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* 2.1 Genome sequencing
* 2.2 Genome assembly

e 2.3 Genome annotation



Importance of a high-quality genome

Comparative
Reference genome (2002-)

' Full-length cDNA
pedigree oo
genome . )
(maize, Lai et al. POpulatmn genome
2010) Rice, maize, soybean, millet

~50 rice lines (Xu et al. 2011)
~500 rice lines (Huang et al. 2009)
~1000 rice lines (Huang et al. 2012)

Inbred line First haplotype map of maize (Gore et al. 2009)
5 ~31 soybean lines (Lam et al. 2010)
genome: ~1000 millet lines (Peng et al. 2013)




2.1 Genome sequencing

* Roadmap for studying a genome
* How to sequence a genome

* Sequencing technologies




Roadmap for studing a genome

e Genomic geography (“Z FH A HE” H k)

* Four maps




A. %1% & (genetic map)
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B. %72 F# (physical map)
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C. F%|E i (sequence map-
genome)

e HAIEHRAXWEFEFY K., B & T
:‘%%@5%@@%#@%%%%Té%%w%m@ﬁ%
o HLKHF7
© 1977%, ANKZRNEBRRFE —NEFHA (2K53kb
@ﬁﬁﬂ%%%)é%ﬂ%%,%4WE%ﬁ%ﬁfﬁ
it ]
e BE—ANHEERFAAL)FH (1995, 1.9Mb)
c R AYEERFALFALFF (1996, 12Mb) . & = E

H4HAFF (1998, 97Mb) . ZEHEFHH 4 )% 7|
(1999, 136Mb)

o« ANEKEBEHAFH (2001, 3286Mb) ; #LEFF (2000)
FoAKFG (2002, 400M)
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Genome survey

* To get a big picture of a target genome, such
genome size, GC content, repeat content,
heterozygous rate, polyploid, based on genome
survey sequencing

* Genomic data: 20-40 genome coverage (X ) of
next-generation sequencing data



Genome size estimation based on
k-mer

s BIXAFETERIELLFAIG, FEVLIEB T EX
KEAK, 1z BFRIK-mer. ik E]—
SE7E TG FER, AR AE K-mer B AR A
GK-JE( Lander_waterman &3%).

* Clone fringeprinting scheme for a physical
map (Lander and Waterman, 1988)

* [-tuples (L1 and Waterman, 2003)

N—




Genomic Mapping by Fingerprinting Random
Clones: A Mathematical Analysis

Eric S. LANDER* T AND MICHAEL S. WATERMANT
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Results from physical mapping projects have re-
cently been reported for the genomes of Escherichia
coli, Saccharomyces cerevisiae, and Caenorhabditis
elegans, and similar projects are currently being
planned for other organisms. In such projects, the
physical map is assembled by first “fingerprinting’’ a
large number of clones chosen at random from a re-
combinant library and then inferring overlaps be-
tween clones with sufficiently similar fingerprints.
Although the basic approach is the same, there are
many possible choices for the fingerprint used to
characterize the clones and the rules for declaring
overlap. In this paper, we derive simple formulas
showing how the progress of a physical mapping
project is affected by the nature of the fingerprinting
scheme. Using these formulas, we discuss the analytic
considerations involved in selecting an appropriate
ingerprinting scheme for a particular project.
© 1988 Academic Press, Inc.

available region of up to several megabases and of
studying its properties. In addition, the overlapping
clones comprising the physical map would constitute
the logical substrate for efforts to sequence an organ-
ism’s genome.

Recently, three pioneering efforts have investigated
the feasibility of assembling physical maps by means

id genome length in bp;
= length of clone insert in bp;
= number of clones fingerprinted;
a = N/G = probability per base of starting a new
clone; i
T = amount of overlap in base pairs needed to detect
overlap;

(i) Olson et al. (1986) fingerprinted 5000 A clones
containing approximately 15-kb inserts of genomic
DNA from Saccharomyces cerevisiae, by measuring
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Genome size estimation based on
k-mer

* Genome size = (K num-K unique) /
peak depth

* where K num 1s the total number of K-mer,
K unique 1s the number of single or unique
K-mer words and peak depth is the expected
value of K-mer depth.



k-mer counts and frequencies

GCGAGATCCAACGGTGAACAGCTGCCCAAAAGAAAAACCGCCTGGAAGTCCGA
GGACCTTTAGTACTGTACTCTACCCCCGAACCAGCAGCCTTCGLGCCAaGCAA
GACCGCCCTTGTCCCTTTCCTTTATCCATTCCGCcTCCTTCTTTGCTTTGTTC
CAATAGAGTCTAAGGCAAAGCTAAAGTGGTTCGTaTGCCTACTTTACCTACTT
GACGAAAGGGAACGAACTTCGTTTCGTTTCCGGGTTTATGGATTGGATTCAGT
CAGCCTCACTCCTTCCTTTTTATGTTGTCGTGATGGTTACCGGCGAACGCTCC
CAAAGGCGACCCTCTCGAGTTTCCGGCTGTTTTCTAGATTGAAGTAGCCTTTC
GTCGCCCCGAAAGAAGTCACTATCAAAGAGCTCGCCCTACTGAAGTACCAAAG
GTGCGCTCAGCCCGGTGACTAAGAAATGGGTTTGCGCTTGAATTGAAGTGATG
AGGTTTTTCGAGGGAAGTAGGGCTCTTATTGACTAAAAGTGGGTTCTTCGCTT
TCCTTTAGAATGAAAGTTGCTATGAAGCCCCTACTACTTACTTTGTTTGATTC
AAAAGGCGAACGGCCCCCCAACAAGTCGTATGGGGTGGGGTGCTTGTGATAAG
CTGCCTTGGATATGAGGAATTCTCAAATTGGGAAAGCATTTCTTGATTTGAAG

AAACAAGAAAGTTAGGGTTTTTGGAATTGGATTCGGATAATGTTTGTTGTTTT

TtGTAAGTGTGAGATTAGAGGTTCACGAAATTTTGATGGG

k=8
Total n =782
8-mers =775
Unique = 98%
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Genome size estimation of barnyardgrass E. crus-galli.

hexaploid
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How to sequence a genome?

PP 1 2k KT 2H 100 P SR IS

B L T

(clone by clone)

4L R H A6 7 12
(whole genome shotgun, WGS)




Hierarchical shotgun sequencing
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Shotgun . . . ACCGTAAATGGGCTGATCATGCTTAAR
sequence TGATCATGC I TAAARCCCTSTGCATCCTALTS. .« .

Assembly ...ACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTA



The key steps in assembling individual
sequenced clones into the draft genome

sequence

7
M " o B3 end-to-end B1,, , B3
N B4 alignment : OK R e

Ad
'1"""'-'%’ = B, , . B2
.e:l |
# Hd"l."d”_.* HI"'.E
alignment in
middle only : not OK -
d

Al AZ B1 A3 B3 Ad  BBAS B2 B4 BS




Fingerprint clone contig
Pick clones for sequencing

§ {';_\_\_—‘_H\\‘fo'_ :_-:,
Seguenced-clone contig i e

Sequenced-clone-contig scaffold
Sequence to at least draft coverage

l Sequenced clone B
Sequenced clone A —_ e —
—

Initial sequence conti
Merge data ] g
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Merged sequence contig
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Order and orient with mRNA, paired end reads, other information

~|r Sequence-contig scaffold
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Quality

v' Genome coverage
v" Functional coverage

v Assembly
Contigs:127,550
(N50=6,688 bp)
i --
“NMI Scaffolds: 102,444
i ] (N50=11,764 bp)

10 15 20 25 30 35>40
Scaffold size [Kb




Quality estimation

* Genomic coverage: flow cytometer; genome
size estimation by k-mers.

* Functional coverage: traditional ESTs;
reference genomes

* Assembly quality: BAC/PAC/FOSMID
clone sequencing; BUSCO-a set of single
copy orthologs



(Genome sequencing

* Wikipedia: Whole genome sequencing
(WGS), complete genome sequencing, or
entire genome sequencing

* Sequencing technology

* Sanger method
ABI3730: 700-900bp per read

* high-throughput approaches

[llumina Geome Analyzer || System/ HiSeq 2000
Applied Biosystems SOLID System
454/Roche GS FLX

PacBio

Nanopore



Read Length Run Time Output

1 x 35 bp ~1.5 days 26-35 Gb

2 x 50 bp ~4 days 75-100 Gb

2 x 100 bp ~8 days 150-200 Gb
Throughput

Up to 25 Gb per day for a 2 x 100 bp run.

Reads
Up to one billion clusters passing filter and up to two billion
paired-end reads

Performance
HiSeq 2000 provides the greatest yield of perfect reads and
bases greater than Q30

eGreater than 90% bases higher than Q30 at
eGreater than 85% bases higher than Q30 at

2 x 50 bp*

2 x 100 bp*
*Typical performance for sequencing output generated using
TruSeq SBS-HS Kit with an Hlumina PhiX library and cluster
densities between 260 - 347K/mm2 that pass filtenng on a
HiSeq system. Performance may vary based on sample
quality, cluster density, and other experimental factors.
Paired 100 bp runs may vary in the range of 80 to 90% of
bases higher than Q30 and paired 50 bp runs may vary in the
range of 85 to 95% bases above Q30 based on the above

£ b g
TaCLOrs.

Services and Support

Hlumina will ensure that your HiSeq 1000 is properly installed
and qualified, and will provide ongoing maintenance and
service. This industry-leading support is available in North
America, Europe, and Asia

[1lumina: the
sequencing-by-
synthesis (SBS)




e 28 = I 5 AR HE B A AR A N 1 = AR A A 3
(Reuter ¢, 2015)

10,000,000

lllumina
lumina HiSeq X Ten
lllumina HiSeq 2500

1,000,000 Hi-Seq 2000 @
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5500xI' W [llumina
ABI soLiD _Intelligent 75  HiSeq 3000

i Bio-Systems
30x human aenome lllumina 5500xI :
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Genome projects

Genome projects are scientific endeavours that ultimately
aim to determine the complete genome sequence of an
organism and to annotate protein-coding genes and other
important genome-encoded features.

Genome assembly
Genome annotation

* It consists of two main steps: identifying elements on the
genome, a process called gene prediction, and attaching
biological information to these elements.

* These steps may involve both biological experiments
and in silico analysis




Genome re-sequencing

* (Genome re-sequencing:
* Deep sequencing: 30-50X
SNP calling/ de novo assembly

* Germplasm survey: 10-15X
SNP calling



Metagenomics: environmental samples

Metagenomics is the study of metagenomes, genetic material
recovered directly from environmental samples

Traditional microbiology and microbial genome sequencing rely upon
cultivated clonal cultures environmental samples.

Early environmental gene sequencing cloned specific genes (often the
16S rRNA gene) to produce a profile of diversity in a natural sample.
Such work revealed that the vast majority of microbial biodiversity
had been missed by cultivation-based methods.

Recent studies use "shotgun" Sanger sequencing or massively parallel
pyrosequencing to get largely unbiased samples of all genes from all
the members of the sampled communities.




2.2 Genome assembly

* About assembly
* Assembly Algorithms



Influence of technological changes

* The complexity of sequence assembly i1s
driven by two major factors: the number of
fragments and their lengths.

* PHRAD: Sanger sequencing
* NGS: 454/Illumina/PacBio

* The complexity of sequence assembly 1s
also driven by other several factors: repeat;
sequencing errors, high heterozygous rate,
polyploid, etc.




Overlap-Layout-Consensus
Assemblers:  ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads THIRTHATH

Layout: merge reads into contigs and
contigs into supercontigs o T T

Consensus: derive the DNA sequence
and correct read errors

~ACGATTACAATAGGTT..



Y GRFF) PhrERE

HFEYHHELFRIEFEFNGS (next-generation sequencing) BRI IERE. &P
ik, ®MEREEBKICHFTIFTET (shotgun sequencing), ERJBNFHEEELR
BEFIRINMHTIRA—FLEELN (NMATXSAEREE) , MBI TESSH
— R Z K FYERMF .

FEROEE, BXEFNFIERERRA—FTBAFIFI.

AT L IRATEIXFE—5)5E: it is just a hypothesis, so don't be seriously !
B, FATIAEANFEX AR R A 4, BHBRIAA —Dbox, AT ] —5K 4K,
ERFTIT, AR KA Hipieces, oA AT REIC KA T 4840, BT 28 48 AR mUER
HRT EARD D A1152:
itis ypo stah the sodo eriou siss ju ntbes sly......
RIONEATTIN 7 JUIR, N 73S INE A B, XA IRATT Re I 78 o T 3 v LA 2
itis ypo stah the sodo eriou siss ju ntbes sly tis yopth sodon beser beser ssod iti sju......
A, BATDCR T —FFR A Apaired-ends 7 FIM 70732, BIMLEK, HE4EA
FE— R, BIXHE:
iti*****¥qhyp sju*****pot the*****don sod*****ser bes*****gly ......
RXFERATTARYE W N BB 7782, AT AT LA IR A 1 4 [E] R -
itisjustahypothesissodontbeseriously
HEARRAER, TATRIERANTH B REE I, A% el B2 (gap)
Pros CRIRIRISRBEZR YD , FRATTREREIE R SR ik !

www.bioxxx.cn
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OLC: for very short reads, it 1s hard to distinguish correct
assembly from repetitive sequence overlap due to there
being only a very short sequence overlap between these
short reads. Also, 1n practice, it is unrealistic to record into
a computer memory all the sequence overlap information
from deep sequencing.

The de bruijn graph data structure, introduced 1n the
EULER (Pevzner et al. 2001) assembler, 1s particularly
suitable for representing the short read overlap
relationship. The advantage of the data structure 1s that it
uses K-mer as vertex, and read path along the K-mers as
edges on the graph. Hence the graph size 1s determined by
the genome size and repeat contents of the sequenced
sample, and 1n principle, will not be affected by the high
redundancy of deep read coverage.

Liet al. 2010, Genome Res.



Assembly Algorithms

* Overlap—layout—consensus (OLC)
° de Bruijn Graph



JEE R 20 11 4 = LR 28 B0

e —J2OLCHL(Overlap-Layout-Consensus), & T 26— F L
ANEERAG PN F 327 (read) , {HANE A T 5 AR 7245 1
WP (KE100BPAEA) - OLCHEN T, HTEER
Him i, RMEFE TP ES (overlap) K1 — N IERARIHHELE R
, MAESEhreHEEREY, KedESRKANEF EETEREN
1%, HEITFEALEE JIME LA Sz .

o H—RARTEAERENE, & T sEsEl s E8dE 5t
EWEEAE, BT EASHNERNESESM, Sl K=
HEHESRANEET .. 28RS WA HK-merfE NI A, 27
ERNL, XFEEAR BT, BRI/ EiZE B H AR R A KD E S
A& s e, S5 TLFEZIRE L.

(Lietal., 2010)



SOAPdenov

Lietal. 2010, Genome Res.

T Genomic DNA

v Fragment and paired-end sequencing
of libraries with wariant insert sizes.

Represent read sequence
overlap using de Bruijn
graph

v Remove erroneous connections on the
graph

l—l—

(i) Remove low- (i) Hesolve
coverage links tiny repeats

.,

(i) Clip tips (iv) Merge bubbles

i

e SO—

Break at repeat boundaries
and output contigs

v Scaffold construction
el ed

Gap closure




Read, ki~-mer and de Bruiyn Graph

-/~ de Bruijn FSEH



More complicated de Bruiyn Graphs

ATCTTATTCG

A\TCTAATTCG

ATC-STCT=>CTT->TTA>TAT> ATT->TTC~>TCG
NCTA>TAA->AAT”

ATCTTCCG

ATETTATICR:



repeat de Bruijn Graph

Icin))]

GAC)*(ACC)*(CCT)*(CTA ) +(TAC ) *(ACA ) *(CAA | *(AAG) *(AGT)
ere)
1ee
e

Tip = ) Bubble Z5#3 Repeat iy

de Bruijn &
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SOAPdenov

NSNS
TN i
T Genomic DNA

v Fragment and paired-end sequencing
of libraries with wariant insert sizes.
1

= 150~500 bp (
4

1

) 2~10 Kb
—
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Represent read sequence
overlap using de Bruijn

graph

v Remove erronecus connections on the
graph
|
/ 1
(i) Remove low- (i) Hesolve
coverage links tiny repeats

(i) Clip tips (iv) Merge bubbles
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de Bruijn Graph

In graph theory, an n-dimensional De Bruijn graph
of m symbols is a directed graph representing overlaps
between sequences of symbols. It has m” vertices,
consisting of all possible length-n sequences of the
given symbols; the same symbol may appear multiple
times 1n a sequence.

Although De Bruijn graphs are named after Nicolaas
Govert de Bruijn, they were discovered independently
by both De Bruijn and I. J. Good. (1946)

Wikipedia



The Bridge Obsession
Problem

Find a tour crossing every bridge just once
Leonhard Euler, 1735

i"ﬂ"b* -'.'?E-:‘.:'.

%5 i", ;ﬁm .'--:--' 1
. ig_ﬁ?’&%ﬁm
M@@@% |

Bridges of Konigsberg



Pavel A. Pevzner

* Pavel A. Pevzner, Haixu
Tang, and Michael S.
Waterman. 2001. An
Eulerian path approach to
DNA fragment assembly.
PNAS. 98: 97489753




2.3 Genome annotation

* (Genome survey

* Genome s1ze/GC content/repeat content

* Gene finding
* Coding genes
* non-coding small RNAs

* Repeat annotation



Gene finding

* Coding genes
* non-coding small RNASs



Appearance of Genome

e 4 One to many chromosomes What does 50 kb of sequence
* A Repeat sequences common look like?
in some genomes €.g. 35% of
human are transposable . O [
elements -10% Alu, 14.6% /‘ /' repeat ~ Pseudogene
LINEI sequences

) Intron-exon components of a gene
* A Gene structure varies — no.

and length of introns

I |

Maize — mostly repeats Yeast —many genes (~25) —
few repeats

L1 31 [ 1 1000 1

Rice — not many gene - not few repeats

Human — very few genes - repeats



Protein-coding and non-coding
sequences 1n genome

i DR 4H A 5 2 A AT AR g A DN A

Non-coding sequences: small RNAs (microRNA and
siRNA) and long non-coding RNAs (IncRNA)



Gene finding

* Given the sequence of a genome, we would like to be able
to 1identify:
* Genes
* Exon boundaries & splice sites
* Beginning and end of translation
* Alternative splicings
* Regulatory elements (e.g. promoters)
* Only certain way to do this 1s experimentally, but
computational methods can achieve reasonable accuracy
quickly, and help direct experimental approaches.



Gene finding strategies

There is no (yet known) perfect method for finding
genes. All approaches rely on combining various
“weak signals” together and assemble into a
consistent gene model

Homology method

* Gene structure can be deduced by homology

* Requires a not too distant homologous sequence
Ab initio method

* Requires two types of information
. compositional information
. signal information




LOCUS OSJN00244 151936 bp DNA linear PLN 14-NOV-2003
DEFINITION Oryza sativa genomic DNA, chromosome 4, BAC clone:
OSJNBa0053B21, complete sequence.

COMMENT
-------------- Summary Statistics --------------
Assembly program: phrap

Genes were identified by a combination of several methods:
Gene prediction programs including Fgenesh
(http://www.softberry.com/), genscan (http://CCR-
081.mit.edu/GENSCAN.html), GeneMarkHMM
(http://genemark.biology.gatech.edu/GeneMark/), tRNAscan-
SE (Sean Eddy, http://genome.wustl.edu/eddy/tRNAscan-SE/),
searches of the complete sequence against NCBI none
redundant protein database (nr) (ftp://ncbi.nlm.nih.gov/blast/db)
and the EST database at NCGR.




Homology method

Principles of the homology method:

* Coding regions evolve slower than non-coding regions,
i.e. local sequence similarity can be used as a gene finder.

* Homologous sequences reflect a common evolutionary origin
and possibly a common gene structure, i.e. gene structure can
be solved by homology (mMRNAs, ESTs, proteins, domains).

* Standard homology search methods can be used (BLAST,
Smith-Waterman, ...).

* Include "gene syntax” information (start/stop codons, ...).




Gene of unknown structure

Homology with a gene of

known structure

Find DNA signals

BATG
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Inference by homology

* For exon finding, we need to find matches to
* mRNA/cDNA sequences
* ESTs

* Known exons



EST/RNA-Seq reads can be helpful
in confirming a gene model

Genome sequence

Predicted —— —C
exons

ESTs should match exons

may need to fill in gaps by RT PCR and often need to obtain the
whole cDNA sequence

same mMRNA may be spliced differently in different tissues giving
a different protein or mMRNA may be edited to change sequence



ADb Initio method

Principles of the ab initio methods

* |Integration of signal detection-and coding statistics
» Signal detection and coding statistics are deduced
from a training set

* Probabilistic frameworks are used to infer a
probable gene structure

* A solid scoring system can be used to evaluate the
predictions

‘AUGUSTUS / GeneMark.nmm / FGENESH a



A simple review

Gene ot unknown structure

Find signals and probable coding regions
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HMM

Markov Model (MM)

¢ Biological sequences can be modeled as the output of a stochastic process in which
the probability for a given nucleotide to occur at position p depends on the & previous

positions. This representation is called k-order Markov Model.
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Hidden Markov Model (HMM)

+ In a HMM the biological sequences are modeled as the output of a stochastic process
that progresses through a series of discrete states. Each state model correspond to a
Markov Model.
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Inter-genic Region around Coding region  Region around
start coden stop codon (Krog, 1998)




Fig. 2. Gene model

Forward (+) strand

Reverse (-) strand

GENSCANZ: K HilIHMMEE A (BurgeAKarlin, 1997)



Fgenesh
(www.softberry.com)

* Fgenes (Find genes) i1s the multiple gene prediction
program based on dynamic programming;

* Fgenesh: Hidden Markov Model (HMM)-based gene
prediction program (Salamov and Solovyev 2000,
Genome Res)

* Fgenesh+: 1s a version of Fgenesh, which uses
additional information from the available protein
homolog. When exons predicted by Fgenesh show
high similarity to a protein from the database, it 1s
often advantageous to use this information to improve
the prediction accuracy.



Non-coding gene finding

microRNA(miRNA)
* miRNA-like long hairpin
siRNA
* trans-acting sIRNA (ta-siRNA)
* Phase siRNA (phasiRNA)
long non-coding RNA (IncRNA)

circular RNA (circRNA)
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Genome duplication/triplications in plants

Ricinus communis
e Populus trichocarpa

Lotus japonicus
Medicago truncatula

: Glycine max
Cajanus cajan
Cucumis sativus

¢ Malus x domestica
Prunus persica
Fragana vesca

uonesljdu] swouss SjoYyM
uonesijdng swouas sjoym

Arabidopsis thaliana
Arabidopsis lyrata
L3k prassica rapa
Canca papaya
Theobroma cacao

Vitis vinifera

'I: Solanum tuberosum

Solanum lycopersicum
Sorghum bicolor

:Zea mays

Brachypodium distachyon
Oryza sativa

‘Musa acuminata
Selaginella moellendorffii
Physcomitrella patens
Chlamydomonas reinhardtii
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Percentage of repeat sequences in grass
genomes

0. staiva S. italica

Super-family E. crus-galli

Retroelements

DNA transposons

Unknown (unclassified)

Total TEs




Statistics of TEs in the Zizania latifolia '"HSD2' genome

Repbase TEs de novo TEs Combined TEs
Length
(Mb)
18.26 3.02 34.39 5.69 42.94 7.11
3.03 0.50 6.10 1.01 7.23 1.20
0.03 0.01 0.28 0.05 0.30 0.05
81.58 13.51 177.83 29.44 180.03 29.80
0.02 0.00 0.00 0.00 0.02 0.00
0.00 0.00 10.46 1.73 10.46 1.73
102.73 17.01 221.27 36.63 227.45 37.65

Length (Mb) % in genome

% in genome Length (Mb) % in genome




Repeat elements and content

—
rJ
=

m /7. [atifolia

Q. sativa

S. bicolor

k]
£
o
C
@
o)
o
o
@
o)
1x)
)
c
@
Q
—
k)
(18

W B. distachyon




3k

25

K-mer genome survey

Pay

5

AL S AR S

Summary

B A H
A R
Fe e S HEL R

Eliy

FRE ) — M7 1%

e

Two ways to sequence a genome

Two ways to annotate a genome



Question/homework

* Any difference of plant genomes to
human/animal genomes?



