 2000 Quantitative trait loci in inbred lines, pp. 567–
terations of a series of developmental events occurring 597 in Handbook of Statistical Genetics, edited by D. J. Balding, M.

Bishop and C. Cannings. Wiley, New York.at different time periods during ontogeny (Rice 1997).
Kirkpatrick, M., W. G. Hill and R. Thompson, 1994 Estimating theThe synthesization of this fundamentally important argu-

covariance structure of traits during growth and aging, illustrated
ment into the evo-devo framework (Raff 2000; Arthur with lactation in dairy cattle. Genet. Res. 64: 57–69.

Lander, E. S, and D. Botstein, 1989 Mapping Mendelian factors2002) needs knowledge of how genetic factors regulate
underlying quantitative traits using RFLP linkage maps. Geneticsdevelopmental processes in an organism from embryo
121: 185–199.

to adult to better adapt itself to different environments. Li, Z. K., S. B. Yu, R. Lafitte, N. Huang, B. Courtois et al., 2003
While in the past the dynamic change of genetic con- QTL � environment interactions in rice. I. Heading date and

plant height. Theor. Appl. Genet. 108: 141–153.trol over time was estimated by traditional quantita-
Ma, C. X., G. Casella and R. L. Wu, 2002 Functional mapping oftive genetic approaches that partition total genetic vari- quantitative trait loci underlying the character process: a theoreti-

ances into additive, dominant, and/or epistatic variance cal framework. Genetics 161: 1751–1762.
Ma, C. X., R. L. Wu and G. Casella, 2004 FunMap: functionalcomponents (Atchley 1984; Kirkpatrick et al. 1994;

mapping of complex traits. Bioinformatics 20: 1808–1811.Atchley and Zhu 1997; Pletcher and Geyer 1999; Mackay, T. F. C., 2001 Quantitative trait loci in Drosophila. Nat. Rev.
Jaffrézic and Pletcher 2000), our functional mapping Genet. 2: 11–20.

Moldenhauer, K., and N. Slaton, 2003 Rice growth and develop-model demonstrates tremendous power to precisely char-
ment, pp. 7–14 in Rice Production Handbook. Cooperative Exten-acterize these genetic components at any particular devel- sion Service, University of Arkansas, Little Rock, AR.

opmental stages and relate them to the genetic control Nath, S. R., and F. D. Moore, III, 1992 Growth analysis by the first,
second, and third derivatives of the Richards function. Growthmechanisms for other life-history traits. With this model,
Dev. Aging 56: 237–247.we are closer to addressing historically difficult ques-

Niklas, K. L., 1994 Plant Allometry: The Scaling of Form and Process.
tions of how small genotypic modifications are trans- University of Chicago, Chicago.

Piepho, H.-P., 2000 A mixed-model approach to mapping quantita-lated into phenotypic changes during evolution and
tive trait loci in barley on the basis of multiple environment data.how microevolutionary changes contribute to macro-
Genetics 156: 2043–2050.

evolutionary events. Our model presented in this article Pletcher, S. D., and C. J. Geyer, 1999 The genetic analysis of age-
dependent traits: modeling the character process. Genetics 153:is being implemented in our web-based software, called
825–835.FunMap (Ma et al. 2004), to facilitate other scientists’

Raff, R. A., 2000 Evo-devo: the evolution of a new discipline. Nat.
investigations of the genotype � environment interac- Rev. Genet. 1: 74–79.

Rice, S. H., 1997 The analysis of ontogenetic trajectories: when ations for growth trajectories.
change in size or shape is not heterochrony. Proc. Natl. Acad.
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