水稻永久 F2 群体抽穗期 QIL 的上位性及其与环境互作效应的分析

高用明^{1,2} 朱 军^{1,*} 宋佑胜¹ 何慈信¹ 石春海¹ 邢永忠³

(¹ 浙江大学农学系,浙江杭州 310029;² 中国农业科学院作物科学研究所,北京 100081;³ 华中农业大学作物遗传改良国家重点实验室,湖北 武汉 430070)

摘 要 利用源于杂交水稻汕优 63 的重组近交系 (RI),进行系间随机交配构建了水稻永久 F₂(IF₂)群体。采用 QIL 作图 软件 QIL Mapper 2.0 对 IF₂ 群体的抽穗期性状进行了分析,共发现了 21 个 QILs,分布于 10 条染色体上。对抽穗期 QIL 的加性效应,显性效应,加 ×加、加 ×显、和显 ×显上位性效应进行了估计,对遗传主效应与环境的互作效应作了预测。 结果表明,鉴别出的 QIL 中,加 ×加上位性显著程度最高,其次是加性效应。加 ×加上位性与环境的互作效应以及加性 与环境的互作效应预测值,显著性程度相对较高;加 ×显上位性与环境的互作效应预测值均不显著;显性、显 ×显上位性 与环境的互作效应预测值只有很少达到显著。本文讨论了构建 IF₂ 群体的困难及其对 QIL 作图可能产生的影响。

关键词 水稻;永久 F₂ 群体;抽穗期;QTL;上位性;QTL ×环境互作 中图分类号: S511

Use of Permanent F_2 Population to Analyze Epistasis and Their Interaction Effects with Environments for QTLs Controlling Heading Date in Rice

GAO Yong Ming^{1,2}, ZHU Jun^{1,*}, SONG You Shen¹, HE Ci-Xin, SHI Chun Hai¹, XING Yong Zhong³

(¹Agronomy Department, Zhejiang University, Hangzhou 310029, Zhejiang; ² Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081; ³National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China)

Abstract Immortalized F_2 population in rice was constructed by random mating among recombinant inbred (RI) lines derived from a famous elite hybrid rice, Shanyou 63. Analysis on heading date of permanent F_2 population was conducted through QTL Mapper 2.0, a software for QTL mapping. A total of 21 QTLs which distributed on 10 chromosomes were identified Additive effects, dominance effects, epistatic effects of additive \times additive, additive \times dominance, and dominance \times dominance of QTLs for heading date were estimated, the interaction effects between main genetic effects and environments were predicted. The results showed that a few of single effects for identified QTLs were up to the significance of 0.05, among which epistatic effects of additive \times additive were most significant, next were additive effects. The interaction effect of additive and epistasis of additive \times additive with environments presented higher significance; no significant interaction effect of additive \times dominance with environments was found; only few of interaction effects of dominance and dominance \times dominance with environments were observed. The difficulty for constructing IF₂ population and the possible influence on QTL mapping were discussed also.

Key words Rice; Immortalized F₂ population; Heading date; QIL; Epistasis; QIL × environment

抽穗期是一个品种重要的生育特性。能否适应 特定地区生态环境、栽培耕作制度,主要取决于该品 种在当地的生育期。因而,抽穗期性状一直是水稻 重要的育种指标之一。抽穗期长短取决于感光性、 感温性和基本营养生长性3大因素,容易受到环境 条件的影响,具有数量性状的遗传特征。业已发现 的控制水稻抽穗期主效基因多与感光性有关,如 *Se1、Se3、Se4、Se5、Se6、Se7*以及*E1、E2、E3* 等^[1~7]。其中,*Se1、Se3、Se5* 被定位于第6染色体 上,*E1*和*E3*分别被定位于第7和第3染色体

基金项目:国家自然科学基金重大项目资助(39893354)。

作者简介:高用明(1962 -),男,安徽芜湖人,博士,专业方向:数量遗传。工作单位:中国农业科学院作物科学研究所。E-mail: gaoym @ caas.net.cn *通讯作者:朱军,浙江大学农业与生物技术学院。E-mail: jzhu @zju.edu.cn Received(收稿日期):2003-05-07, Accepted (接受日期): 2003-12-22.

上^[1,5,7~10]。分子标记技术的发展以及水稻高密度 分子标记连锁图谱的成功绘制,极大地促进了对复 杂性状的 QTL 定位研究。利用分子标记连锁图谱, 许多 学者对控制抽穗期的 QTLs 进行了定位分 析^[11~20]。Yamamoto 等^[21]对 Yano 等^[15]发现的 5 个 控制抽穗期 QTLs 中的 3 个进行了精细定位。以此 为基础, Yano 等^[22]对控制光周期敏感的 QTL —— *Hd1* 进行了成功克隆。

上位性是复杂性状的重要遗传基础,已经为大量经典遗传研究和近年的QTL 作图研究所证实^[23]。 最近,Lin 等^[24]以及Yu 等^[25]利用双向方差分析检 测了标记之间的上位性互作。然而,标记毕竟不是 基因,且大多位于不编码区域。直接分析QTL 之间 的上位性互作并估算其效应,对于探索数量性状的 复杂遗传基础,指导遗传育种实践是十分重要的。 利用Wang 等^[26]提出的方法,一些研究估算了株高、 穗长和产量性状的加×加上位性以及QE 互作效 应^[27~31]。

本研究利用 Gao 和 Zhu^[32]提出的方法,分析了 水稻永久 F₂ 群体抽穗期性状,对 QTL 的加性效应、 显性效应以及加 ×加上位性、加 ×显上位性和显 × 显上位性进行了估算,同时对这些遗传参数与环境 的互作效应进行了预测。

1 材料和方法

850

1.1 永久 F2 群体的构建与田间试验设计

具有 241 个品系的水稻重组近交系群体衍生于 "珍汕 97B ×明恢 63",由华中农业大学培育,该群体 包含的 221 个标记隶属于 15 个连锁群,覆盖的基因 组长度为 1 796.58 cM。根据张启发教授的构想^[33], 我们将这 241 个品系分成两组,进行组间随机交配, 共获得 240 个系间交配的 F₁ 品系。这些 F₁ 品系组 成的群体,与 F₂ 具有相同的遗传结构,每年配制同 样的组合满足重复试验的需要,使得群体的遗传结 构得以长期保持,故将其称为永久 F₂ (Inmortalized F₂,简称 IF₂)群体。

240 个 F₁ 品系以及珍汕 97B 和明恢 63 分别于 1999 和 2000 年种植在浙江大学农学院的教学实验 农场。试验按随机区组设计、两次重复。3 行区,株 行距 17 cm ×26 cm,每行 12 株,小区间距 17 cm,走 道 50 cm;单本栽插,试验区四周种植 2 行保护行。 全部材料 5 月 19 日播种,6 月 16 日移栽。肥水管理 和病虫害防治同一般大田。抽穗期对杂交材料进行 了去伪、去杂工作。每个小区取中间行的中间 10 株,各单株的主穗抽出剑叶1 cm 即为抽穗,计算从 播种到抽穗的日数作为抽穗期。

1.2 统计分析方法

偏度与峰度分析:计算了试验群体表型数据的 偏度系数和峰度系数^[34]。

利用以下混合线性模型分析了永久 F₂ 群体抽 穗期 QTL 的遗传主效应和 QTL ×环境互作效应^[32]:

$$y_{bhk} = \mathbf{\mu} + a_i x_{A_{ik}} + d_i x_{D_{ik}} + a_j x_{A_{jk}} + d_j x_{D_{jk}} + a a_{ij} x_{AA_{ijk}} + a d_{ij} x_{AD_{ijk}} + a d_{ji} x_{AD_{jik}} + d d_{ij} x_{DD_{ijk}} + u_{E_{hk}} e_{E_h} + u_{B_{b(h)}} e_{B_{b(h)}} + u_{A_i E_{hk}} e_{A_i E_h} + u_{D_i E_{hk}} e_{D_i E_h} + u_{A_j E_{hk}} e_{A_j E_h} + u_{D_j E_{hk}} e_{D_j E_h} + u_{AA_{ij} E_{hk}} e_{AA_{ij} E_h} + u_{AD_{ij} E_{hk}} e_{AD_{ij} E_h} + u_{AD_{ji} E_{hk}} e_{AD_{ji} E_h} + u_{DD_{ij} E_{hk}} e_{DD_{ij} E_h} + \sum_{f(h)} u_{M_{fk(h)}} e_{M_{f(h)}} + \sum_{l(h)} u_{MM_{lk(h)}} e_{MM_{l(h)}} + bhk ,$$

其中, y_{bhk} 是环境 h 中第 k 个 IF₂ 基因型(个体)在区 组 b 中的抽穗期观察值; μ 是群体平均数; a_i 和 a_i 分别是 QTL —— Q_i 和 Q_j 的加性效应,系数为 x_{A_u} 和 x_{A_a} ; d_i 和 d_j 分别是 Q_i 和 Q_j 杂合子的显性效应,系数 为 x_{D_u} 和 x_{D_u} ; aa_{ij} 、 ad_{ij} 和 ad_{ji} 、 dd_{ij} 是 Q_i 和 Q_j 之间的 加性 ×加性、加性 ×显性、显性 ×显性的上位性效 应,系数分别为 $x_{AA_{uv}}$ 、 $x_{AD_{uv}}$ 和 $x_{AD_{uv}}$ 、 $x_{DD_{uv}}$ 。 $e_{E_{u}}$ 是环境 h的随机效应,具有系数 $u_{E_{h}}$; $e_{B_{h}(h)}$ 是第 h 个环境中 第 b 区组(重复)的随机效应,具有系数 $u_{B_{b(a)}}; e_{A_i E_b}$ (或 e_{A,E_i}) 是 Q_i (或 Q_j)的加性与环境的互作效应,具 有系数 $u_{A,E_{u}}$ (或 $u_{A,E_{u}}$); $e_{D,E_{u}}$ (或 $e_{D,E_{u}}$) 是 Q_{i} (或 Q_{j}) 的显性与环境的互作效应,具有系数 u_{D,E_u}(或 $u_{D_i E_h}$); $e_{AA_i E_h}$ 、 $e_{AD_i E_h}$ 和 $e_{AD_i E_h}$ 、 $e_{DD_i E_h}$ 是 3 种双基因上 位性与环境的互作效应,具有系数 u_{AA, E_h}、u_{AD, E_h}和 $u_{AD_{u}E_{h}}$ 、 $u_{DD_{u}E_{h}}$ 。 $e_{M_{f(h)}}$ 是环境 h 中标记f 的随机效应, 具有系数 $u_{M_{q(u)}}$; 当标记基因型为 M_fM_f 时, 取值 1, 为 M_fm_f 时, 取值 0, 为 m_fm_f 时, 取值 - 1; e_{MM_{1/s}}是环 境 h 中标记之间的互作随机效应,具有系数 $u_{MM_{R(p)}}$ 。 $e_{M_{r(p)}}$ 和 $e_{MM_{I(p)}}$ 用于控制作图区间之外其他 QTL 产生的背景遗传效应。 blk 是剩余效应。

上位性 QTL 的检测分 3 步进行。首先,用前向 选择法筛选出显著的主效和互作标记,这些标记用 于两个目的,控制背景遗传效应和构建两维搜索的 区间。其次,利用模型(1),以 2 cM 为步长,计算构 建的搜索区间内各搜索点的似然比对数值,估算相 应位置的 QTL 遗传主效应,并进行 t 测验。第三, 根据 Orenstein-Uhlenbeck 扩散原理^[35,36],当全基因 组搜索的显著性水平为 0.05 时,可以算得 IF₂ 群体 QTL 作图点估计的显著性水平为 0.000 018,相应的 LR(似然比对数值)显著性阈值为 50.6。当两维搜 索的 LR 峰值超过相应的显著性阈值时,就认为存 在成对的互作 QTLs。用 t 测验进行遗传主效应的 显著性检验,用 Jackknife 抽样技术进行 *QE* 互作效 应的预测和显著性检验^[37]。

2 结果与分析

2.1 IF₂ 群体与亲本的抽穗期表型变异分析

亲本和配制的 IF₂ 群体抽穗期表型值的基本统 计特征列于表 1。总体趋势是,2000 年抽穗期早于 1999 年。但亲本明恢 63 和珍汕 97 的抽穗期年份之 间变化不大。IF₂ 群体抽穗期表型值的平均值和标 准差年份之间非常接近,群体的基本统计特性非常 稳定,虽然2000年抽穗期的变异幅度大于1999年。 偏度系数最高的只有0.35,峰度系数指标为-0.27。 说明抽穗期的表型值变异与正态分布十分吻合。一 般来说,如果偏度系数和峰度系数太大,可以进一步 作偏峰度检验^[34]。

2.2 抽穗期 QIL 的位置和命名

对 1999 和 2000 两年的抽穗期数据进行 QTL 分 析,共发现 13 对检测区间的 LR 峰值达到显著水平 (表 2),LR 值最低为 54.69(*LOD* 为 11.87),最高达 到 172.73(*LOD* 为 37.48)。经过归类,在 10 条染色 体上发现了 21 个与抽穗期有关的 QTLs(表 2)。其 命名方法是,开头的两个字母为性状英文名缩写,其 中第一个字母大写,第二个字母小写,紧接着的数字 为染色体号,然后加个"-",最后的数字为一条染色 体上发现的 QTL 序号,根据在染色体上的位置,从 左端开始按顺序编号。

表1 抽穗期表型值的统计特征

Table 1	Statistical	properties of	phenotype	values of	heading	dates
		r-oroso or	F			

	亲本 Parents					1-14-34	/	
环境 Env.	明恢 63 Minghui 63	珍汕 97 Zhenshan 97	平均值 Mean	最大值 Max	最小值 Min	标准差 SD	偏度 Skew	峰度 Kurt
1999	94.50	72.00	83.29	105.00	65.00	9.32	0.34	- 0.27
2000	91.00	67.50	80.05	109.00	57.00	9.75	0.35	- 0.15

表 2	抽穗期	QIL	的位置和定名

Table 2 Positions and designation of QTLs controlling heading date

染色体 Chrom.	QTL i ^a	标记区间 Marker interval	位置 ^b Pos. (M)	染色体 Chrom.	QTLj	标记区间 Marker interval	位置 Position (M)	LR
1	Hd1-1	RM237-C922	0.06	11	Hd11-2	RM209-C257	0.00	54.69
1	Hd1-2	C922-RG101	0.08	11	Hd11-2	RM209-C257	0.00	71.21
1	Hd1-3	R2201-RM212	0.00	6	Hd6 - 1	R2869-C474	0.00	133.84
1	Hd1 - 4	RG236-C112	0.06	5	Hd5 - 1	R3166-RC360	0.01	59.78
2	Hd2 - 1	RZ386-G1314a	0.18	6	Hd6-2	R3139-C952	0.00	91.36
4	Hd4 - 1	G235-R78	0.00	9	Hd9 - 1	RM242-RC570	0.02	72.95
5	Hd5 - 1	R3166-RC360	0.01	11	Hd11-1	C1003B-RG103	0.02	86.67
5	Hd5-2	C734b-RZ649	0.04	11	Hd11-3	CDO127-R3203	0.00	87.73
6	Hd6-3	RG424-R2549	0.00	8	Hd8-1	C1121-RCB33	0.02	93.89
7	Hd7 - 1	C1023-R1440	0.07	8	Hd8-2	L363A-RZ66	0.30	172.73
7	Hd7 - 1	C1023-R1440	0.07	10	Hd10-1	C148-RM239	0.00	103.72
7	Hd7-2	RM234-R1789	0.06	10	Hd10-2	C677-RM258	0.00	59.12
11	Hd11-2	RM209-C257	0.00	11	Hd11-3	CDO127-R3203	0.00	94.10

注: "QTL i和 QTL j 是两维搜索遗传模型中成对的两个推断 QTL; "这里的位置指的是距离 QTL 所在标记区间左端标记的图距,单位 M。 Notes: "QTL i and QTL j are a pair of putative QTLs in genetic model for two-dimentional search; ^b Position here is the map distance of QTL from the left marker in the marker interval of the QTL located, unit is M.

2.3 QIL 的加性效应、显性效应估计及其与环境 互作效应预测

效应显著性分析结果表明(表 3),发现的 21 个 抽穗期 QTL 中,有 10 个的加性效应达到 0.05 以上 显著性水平,但只有 6 个的显性效应达到显著水准。 *QE* 互作效应达到显著的较少,分别只有 3 个 QTL 的加性与环境互作效应和 2 个 QTL 的显性与环境 互作效应达到显著水准。这从另一侧面说明,即使 一些 QTL 的加性效应、显性效应及其与环境的互作 效应不显著,只要其上位性效应显著,仍可被检测 到,从而提高 QTL 作图的功效。达到显著的 QTL 加 性效应基本上都是正向的,也就是说,来自明恢 63

851

的 QTL 等位基因表现为增效,来自珍汕 97 的 QTL 等位基因表现为减效。第 6 染色体上检测到的 2 个 QTL, *Hd6-1* 和 *Hd6-2* 具有负向显性效应,也就是说 与中亲值相比,其杂合子可以使抽穗期分别缩短 2.24 d 和 4.25 d。其他 4 个 QTL 的杂合子均能使抽 穗期延长 2 d 左右。

2.4 QTL 的上位性效应

达到显著水准的上位性效应及其与环境互作效 应列于表4。检测到的13对抽穗期上位性位点中,7 对加 ×加上位性达到显著水准,其效应绝对值变化 于1.17 d到4.48 d之间,6 对加 ×加上位性与环境 的互作效应达到显著,其绝对值变化于1.27 d到 3.25 d之间。3 对显 ×显上位性和1 对显 ×显上位 性与环境的互作效应达到显著。加 ×显上位性有5 对达到显著,未发现这种上位性与环境之间存在显 著的互作效应。这些结果说明,抽穗期变异主要来 源于加性和加 ×加上位性效应,受到环境变化的影 响,但 *QE* 互作效应在抽穗期的遗传变异中不占主 导地位。这可能就是抽穗期在同一地点不同年份间 表现比较稳定的原因。

加性、加 ×加上位性及其与环境互作效应在抽 穗期 QTL 的遗传中起主要作用,确切地反映了传统 育种方法在自花授粉作物品种改良中的成效。因为 自花授粉作物的传统育种方法(除杂交种培育外的 几乎所有育种方法)是通过筛选优良纯合子来达到 培育新品种的目的。所以,选择更多地作用于纯合 基因型。

表 3 水稻抽穗期 QIL 的加性效应、显性效应 的估计及其与环境的互作效应

Table 3 Additive, dominance and their interaction effects

with environments of QTLs for heading date of rice

QTL i	a_i^{a}	d_i	$e_{A_i E_1}$	$e_{D_i E_1}$	$e_{A_i E_2}$	$e_{D_iE_2}$
Hd1-2				3.23 *	-	3.14 *
Hd4 - 1	1.29 *					
Hd5-2	1.31 *			- 1.95 *		1.98 *
Hd6-1	-	2.24 * * *	- 2.40 * * *		2.26 * * *	
Hd6-2	-	4.25 * * *				
Hd6 - 3	1.45 * * *	2.33 * * *				
Hd7 - 1	1.59 * *	2.54 * * *				
Hd7 - 1	2.44 * * *	2.32 * * *				
Hd7 - 2	1.84 * *					
Hd8-1		2.08 * *	- 1.00 *		1.05 *	
Hd8-2	2.73 * *		1.68 * *	-	1.55 *	
Hd10-2	1.84 *					
Hd11-1	1.36 *					
Hd11 - 3	1.42 *					

注:^{*a*}_{*i*} 和 *d*_{*i*} 分别为 QTL *i* 的加性效应和显性效应; *e*_{*A*_{*i*}E₁} 和 *e*_{*A*_{*i*}E₂} 分别表示 1999 和 2000 年 QTL *i* 的加性与环境的互作效应; *e*_{*D*_{*i*}E₁} 和 *e*_{*D*_{*i*}E₂}分别表示 1999 和 2000 年 QTL *i* 的显性与环境的互作效应; *、 **和 *** 分别表示 0.05、0.01 和 0.005 显著性水平。

Notes: ^{*a*} a_i and d_i are additive and dominance effects of QTL *i* respectively; $e_{A_iE_1}$ and $e_{A_iE_2}$ are the additive interactions with environments of QTL *i* in 1999 and 2000 respectively; $e_{D_iE_1}$ and $e_{D_iE_2}$ are the dominance interactions with environments of QTL *i* in 1999 and 2000 respectively; ^{*}, ^{**} and ^{***} mark significance level at 0.05, 0.01 and 0.005 respectively.

	have a spin and episons by environment interaction effects of QLDs for heading date of the									
QTL i	QTL j	aa_{ii}^{a}	ad_{ii}	ad_{ii}	dd_{ii}	$e_{AA_{ii}E_{1}}$	$e_{DD_{ii}E_1}$	$e_{AA_{ii}E_{2}}$	$e_{DD_{ii}E_2}$	
Hd1-1	Hd11-2	v		-	- 4.08 *	<i>.</i>	<i>y</i> .	<i>y 2</i>	<i>y</i> 2	
Hd1-2	Hd11-2				- 5.11 * *					
Hd1-4	Hd5-1	- 2.35 *				1.33 *		- 1.32		
Hd2-1	Hd6-2				3.83 *	- 2.57 *		2.61 *		
Hd4 - 1	Hd9-1	- 4.22 * * *		1.91 *		- 1.27 *		1.28 *		
Hd5-1	Hd11-1	4.48 * * *		- 3.06 * * *		- 1.57 *		1.53 *		
Hd5-2	Hd11-3	3.56 *	- 2.18 * *	- 1.94 *		1.68 * *		- 1.66 * * *		
Hd6-3	Hd8-1	3.93 * * *					- 2.50 * * *		2.48 *	
Hd7-1	Hd8-2	- 2.05 * * *	2.14 *							
Hd7 - 1	Hd10-1	1.17 *								
Hd11-2	Hd11-3					- 3.25 * *		3.34 * *		

表4	水稻抽穗期	QIL 的上位性及其与环境互作效应	
----	-------	-------------------	--

able 4	Epistasis and epistasis b	v environment	interaction	effects of	OILs for	heading	date of	rice

注:^{*a} aa_{ij}、ad_{ij}、(ad_{ij})和 dd_{ij}分别为 QTL <i>i* 和 QTL *j* 之间的加 ×加、加 ×显和显 ×显的上位性效应; *e*_{AA_{ij}E₁}、*e*_{AA_{ij}E₁}、*e*_{DD_{ij}E₁}和 *e*_{DD_{ij}E₂}分别表示环境 1 和环境 2 中 QTL *i* 和 QTL *j* 之间的加 ×加和显 ×显上位性与环境的互作效应。^{*}、^{*}*1^{***}分别表示 0.05、0.01 和 0.005 显著性水平。</sup>

Notes: ${}^{a}aa_{ij}$, ad_{ij} , (ad_{ji}) , and dd_{ij} stand for the epistatic effects of additive xadditive, additive xdominance, and dominance xdominance between QTL *i* and QTL *j*, respectively. ; $e_{A_{ij}E_{1}}$, $e_{A_{ij}E_{2}}$, $e_{DD_{ij}E_{1}}$ and $e_{DD_{ij}E_{2}}$ denote the interactions between AA_{ij} , DD_{ij} and environments 1 and 2, respectively. *, ** and *** denote significance level at 0.05, 0.01 and 0.005, respectively.

3 讨论

9期

抽穗期是与后代繁衍息息相关的重要性状,直 接决定了水稻品种(系)的地区和季节适应性,在进 化过程中受到自然选择和人工选择的双重作用。由 于水稻的广泛适应性,从北纬 53 到南纬 35 都有种 植,因而形成了形形色色的光温反应类型。由于 OTL 分析研究材料来源的不同,亲本生态类型的差 异,以及作图群体抽穗期遗传基础的复杂,目前的抽 穗期 QTL 定位结果不尽相同。加上分子标记连锁 图谱不一.难于对定位结果作较准确的比较。本研 究的两个亲本明恢 63 和珍汕 97 的生育期相差 20 余天,发现的 21 个 OTLs 中, Hd8-2 的加性效应最 大,为2.73 d, Hd6-2 的显性效应最大,也只有-4.25 d.没有所谓的主基因。只有 Hd7-1 和 Hd7-2 与 Yu 等^[25]发现的 hd7c 和 hd7a 处于同一标记区间, Hd8-1 与 Xiong 等^[16]检测到的 hd8 属于同一标记区间,基本可以认为是相同的 QTL,除此之外,另有一些 QTLs,与前人检测到的QTL 位置接近,但不能肯定 是相同的 OTL ,如 Hd5-1 与 Zou 等^[38]发现的 $_{aHD5}$, Hd7-2、Hd6-2、Hd8-1 与 Yano 等^[15]定位的 Hd2、Hd3 和 Hd5 等。

通过 RI 或 DH 群体系间随机交配获得的 F₁ 构 建的永久 F₂ 群体,既具有信息量大、可以估计显性 效应以及与显性有关的上位性效应的优点,又能为 多单位合作研究或多环境 *QE* 互作研究源源不断提 供大量试验材料,有助于进一步揭示杂种优势的遗 传实质。由 RI 群体系间随机交配构建的永久 F₂ 群 体有利于鉴别紧密连锁的标记和 QTLs。然而,永久 F₂ 群体在实施上仍有以下困难:(1)杂交组合配制 工作量大,难度高,很多组合难于得到足够的种子, 造成数据缺失;(2)不同 RI 或 DH 系的抽穗期很不 一致,对于大量配组来说,很难做到完全随机。这些 因素会导致构建的永久 F₂ 群体往往偏离正常的理 论比,从而导致 QTL 位置、效应的估计出现偏差。

本研究对 221 个分子标记的分离情形作了² 检验。发现源于汕优 63 的重组近交系群体,221 个 标记中有 56 个与理论比的偏离达到了 0.05 的显著 性水平;构建的 IF₂ 群体,偏分离的标记有所增加, 达到 78 个。从统计上说,构建 IF₂ 群体是一个二次 抽样的过程,不可避免地存在抽样误差。实际上,现 有的作图群体都不同程度地存在偏分离。至于偏分 离对 QTL 作图存在什么样的影响,如何在统计上处

理和矫正尚有待进一步探索。

References

- [1] Yakoo M, Kikuchi F, Nakane A, Fujimaki H. Genetical analysis of heading time by aid of close linkage with blast, *Pyricularia oryzae*, resistance in rice. *Bull Natl Inst Agric Sci Ser D*, 1980, **31**: 95 - 126
- [2] Yamagata H, Okumoto Y, Tanisaka T. Analysis of genes controlling heading time in Japanese rice. In : International Rice Research Institute Rice genetics. International Rice Research Institute, Manila, the Philippines, 1986. 351 - 359
- [3] Poonyarit M, Mackill DJ, Vergara B S. Genetics of photoperiod sensitivity and critical daylength in rice. Crop Sci , 1989, 29: 647 - 652
- [4] Ohshima I, Kikuchi F, Watanabe Y, Asahi C Genetic analysis of heading time in a cross between two *indica* varieties with inhibitor genes for photoperiod sensitivity. *Jpn J Breed*, 1993, **43**: 101 - 106
- [5] Yokoo M, Okuno K Genetic analysis of earliness mutations induced in the rice cultivar Norin 8. Jpn J Breed, 1993, 43: 1 - 11
- [6] Tsai K H. Genetic analysis for heading time in wild rice strains. Jpn J Genet, 1995, 70: 555 - 562
- [7] Kinoshita T. Report of the committee on gene symbolization, nomenclar ture and linkage groups. . Linkage mapping using mutant genes in rice. *Rice Genet Newsl*, 1998, 15: 13 - 74
- [8] Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. *Genetics*, 1994, **138**: 1 251 -1 274
- [9] Okumoto Y, Ichitani K, Inoue H, Tanisaka T. Photoperiod insensitivity gene essential to the varieties trown in the northern limit region of paddy rice (*Oryza sativa* L.) cultivation. *Euphytica*, 1996, 92: 63-66
- [10] Okunoto Y, Tanisaka T. Trisomic analysis of a strong photoperiodsensitivity gene E₁ in rice (*Oryza sativa* L.). *Euphytica*, 1997, 95: 301 - 307
- [11] Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of QTLs for heading date and plant height in rice using RHLP markers. *Theor Appl Genet*, 1995, 91: 374 - 381
- [12] Lin HX(林鸿宣), Qian HR (钱惠荣), Xiong ZM (熊振民), Zhuang J-Y (庄杰云), Lu J (陆军), Zheng KL (郑康乐), Huang N (黄宁). Mapping of major genes and minor genes for heading date in several rice varieties (*Oryza sativa* L.). Acta Genetica Sinica (遗传学报), 1996, 23(3): 205 - 213
- [13] Xiao J, Li J, Yuan L P, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in recombinant inbred population derived from a subspecific rice cross. *Theor Appl Genet*, 1996, 92: 230 - 244
- [14] Lu C F, Shen L S, Tan Z B, Xu Y B, He P, Chen Y, Zhu L H Comparative mapping of QILs for agronomic traits of rice across environments by using a doubled haploid population. *Theor Appl Genet*, 1997, 94: 145 - 150

- [15] Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a highr density linkage map. *Theor Appl Genet*, 1997, 95: 1 025 1 032
- [16] Xiong L Z, Liu KD, Dai X K, Xu C G, Zhang Q F. Identification of genetic factors controlling domestication related traits of rice using an F₂ population of a cross between *Oryza sativa* and *O. rufipogon. Theor Appl Genet*, 1999, **98**: 243 - 251
- [17] Li S·G (李仕贵), Ma YQ (马玉清), Wang W·M (王文明), Liu Q·G (刘庆国), Zhou KD (周开达), Zhu L·H (朱立煌).
 Molecular tagging of a new recessive gene for late heading in a rice cultivar 8987. Acta Genetica Sinica (遗传学报), 2000, 27 (2): 133 - 138
- [18] Wang C·M (王春明), Yasui H (安井秀), Yoshimura A (吉林醇), Wan J-M (万建民), Zhai H·Q (翟虎渠). Identification of quantitative trait loci controlling F₂ sterility and heading date in rice. Acta Genetica Sinica (遗传学报), 2002, 29(4): 339 342
- [19] Deng XJ, Zhou K-D, Li R-D, Chen Z, Li P, Wang W-M, Zhai W-X, Zhu L-H. Identification and gene mapping of completely dominant earliness in rice. *A gricultural Science in China*, 2002, 1(1): 11-18
- [20] Luo L-G, Su C-C, Shimura E, Zhai H-Q, Wan J-M. Genotypic analysis of heading time on an *indica* rice cultivar, Nanjing 11. Agricultural Science in China, 2002, 1(1): 19 - 24
- [21] Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M Fine mapping of quantitative trait loci *Hd*-1, *Hd*-2, and *Hd*-3, controlling heading date of rice, as single Mendelian factors. *Theor Appl Genet*, 1998, 97: 37 - 44
- [22] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. *Hd-1*, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arobidopsis flowering time gene *CONSTANS*. *Plant Cell*, 2000, **12**: 2 473 2 484
- [23] Gao YM (高用明), Zhu J (朱军). Advance on methodology of QTL mapping for plants. *Hereditas* (遗传), 2000, 22(3):175-179
- [24] Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, *Hd1*, *Hd2*, and *Hd3*, controlling heading date in rice using nearly isogenic lines. *Theor Appl Genet*, 2000, **101**: 1 021 - 1 128
- [25] Yu S B , Li J X , Xu C G , Tan Y F , Li X H , Zhang Q F Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. *Theor Appl Genet* , 2002 , **104** : 619 - 625
- [26] Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL ×environment interactions by mixed linear model approaches. *Theor Appl Genet*, 1999, 99: 1 255 - 1 264
- [27] Liao C·Y (廖春燕), Wu P (吴平), Yi K·K (易可可), Hu B (胡

彬), Ni J-J (倪俊健). QTLs and epistasis underlying rice (*Oryza sativa* L.) panicle length in different genetic background and envirorments. *Acta Genetica Sinica* (遗传学报), 2000, **27**(7): 599 - 607

- [28] Cao GQ (曹钢强), Zhu J (朱军), He C-X (何慈信), Gao Y-M (高用明), Wu P (吴平). QTL analysis for epistatic effects and QTL × environment interaction effects on final height of rice (*Oryza sativa* L.). Acta Genetica Sinica (遗传学报), 2001a, 28 (2): 135 143
- [29] Cao GQ (曹钢强), Zhu J (朱军), He C-X (何慈信), Gao Y-M (高用明), Wu P (吴平). Study on epistatic effects and QIL × environment interaction effects of QILs for panicle length in rice (*Oryza sativa* L.). *Journal of Zhejiang University* (Agric & Life Sci)[浙 江大学学报(农业与生命科学版)], 2001b, 27(1):55-61
- [30] Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Biomass and grain yield. *Genetics*, 2001, **158**: 1 737 - 1 753
- [31] Luo L J , Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Grain yield components. *Genetics*, 2001, 158: 1 755 - 1 771
- [32] Gao YM, Zhu J. Mapping QILs with complex epistasis under multiple environments by mixed linear model approaches. *Theor Appl Genet*, (submitted)
- [33] Hua J P, Xing Y Z, Xu C G, Sun XL, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. *Genetics*, 2002, 162: 1 885 -1 895
- [34] Wang FB (王福宝), Min HL (闵华玲), Ye R-X (叶润修).
 Probability Theory and Mathematical Statistics (概率论及数理统 计). Shanghai: Tongji University Press, 1988(in Chinese)
- [35] Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using THLP linkage maps. *Genetics*, 1989, 121:185 -199
- [36] Lander E S, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. *Nature Genetics*, 1995, 11: 241 - 247
- [37] Zhu J (朱军). Analysis Method for Genetic Model (遗传模型分析 方法). Beijing: China Agriculture Press, 1997(in Chinese)
- [38] Zou J X, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (*Oryza sativa* L.). *Theor Appl Genet*, 2000, 101: 569 - 573