Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants

PNAS

Proceedings of the National Academy of Sciences of the United States of America

Lingfeng Mao[†], Hiroshi Kawaide[†], Toshiya Higuchi[†], Meihong Chen, Koji Miyamoto, Yoshiki Hirata, Honoka Kimura, Sho Miyazaki, Miyu Teruya, Kaoru Fujiwara, Keisuke Tomita, Hisakazu Yamane, Ken-ichiro Hayashi, Hideaki Nojiri, Lei Jia, Jie Qiu, Chuyu Ye, Michael P. Timko, Longjiang Fan^{*}, and Kazunori Okada^{*}

The biosynthetic genes of some specialized plant metabolites appear to be clustered in the genomes of higher plants. Momilactones are defense compounds produced in rice and barnyard grass by family-conserved biosynthetic gene clusters (BGCs).

We sequenced the genome of *Calohypnum plumiforme*, a momilactone-producing nonvascular bryophyte, and showed that it also contains a functionally similar momilactone BGC distinguished by its lack of synteny with the clusters found in vascular plants. The expression of the *Calohypnum* biosynthetic genes in tobacco demonstrated their role in momilactone A production.

This is the first report of a BGC for a specialized metabolite in bryophytes. Our findings indicate that the momilactone clusters present in three different plant species may have evolved independently via convergent evolution.

Time (h) after elicitation

PNAS

Commentary

momilactone biosynthesis in *C. plumiforme*. (A) The genomic synteny of the BGCs for momilactone formation in plants. (B) Time course gene-expression profiles of the four genes found in the momilactone BGC after the treatment of $CuCl_2$ or chitosan. The data shown were normalized by comparison to the expression of the housekeeping gene *CpACT3*. (C) Comparison of basal expression levels of the four genes in the cluster. The expression data represent the mean \pm SD of three biological replicates with independent elicitor treatments to *C. plumiforme* gametophytes.

Pig. S refronte-wide identification of the clustered genes for momilactone biosynthesis in plants. Black boxes represent existence of the genes in the corresponding plant genome. Types of gene clustering: CL1, DTC, or DTC-like type of terpene synthase gene + P450 + MAS; CL2, one type of terpene synthase gene (CPS or KS or DTC or DTC-like) + P450 + MAS; CL3, two types of terpene synthase genes (CPS and KSL) + P450 + MAS. Momilactones were only detected in the species with CL1 or CL3 gene clusters.

COMMENTARY

Why are momilactones always associated with biosynthetic gene clusters in plants? Research Highlight | Published: 05 June 2020 SECONDARY METABOLISM

Evolved clustering

Lei Lei 🖾

Nature Plants 6, 597(2020) Cite this article

nature plants Highlight

 Juan Zhang and
Reuben J. Peters
PNAS June 23, 2020 117 (25) 13867-13869; first published June 2, 2020; https://doi.org/10.1073/pnas.2007934117