Why Bayesian statistics?

1. Bayes' theorem
2. The table game
3. Why Bayesian statistics?
4. Bayesian sequence analysis

1. Bayes' theorem

- Conditional and joint probabilities

$$
\begin{gathered}
P(A, B)=P(A / B) P(B)=P(B / A) P(A) \\
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
\end{gathered}
$$

\otimes Bayes' throrem (1763)

A=D (data)
$B=M$ (model)

$$
P(M \mid D)=\frac{P(D \mid M) P(M)}{P(D)}
$$

$\diamond P(M \mid D)$ ：posteriori（后验概率）
$\diamond P(D \mid M)$ ：data Likelihood（似然概率）
＊$P(M)$ ：Priori（先验概率）
$\diamond P(D)$ ：Evidence probability（事实概率）

The parameters for a probabilistic model are typically estimated from large sets of trusted examples, often called a training set.

- ML: Maximum likelihood estimation
- MAP: Maximum a posteriori

$$
P(\theta \mid D)=\frac{P(\theta) P(D \mid \theta)}{\int_{\theta^{\prime}} P\left(D \mid \theta^{\prime}\right) P\left(\theta^{\prime}\right)}
$$

Note that since our parameters are usually continuous rather than discrete quantities, the denominator is now an integral rather than a sum:

$$
P(D)=\int_{\theta^{\prime}} P\left(D \mid \theta^{\prime}\right) P\left(\theta^{\prime}\right)
$$

A dice example

2. The table game

*Alice and Bob: a game in which the first one to six points wins. But the way each point is decided is a little strange...
Now, Alice is already winning 5 points to 3 (A leads B 5:3), and what is the expected probability that Alice will win?
*The table game is an example of a scientific inference problem. It was controversial for centuries after first being proposed in the 1300's. Published solutions included 2:1 and 3:1 odds. In the mid-1600's, Blaise Pascal's $7: 1$ solution is considered to be one of the origins of probability theory.
*If the probability p were known, this would be easy. For example, if the mark was exactly in the middle of the table, probability (p) that Bob wins is $1 / 8$, and fair odds would be 7:1 (Pascal);

* One approach would be to make a ML of the unknown parameter p. Bob's probability of winning is $(3 / 8)^{3}=27 / 512$, and Alice's probability of winning to be 485/512; fair odds would be about 18:1;
*How about Bayesian solution?

The Bayesian solution

$$
\begin{aligned}
& E(\text { Bob }- \text { wins })=\int_{0}^{1}(1-p)^{3} P(p \mid A=5, B=3) d p \\
& P(p \mid A=5, B=3)=\frac{P(A=5, B=3 \mid p) P(p)}{\int_{0}^{1} P(A=5, B=3 \mid p) P(p) d p} \\
& P(A=5, B=3 \mid p)=\frac{8!}{5!3!} P^{5}(1-p)^{3} \\
& E(B o b-\text { wins })=\frac{\int_{0}^{1} p^{5}(1-p)^{6} d p}{\int_{0}^{1} p^{5}(1-p)^{3} d p \quad \int_{0}^{1} p^{m-1}(1-p)^{n-1} d p=\frac{\Gamma(n) \Gamma(m)}{\Gamma(m+n)}} \begin{array}{l}
\Gamma(n+1)=n!
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& E(\text { Bob }- \text { wins })=\frac{5!6!}{12!} / \frac{5!3!}{9!}=\frac{1}{11} \\
& \text { And Alice's expected probability is } 10 / 11 \text {. } \\
& \text { Thus, the Bayesian fair odds to be } 10: 1 \text {. }
\end{aligned}
$$

The Table game is adapted by S. R. Eddy from the key example in the landmark, posthumous 1763 paper by the Reverend Thomas Bayes.

- Distinctive features: (1)If we need to invoke uncertain parameters in the problem, we don't attempt to make point estimates of these parameters; (2)The use of inverse probability calculation; (3)Using probability to represent a degree of belief.

Exercise

- Consider an occasionally dishonest casino that uses two kinks of dice. Of the dice 99% are fair but 1% are loaded so that a six comes up 50\% of the time. We pick a dice at random and roll it three times, getting three consecutive sixes. We are suspicious that this is a loaded die. How can we evaluate whether that is the case?

3. Why Bayesian statistics?

\diamond There seem to be a lot of computational biology papers with "Bayesian" in their titles these days.
\diamond At least two reasons: (1) its explicit use of probabilistic models to formulate scientific problems (i.e. a quantitative storytelling); (2) its coherent way of incorporating all sources of information and of treating nuisance parameters and missing data (Liu, 2002).

* There is no shortage of problems in biology where we want to infer something from observed data, but the inference depends on uncertain parameters or missing data in a probability model.

4. Bayesian sequence analysis

- Significance of alignment scores

$$
\begin{aligned}
& P(M \mid x, y)=\frac{P(x, y \mid M) P(M)}{P(x, y)} \\
& P(M \mid x, y)=\frac{P(x, y \mid M) P(M)}{P(x, y \mid M) P(M)+P(x, y \mid R) P(R)}
\end{aligned}
$$

Let $\quad S^{\prime}=S+\log \left(\frac{P(M)}{P(R)}\right)$ where $\quad S=\log \left(\frac{P(x, y \mid M)}{P(x, y \mid R)}\right)$

Then $P(M \mid x, y)=\sigma\left(S^{\prime}\right)$

- Bayesian evolutionary distance

$$
P(x \mid k)=P(k \mid x) P(x) / P(k)=P(k \mid x) P(x) / \sum_{x} P(k \mid x)
$$

where $P(x \mid k)$ is the probability of distance x given the sequence with k mismatches (and $n-k$ matches), $P(k \mid x)$ is the odds score for the sequence with k mismatches using the log odds scores in the DNA PAM100x matrix, and $\mathrm{P}(\mathrm{x})$ is the prior probability of distance x). The denominator is the sum of the odds scores over the range of x, which is $0.01-4$, representing PAM1 to PAM400.

*An example

