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Abstract:    Microarray has become increasingly popular biotechnology in biological and medical researches, and has been widely 
applied in classification of treatment subtypes using expression patterns of biomarkers. We developed a statistical procedure to 
identify expression biomarkers for treatment subtype classification by constructing an F-statistic based on Henderson method III. 
Monte Carlo simulations were conducted to examine the robustness and efficiency of the proposed method. Simulation results 
showed that our method could provide satisfying power of identifying differentially expressed genes (DEGs) with false discovery 
rate (FDR) lower than the given type I error rate. In addition, we analyzed a leukemia dataset collected from 38 leukemia patients 
with 27 samples diagnosed as acute lymphoblastic leukemia (ALL) and 11 samples as acute myeloid leukemia (AML). We com-
pared our results with those from the methods of significance analysis of microarray (SAM) and microarray analysis of variance 
(MAANOVA). Among these three methods, only expression biomarkers identified by our method can precisely identify the three 
human acute leukemia subtypes. 
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INTRODUCTION 
 

Microarray technique is a powerful laboratory 
tool for simultaneously monitoring genome-wide 
expression in different conditions. One of the most 
important applications of microarray technique is the 
classification of tumor subtypes or different disease 
states to facilitate clinical researchers in diagnostic, 
therapeutic or prognostic decisions for patients 
(Golub et al., 1999; Alizadeh et al., 2000; Spindler, 
2006). The generally used approaches, such as cluster 
analysis and supervised grouping, only focus on the 
similarity of the data structure, and fail to guarantee 
that the used class predictors are biologically associ-
ated with class distinction. Therefore, prior to cluster 
analysis, a central need is to explore whether there are 

some expression biomarkers strongly correlated with 
specific classes. Some statistical methods such as 
significance analysis of microarray (SAM) (Tusher et 
al., 2001), fixed ANOVA method (Kerr et al., 2000; 
Kerr and Churchill, 2001) and mixed linear model 
method (Wolfinger et al., 2001; Jin et al., 2001; Lu et 
al., 2005) have been proposed to serve this goal. 

Based on Henderson method III, we developed a 
statistical method under the mixed linear model 
framework (Zhu, 2000) to objectively identify ex-
pression biomarkers for treatment classification. 
Monte Carlo simulations were conducted to validate 
the robustness and efficiency of the present method, 
and a real dataset of leukemia was analyzed to assess 
the utility of the method. 
 
 
METHOD FRAMEWORK 
 

As in most analysis methods of microarray, we 
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first use the normalization procedure to minimize the 
global systematical variations involved in the ex-
periment from the original fluorescence measure-
ments. The normalization model can be written as 

 
yijklm=µ+Ai+Dj+Pk+Tl+γijklm,                 (1) 

 
where µ represents the mean expression level over all 
genes, fixed effect; Ai is the array effect, random 
effect, 2~ (0, );i AA σ  Dj is the dye effect, random ef-

fect, 2~ (0, );j DD σ  Pk is the pin effect, random effect, 
2~ (0, );k PP σ  γijklm is residual error, 2~ (0, ).ijklm γγ σ  

γijklm is obtained by subtracting the fitted values of the 
effects in model (1) from base 2 logarithm of back-
ground-corrected measurements (yijklm) using least 
square estimation (LSE) method, and will subse-
quently be used as the inputs for the gene-specific 
models 
 

γijglm=µg+Agi+Dgj+Tgl+εijglm,                 (2) 
 
where µg represents the mean expression level of gene 
g; Agi is gene specific array effect, 2~ (0, );

ggi AA σ  Dgj 

is gene specific dye effect, 2~ (0, );
ggj DD σ  εijglm is 

gene-dependent residual error, 2~ (0, ),
gijglm εε σ  which 

is different from γijklm in model (1). Under the null 
hypothesis H0: Tg1=Tg2=…=0, Henderson method III 
is employed to construct the F-statistic to test the 
significance of treatment effects (Searle, 1971). Since 
analysis of microarray data involves multiple statis-
tical tests, we use false discovery rate (FDR) (Ben-
jamini and Hochberg, 1995) to control the experi-
mental-wise type I error. The identified differentially 
expressed genes (DEGs) are ranked by their statistic 
scores which can provide more information and 
choice for biologists. 

Finally, the potentially DEGs detected by model 
(2) are fitted in the following full model to estimate 
the variance components and effects interested. 

 
yijkglm=µ +Gg+Ai+Dj+Pk+Tl+GAgi+GDgj+GTgl+εijkglm, 

(3) 
 

where µ  and Gg are fixed effects, and Ai, Dj, Pk, GAgi, 
GDgj, εijkglm are random effects normally distributed 

with zero means and variance components 2
Aσ , 2

Dσ , 
2
Pσ , 2

GAσ , 2
GDσ , 2

εσ , respectively. The terms Tl, Tgl 
and GTgl in models can be regarded as fixed effects or 
random effects according to the experimental intent. 
Since different pins have different characteristics and 
surface properties with different amounts of target 
cDNA, we include the Pk effect in our model. These 
models are extensible to more complex situations 
such as N-dyes, multiple factors decomposed from the 
treatment effect and other variations like fluctuations 
due to mRNA extraction, cDNA synthesis. Markov 
Chain Monte Carlo (MCMC) method (Wang et al., 
1994) is used to estimate the variance components of 
random effects in the model, to estimate fixed effects, 
and to predict random effects as well. 
 
 
RESULTS 
 
Simulation analysis 

Different variation magnitudes were set ac-
cording to the results from the previously analyzed 
real dataset available in Stanford microarray database. 
We assigned the residual variance as 1 with the pro-
portion of gene by treatment interaction effect (VGT) 
variance to the residual variance (VGT/Vε) ranging 
from 1 to 10. Two assumptions were adopted: (1) All 
parameters in the model follow independent and 
identical normal distribution, denoted as NormAspt; 
(2) The observations from different array do not share 
the same variance, denoted as ArrayHetero. Simula-
tion datasets were generated from different experi-
mental designs, loop design with spots replicated 
within single array (denoted as LOOPREPIN), loop 
design with spots replicated between arrays (denoted 
as LOOPREPOUT), reference design with spots rep-
licated within single array (denoted as REFREPIN), 
reference design with spots replicated between arrays 
(denoted as REFREPOUT). All the simulation data-
sets were run with 200 replicates, with powers of 
identifying DEGs with FDR control at 0.05 being 
shown in Fig.1. Simulation results revealed that our 
method was appealing for identifying DEGs validated 
with high power when VGT/Vε exceeded 2, especially 
in the case of LOOPREPIN. In addition, it was shown 
that our method could offer intriguing stability under 
different assumptions, which would be important for 
our method for analyzing microarray data when array 
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variance heterogeneity is quite common in microarray 
data. However, in the case of REFREPOUT, the re-
sult was not perfect, due to the severe confounding 
between other variations like GA or GD and variance 
of GT effect in this experimental design. Therefore, it 
is strongly recommended that appropriate experi-
mental design should be used, such as loop design 
with spots replicated within an array or multi-color 
microarray design (Woo et al., 2005).  
 
Worked example 

Previous study of leukemia (Golub et al., 1999) 
monitored expression patterns from 38 leukemia pa-
tients (with clinically predefined of T-cell ALL, 
B-cell ALL and AML) to develop an expres-
sion-based molecular classification method for acute 
leukemia  as  an  assistant  tool  of  clinical  diagnosis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Affymetrix Hu6800 GeneChips were used. Since the 
sample grouping of these datasets has been clinically 
verified, we could use it to validate the utilization of 
our method. And we also used the methods of SAM 
and MAANOVA to analyze this dataset for com-
parison. By a default in the configurations, 
MAANOVA could only identify 102 marker genes, 
less than those identified by the other two methods. 
Thus, we used the top ranked 102 genes from our 
method and SAM, as well as 102 significant genes 
from MAANOVA to classify the samples by hierar-
chical cluster using Pearson correlation distance with 
UPGMA-linkage criterion. In distinguishing two 
predefined classes of leukemia ALL and AML, our 
method yielded accurate classifications, while SAM 
confused to classify 3 ALL samples into the AML 
samples and MAANOVA incorrectly placed 8 ALL 

Fig.1  Powers of identifying DEGs under assumptions of NormAspt (solid lines) and ArrayHetero (dotted lines)
with varied proportion of GT variance component to the residual variance in different experimental designs. (a)
Powers of identifying DEGs in loop design with spots replicated within array; (b) Powers of identifying DEGs in
loop design with replications between arrays; (c) Powers of identifying DEGs in reference design with spots repli-
cated within array; (d) Powers of identifying DEGs in reference design with replications between arrays 
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samples and 5 AML samples to each other. Expres-
sion biomarkers identified by our method were also 
sensitive for partitioning ALL samples into T-cell 
ALL and B-cell ALL subclasses with only two B-cell 
samples and one T-cell sample wrongly classified, 
while SAM and MAANOVA entirely failed to do it. 

Since putative cluster labels are available for 
leukemia data, external indices of adjusted rank index 
(Hubert and Arabie, 1985), Jaccard index (Jain and 
Dubes, 1988) and FM index (Fowlkes and Mallows, 
1983) were computed to evaluate the quality of cluster 

 
 

 
 
 
 
 
 
 

DISCUSSION 
 

The recognition of objective expression bio-
markers plays a crucial role in correct classification of 
tumor subtypes which is valuable for assisting in 
clinical diagnosis. Many standard statistical methods 
have been used to address the issue, but none has yet 
obtained widespread acceptance because of the high 
rates of false discovery. In the present study, we im-
plement a novel statistical approach in three inter-
connected steps, normalization (model (1)), gene- 
specific model fitting (model (2)) and multiple genes 
model fitting (model (3)). In the second step (model 
(2)), an F-statistic is constructed via Henderson 
method III to scale the expression change among 
different treatments of each gene. This strategy is 
quite efficient in terms of statistical power and com-
putation. Simulation results in multiple configura-
tions and the real leukemia data analysis showed that 
our method can improve the ability to correctly iden-
tify DEGs or expression biomarkers in expression 
profiles analysis.  

Meanwhile, technical and stochastic variations 
such as mRNA extraction, cDNA synthesis, labelling 
reactions and print or hybridization efficiency, are 
usually involved in microarray experiments, and in-
evitably lead to the noise in raw expression meas-
urements and bias interpretation of class distinction. 

results. These external indices have the property that 
the higher the score, the better the cluster solution, 
with a score of 1.0 indicating a perfect solution. 
Compared cluster results showing dissimilar structure 
of expression data were due to the different bio-
markers identified by our method, SAM, and 
MAANOVA, respectively, were summarized in Ta-
ble 1. Our method showed the highest scores in these 
three cluster validation measurements, indicating that 
the biomarkers discovered by our method were very 
close to these different classes of leukemia. 
 
 
 
 
 
 
 
 
 
So it is recommended to do the third step—multi-gene 
model fitting (model (3)) using the MCMC method 
which can give unbiased prediction of GT interaction 
effects for cluster analysis or discriminant analysis. 
Besides, the estimates of various sources of variation 
can provide some feedback on the quality of the ex-
periment to researchers, which is essential for im-
proving the laboratory protocols for further experi-
ments. For example, if variations of A and GA effects 
is large, it is essential to re-select appropriate array 
with inherently less variations, or use finer experi-
mental design so as to construct appropriate statistical 
model to screen these variations. 

This is only a preliminary study, with the de-
tailed research carried out in our following paper. 
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