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Genome Analysis
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480 s CHAPTER 10

The genome is defined
as the sum of the genes
and intergenic se-
quences of the haploid
cell (Bernardi 1995).

INTRODUCTION

A MAJOR APPLICATION OF BIOINFORMATICS I$ analysis of the full genomes of organisms that
have been sequenced starting in the late 1990s, including microbial genomes, the budding
yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans, the plant Ara-
bidopsis thaliana, the fruit fly Drosophila, and the human genome. Many additional
genome sequencing projects are either being planned or are already under way.

Traditional genetics and molecular biology have been directed toward understanding
the role of a particular gene or protein in an important biological process. A gene is
sequenced to predict its function or to manipulate its activity or expression. In contrast,
the availability of genome sequences provides the sequences of all the genes of an organ-
ism so that important genes influencing metabolism, cellular differentiation and develop-
ment, and disease processes in animals and plants, can be identified and the relevant genes
manipulated.

The challenge is to identify those genes that are predicted to have a particular biological
function and then to design experiments to test that prediction. This analysis depends on
gene prediction using gene models for each organism followed by sequence comparisons
between the predicted proteins with other proteins whose function is known from biolog-
ical studies. To facilitate such comparisons, the genomes of a number of model organisms
about which a great deal of biological information is available have been sequenced. Many
years of genetic and biochemical research of these model organisms—the bacterium
Escherichia coli, S. cerevisiae, C. elegans, A. thaliana, and D. melanogaster—have led to the
accumulation of a large amount of information on gene organization and function. The
mouse Mus musculus is a genetic model for humans because the two species are so closely
related through evolution. A newly identified gene in another organism can be compared
to the existing database of information to find whether it has a similar function. Genes
involved in human disease, for example, are sometimes found to be similar to a fruit fly
gene at the protein sequence level (for an example of how significant this kind of analysis
can be, see Rubin et al. 2000). The genetic effects of mutations in the fruit fly’s gene will
then provide a biochemical, cellular, or developmental model for the human disease. Inter-
estingly, it has not been possible to identify the function of all the genes in model organ-
isms. As a result, a similar gene or family of genes may be found in several organisms,
including a model organism, but the function is not known because the gene functions have
not yet been analyzed. Hence, continued biological analysis of model organisms in those
areas that are not tractable by the tools of bioinformatics has many important applications.

Tracing the phylogenetic history of such uncharacterized genes, characterized genes,
and gene domains and gene linkages in diverse organisms is one of the most interesting
and challenging aspects of genome analysis. In addition, even though a gene that specifies
an important biological function has not been identified, the gene can be traced in indi-
viduals using sequence variations that occur among individuals in a population, called
sequence polymorphisms. In humans, for example, single nucleotide polymorphisms
(SNPs) can be found throughout the genome, including some that are positioned adjacent
to an important disease gene. If a particular G — A polymorphism is right next to a defec-
tive tumor suppressor gene, for example, that polymorphism serves as a genetic marker for
the presence of the defective gene. The applicable genetic principle, genetic linkage, is that
closely linked genes seldom become separated by genetic recombination from one genera-
tion to the next. Another example of such linked polymorphisms is in crop plants. Features
such as plant height and amount of seed produced are influenced by variations in sets of
genes, called quantitative trait loci (QTL). Inheritance of QTLs can be traced from one



The entire set of pro-
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including those known
from biological studies
and those predicted by
bioinformatics, is the
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generation to the next using sequence polymorphisms that are linked to the favored genet-
ic variation without having to wait to observe the effects on plant growth.

The availability of genome sequences greatly facilitates the discovery and utilization of
these sequence polymorphisms. It is recognized that some types of genetic variation,
including specific human diseases, are best understood at the genome-wide level. The
duplication of genes, gene segments, and gene clusters provides opportunities for recom-
bination events that can cause changes in gene copy number or loss of gene function (Lup-
ski 1998).

In summary, the availability of genome sequences provides an unprecedented opportu-
nity to explore genetic variability both between organisms and within the individual
organism. We now turn to a comparison of the main features of the genomes that have
been sequenced. One major task is to identify the genes that encode proteins and to iden-
tify the function of as many of these proteins as possible by database similarity searches.

The proteome may be compared to itself to identify paralogs, families of proteins that
have arisen by gene duplication. One proteome may also be compared to another pro-
teome to discover orthologous genes that have kept the same function, genes that have
become fused to make a larger protein (or split into two to make two separate proteins),
new arrangements of protein domains, and amplification of protein families to perform a
new type of biological function (e.g., cell-to-cell communication during development of a
multicellular organism). A representative collection of the large number of Web resource
pages and references is shown in Table 10.1. This table is divided into six parts, A—F, deal-
ing with resources for prokaryotic genomes (A) which have been the subject of intense
sequence analysis, all model organisms (B), human genome and the related mouse genome
(C), genome relationships (D), proteome and gene expression analysis (E), and function-
al characterization of genes (F). Since these sites are constantly being revised, this table will
be periodically updated on the book Web site.

SRS

Early biologists examining a particular plant, animal, or yeast cell using a microscope
observed a nucleus (in a eukaryotic cell) with a specific number of chromosomes of vari-
able length and morphology that could be seen at certain stages of cell division. The chro-
mosomes comprised linear DNA molecules in a tightly compact form that was wrapped
around protein complexes, called the nucleosome. Nuclei and chromosomes were not
observed in bacteria (a prokaryotic cell), but when bacterial DNA was eventually detected,
the molecule was usually circular and was also in a compacted form. The following sections
outline the structure and composition of prokaryotic and eukaryotic genomes.

Prokaryotic Genomes

The first bacterial genome to be sequenced was that of Hemophilus influenzae, a mild
human pathogen (Fleischmann et al. 1995). This project was carried out at the Institute of
Genomics Research (TIGR, http://www.tigr.org) in part to prove a new genome sequenc-
ing method—the shotgun method. A large number of random overlapping fragments were
sequenced and then a consensus sequence of the entire 1.8 X 16°bp chromosome of
Hemophilus was assembled by computer, excepting several regions that had to be assem-
bled manually. Once available, open reading frames were identified, and these were com-
pared to the existing proteins by a database similarity search (see Chapter 7). Approxi-
mately 58% of the 1743 predicted genes matched genes of another species, the bacterial
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Table 10.1.

Web resources and references for genome information and analysis

A. Prokaryotic genomes®

MAGPIE: Multipurpose Automated Genome
Project Investigation Environment
(Gaasterland and Sensen 1998)

Microbial genome databases

Comparative genome analysis in P. Bork
laboratory (see Web site)

TIGR: The Comprehensive Microbial
Resource Home Page—the omniome

U.S. Dept. of Energy Joint Genome Initiative

http://genomes.rockefeller.edu/magpie

http://www.ncbi.nlm.nih.gov:80/PMGifs/Genomes/micr.html
http://www.techfak.uni-bielefeld.de/techfak/persons/chrisb/ResTools/biotools/
biotools10.html ‘
http://www-nbrf.georgetown.edu/pir/genome.html#PROK
http://www.bork.embl-heidelberg.de/Genome/

http://www.tigr.org/tigr-scripts/ CMR2/CMRHomePage.spl

http://www.jgi.doe.gov/

2 Also see the COG and PEDANT sites in part D.

B. Genomic databases of model organisms and other genome databases

Arabidopsis thaliana genome displayer
A. thaliana information resource TAIR
Caenorhabditis elegans (worm) database
C. elegans chromosomes

C. elegans genome project
C. elegans proteome database

Dictyostelium discoideum genome information

Drosophila melanogaster Berkeley Drosophila
genome project

D. melanogaster chromosomes

D. melanogaster: Flybase, a genomic database

E. coli genome project

E. coli genome and proteome database
GenProtEC

E. coli index

Genome databases at NCBI*

Genome databases other than NCBI*

Genome list at NTH

Mitochondrial DNA Database MitBASE

Mouse (Mus musculus) genome informatics

Plant genome projects supported by the plant
genome initiative of the U.S. National
Science Foundation

Organelle genome sequences .

Parasite genome databases and genome
research resources

Retroviral genotyping and analysis site

Rice (Oryza sativa) genome project

Saccharomyces cerevisiae: View of 16
chromosomes

S. cerevisiae, YPD Yeast Proteome database,
a commercial database

S. cerevisiae (budding yeast) database SGD

http://www.kazusa.or.jp/kaos

http://www.arabidopsis.org/

http://www.wormbase.org/

ftp://ftp.sanger.ac.uk/pub/databases/C.elegans_sequences/
CHROMOSOMES/

http://www.sanger.ac.uk/Projects/C_elegans/

http://www.sanger.ac.uk/Projects/C_elegans/wormpep/

http://www.proteome.com/YPDhome.html

http://www.biology.ucsd.edu/others/dsmith/dictydb.html

http://www.fruitfly.org/

http://flybase.bio.indiana.edu/maps/fbgrmap.html
http://flybase.bio.indiana.edu/
http://www.genetics.wisc.edu/
http://genprotec.mbl.edu/

http://web.bham.ac.uk/bcm4ght6/res.htmi
http://www.ncbi.nlm.nih.gov/Genomes/index.html
http://www.ncbi.nlm.nih.gov/Entrez/Genome/main_genomes.html
http://www.ncbi.nlm.nih.gov:80/PMGifs/Genomes/org.html
http://www.techfak.uni-bielefeld.de/techfak/persons/chrisb/ResTools/
biotools/biotools10.html
http://www-nbrf.georgetown.edu/pir/genome.htmi
http://molbio.info.nih.gov/molbio/db.html
http://www3.ebi.ac.uk/Research/Mitbase/mitbase.pl
http://www.informatics.jax.org/
http://www.nsf.gov/bio/dbi/pgrsites.htm

http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/organelles. html
http://www-nbrf.georgetown.edu/pir/genome.html
http://www.ebi.ac.uk/parasites/parasite-genome.html

http://www.ncbinlm.nih.gov/retroviruses/
http://rgp.dna.affrc.go.jp/
http://genome-www.stanford.edu/Saccharomyces/MAP/
GENOMICVIEW/GenomicView.html
http://www.proteome.com/YPDhome.html

http://genome-www.stanford.edu/Saccharomyces/

2 The National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland

Continued.
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C. Human and mouse genome comparisons

Celera Genomics: The company that
assembles genome sequences by
automated fragment assembly

Comparison of human (Homo sapiens)
and mouse (M. musculus) chromosomes

Cooperative Human Linkage Center:
mouse-clickable map of chromosomes

Draft Human Genome Browser

Human sequence polymorphisms,
mutations, and mapping

Human EST project

Human genome resources at NCBI

Human genome research sites provided by
Oak Ridge National Labs

Mouse (M. musculus) chromosomes:
mouse-clickable map

On-line inheritance in man: Johns
Hopkins University and NCBI

Whitehead Institute for Biomedical Research

http://www.celera.com/

http://www.bioscience.org/urllists/chromos.htm, http://www.ncbi.nlm.nih.gov/
Homology/

http://infosrv1.ctd.ornl.gov/TechResources/Human_Genome/publicat/
97pr/05g_mous.html

http://srs.ebi.ac.uk/, databanks link, MOUSE2ZHUMAN

http://lpg.nci.nih.gov/html-chlc/ChlcIntegratedMaps.html

http://genome.ucsc.edu/goldenPath/hgTracks.html
http://srs.ebi.ac.uk/, databanks link

http://genome.wustl.edu/est/esthmpg.html
http://www.ncbi.nlm.nih.gov/genome/guide/
http://www.ornl.gov/hgmis/centers.html
http://brise.ujf-grenoble.fr/~mongelar/clickclientsideV2bis.html

http://www3.ncbi.nlm.nih.gov/Omim/

http://www.ornl.gov/hgmis/research/centers.html

D. Gene and genome relationships and proteome® analysis

Alfresco: Visualization tool for genome
comparison

allgenes.org: A comprehensive gene index
(catalog) derived from ESTs and predicted
genes

CGAP: Cancer genome anatomy project

COG (cluster of orthologous groups):

A gene classification system
(Tatusov et al. 1997, 2000)

Comparative DNA analysis across genomes
(genome signatures by nucleotide
compositional analysis)®

DOGS: Database of genome sizes

E-CELL: A modeling and simulation
environment for biochemical and genetic
processes (Tomita et al. 1999)

FAST_PAN for automatic searches of online
EST databases to identify new family
members (paralogs) (Retief et al. 1999)

GeneCensus Genome Comparisons by
encoded protein structures

GeneQuiz: An integrated system for
large-scale biological sequence analysis
and data management (Andrade et al.
1999; Hoersch et al. 2000)

Genes and disease: Map location on human
chromosomes

Genome channel at Oak Ridge National
Laboratories

GOLD™: Genomes OnLine Database
(Kyrpides 1999)

http://www.sanger.ac.uk/Software/Alfresco/

http://www.allgenes.org/

http://www.ncbi.nlm.nih.gov/CGAP
http://www.ncbi.nlm.nih.gov/COG/

Karlin et al. (1998)

http://www.cbs.dtu.dk/databases/DOGS/index.html
http://www.e-cell.org

http://www.uvasoftware.org/

http://bioinfo.mbb.yale.edu/genome/

http://jura.ebi.ac.uk:8765/ext-genequiz/

http://www.ncbi.nlm.nih.gov/disease/
http://compbio.ornl.gov/channel/

http://wit.integratedgenomics.com/GOLD/

Continued.



Table 10.1. Continued

D. Gene and genome relationships and proteome® analysis (continued)

IMGT ImMunoGeneTics Database
specializing in Immunoglobulins,
T-cell receptors, and Major
Histocompatibility Complex (MHC)
of all vertebrate species (Ruiz et al. 2000)
KEGG: Kyoto Encyclopedia of Genes and
Genomes (Kanehisa and Goto 2000)
MIA Molecular Information Agent: A Web
server that searches biological databases
for information on a macromolecule
Orthologous gene alignments at TIGR
PEDANT: A protein extraction, description,
and analysis tool
SEQUEST for identification of proteins
following mass spectrometry
(Link et al. 1999)
STRING Search Tool for Recurring
Instances of Neighboring Genes
(see Web page) (Snel et al. 2000b)
Taxonomy browser at the NCBI arranges
genomes taxonomically for sequence
retrieval
UniGene System gene-oriented clusters
of GenBank sequences useful for gene
identification
U.S. Dept. of Agriculture, Agricultural
Research Service reference site for plant
and animal genomes (also see TAIR in

http://www.ebi.ac.uk/imgt/index.htmi

http://www.genome.ad.jp/kegg/

http://mia.sdsc.edu/
http://www.tigr.org/tdb/toga/orth_tables.html
http://pedant.mips.biochem.mpg.de/
http://thompson.mbt.washington.edu/sequest/
http://www.Bork.EMBL-Heidelberg. DE/STRING/
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

http://www.ncbi.nlm.nih.gov/UniGene/

http://genome.cornell.edu/

model genomes); includes international links

2 The full complement of proteins produced by an organism, many following gene prediction.
> Whole genomes may be compared at the level of dinucleotide composition, codon usage, strand asymmetry for transcription, and
rare oligonucleotides. For example, the dinucleotide TA is underrepresented in most prokaryotic and eukaryotic genomes but not in

the genomes of several archaea.

E. Metabolism and regulation,” functional genomics

2D gel analysis of proteins: List of
organisms

AlignAce for promoter analysis of
coordinately regulated genes, e.g.,
microarrays by Gibbs sampling
(Roth et al. 1998; Hughes et al. 2000;
McGuire et al. 2000)

ArrayExpress database at European
Bioinformatics Institute for microarray
analysis

BRITE: Database of protein-protein
interactions and cross-reference links
(see KEGG) )

Ecocyc electronic encyclopedia of genes
and metabolism of E. coli
(Karp et al. 2000)

EpoDBis: A database of genes that relate
to vertebrate red blood cells
(Erythropoiesis) (Stoeckert et al. 1999)

Expression Profiler tools for analysis and
clustering of gene expression and
sequence data

Functional genomics sites

GeneCensus Genome Comparisons
by encoded protein structures

http://www.expasy.ch/ch2d/2d-index.html

http://atlas.med.harvard.edu/download/

http://www.ebi.ac.uk/arrayexpress/

http://www.genome.ad.jp/brite/brite.html

http://ecocyc.PangeaSystems.com/ecocyc/

http://www.cbil.upenn.edu/EpoDB/index.html

http://ep.ebi.ac.uk/

http://www.ornl.gov/hgmis/publicat/hgn/hgnarch.html#fg
http://bicinfo.mbb.yale.edu/genome/

Continued.



Table 10.1. Continued

E. Metabolism and regulation,” functional genomics (continued)

GENECLUSTER; Tamayo et al. (1999) http://www.genome.wi.mit.edu/MPR/software.html
GeneRAGE for sequence clustering and available from authors

domain detection; Enright and

Ouzounis (2000)
GeneX: A Collaborative Internet Database  http://www.ncgr.org/research/genex/

and Toolset for Gene Expression Data

MetaCyc metabolic encyclopedia http://ecocyc.PangeaSystems.com/ecocyc/
(see EcoCyc)
Microarray guide: P, Brown lab http://cmgm.stanford.edu/pbrown/
Microarray project at NIH http://www.nhgri.nih.gov/DIR/LCG/15K/HTML/
Microarray software http://rana.lbl.gov/
microarrays.org: A new public source http://www.microarrays.org/

for microarraying information, tools,
and protocols
SMART: For the study of genetically http://smart.embl-heidelberg.de/
mobile protein domains
(Schultz et al. 2000)
SWISS-2DPAGE: Two-dimensional http://www.expasy.ch/ch2d/
polyacrylamide gel electrophoresis
database (Hoogland et al. 2000)
TIGR: Annotation and gene indexing http://www.tigr.org/tdb/tgi.shtml
resources, including analysis of the
transcribed sequences represented in
the public EST databases.
WIT (What is there?): Interactive http://wit.mcs.anl.gov/WIT2/
metabolic reconstruction on the Web
(Overbeek et al. 2000)
Yeast (S. cerevisiae) transcriptome http://bioinfo.mbb.yale.edu/genome/
Yeast genome (S. cerevisiae) on a chip http://cmgm.stanford.edu/pbrown/yeastchip.htm!

* Identification of regulatory sequences is discussed in Chapter 8, and programs for analysis of eukaryotic promoters are listed in
Table 8.6 and on page 371.

F. Gene nomenclature, functional characterization, and genome database development

A. thaliana nomenclature http://www.arabidopis.org/links/nomenclature.html
Genome Annotation and Information http://www.cbil.upenn.edu/gaia2/gaia

Analysis GAIA (Bailey et al. 1998)
GeneQuiz: An integrated system for http://jura.ebi.ac.uk:8765/ext-genequiz//genequiz.html

large-scale biological sequence analysis
and data management (Andrade et al.
1999; Hoersch et al. 2000)
GFF (Gene-Finding Features): http://www.sanger.ac.uk/Software/GFE/
Specification for describing genes
and other features of genomics
GO (gene ontology) controlled vocabulary  http://genome-www.stanford.edu/GO/
K2 system for support of distributed http://www.cbil.upenn.edu/
heterogeneous database and information
resource integration
Kleisli Project: A tool for broad-scale http://sdmc.krdl.org.sg/kleisli/
integration of databanks across the
Internet (see Chung and Wong 1999)

MAGPIE: Multipurpose Automated. http://www.rockefeller.edu/labheads/gaasterland/gaasterland.html,
Genome Project Investigation http://genomes.rockefeller.edu/magpie/index.html,
Environment (Gaasterland and see http://magpie.genome.wisc.edu/tools.html

Sensen 1998)
Mendel Plant Gene Nomenclature Database http://genome-www.stanford.edu/Mendel/
RefSeq and LocusLink: A curated set of http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html
reference sequences with map locations,
a foundation for functional annotation
of the human genome (Pruitt et al. 2000)
TAMBIS: A conceptual model of molecular http://img.cs.man.ac.uk/tambis/
biology and bioinformatics and methods
for querying the model (Baker et al. 1999)
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Prior to the sequenc-
ing of H. influenzae,
the first free-living
organism to be se-
quenced, a large num-
ber of viruses had been
sequenced. Many of
these organisms also
serve as model systems
for studying replica-
tion and gene expres-
sion. As an example,
the nucleotide se-
quence of bacterio-
phage lambda was
completed by Sanger
et al. (1982). A simple
way to retrieve Sse-
quences of viral and
other extrachromoso-
mal genetic elements
such as organelles is
through the National
Center for Biotechnol-
ogy Information
(NCBI)  taxonomy
browser at htp://
www.ncbi.nlm.nih.
gov/Taxonomy/tax-
onomyhome. html.

Table 10.2.

species E. coli K-12 that had been the subject of many years of genetic and biochemical
research. The identification of these genes allowed the investigators to construct some of
the biochemical pathways of the Hemophilus cell. The function of the other 42% of the
Hemophilus genes could not be identified, although some of them were similar to the 38%
of E. coli genes that were also of unknown function. Other unique sequences that appeared
to be associated with the ability of the organism to behave as a human pathogen were also
found.

The success of sequencing the Hemophilus genome in a relatively short time and with a
modest budget heralded the sequencing of a large number of additional prokaryotic organ-
isms (see Table 10.1A; de Bruijn et al. 1998). To date, the genomes of 31 of these species
have been sequenced. Organisms were selected for sequencing based on at least three cri-
teria: (1) They had been subjected to a good deal of biological analysis, e.g., E. coli and
Bacillus subtilis, and thus were model prokaryotic organisms; (2) they were an important
human pathogen, e.g., Mycobacterium tuberculosis (tuberculosis) and Mycoplasma pneu-
moniae (pneumonia); or (3) they were of phylogenetic interest. Analysis of the ribosomal
RNA molecules of prokaryotes and eukaryotes had led to the prediction of three main
branches in the tree of life represented by Archaea, the Bacteria, and the Eukarya.

For genome sequencing projects, organisms have been sampled from throughout the
tree (see Fig. 6.3, p. 243), including some that are in deeper branches of the tree and that
have growth properties reminiscent of an ancient environment. A summary of the genome
size and composition of a representative list of prokaryotes is given in Table 10.2.

As these genome sequences were collected, they were annotated. Annotation involves
identifying open reading frames in the genome sequence using the predicted protein as
query sequences in a database similarity search and then adding any significant matches to
the genome sequence entry in the sequence database. More sophisticated methods of

Features of representative prokaryotic genomes

Genome size (Mbp)
(no. protein-

Organism (reference) Phylogenetic group encoding genes) Novel functions
Escherichia coli (Blattner et al. 1997) Bacteria 4.6 (4288) model organism
Methanococcus jannaschii Archaea 1.66 (1682)% grows at high temperature and
(Bult et al. 1996) pressure and produces methane
Hemophilus influenzae Bacteria 1.83 (1743) human pathogen
(Fleischmann et al. 1995)
Mpycoplasma pneumoniae Bacteria 0.82 (676) human pathogen that grows inside
(Himmelreich et al. 1996) cells; metabolically weak
Bacillus subtilis (Kunst et al. 1997) Bacteria 4.2 (4098) model organism
Aquifex aeolicus (Deckert et al. 1998) Bacteria 1.55 (1512)° ancient species, grows at high

Synechocystis sp. (Kaneko et al. 1996a,b)

temperature and can grow in

a hydrogen, oxygen, carbon

dioxide atmosphere in the

presence of only mineral salts
ancient organism that produces

oxygen by light-harvesting;

may have oxygenated atmosphere

Bacteria 3.57 (3168)

The genome in each case is contained on a single circular DNA molecule except where noted. Another bacterial species, Deinococ-
cus radiodurans, has two chromosomes of sizes 2.6 and 0.4 Mbp and two additional elements of size 0.17 Mb and 46 Kbp
(http://www.tigr.org). Other bacterial species have linear chromosomes (for review, see Volff and Altenbuchner 2000).

* M. jannaschii has a small and a large extrachromosomal element.

b A. aeolicus has a single extrachromosomal element.



Prokaryotic organisms
are included in the
Archaea and Bacteria
phylogenetic groups.
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searching for protein families described in Chapters 7 and 9 are also used for annotation.
In examining the results of such analysis, it is important to look for the method used, the
statistical significance of the result, and the overall degree of confidence in the alignments.
The analysis should be repeated if necessary. Annotation errors occur when the above cri-
teria are not followed (Kyrpides and Ouzounis 1999). Computational resources listed in
Table 10.1 can facilitate the analysis of bacterial genomes. GeneQuiz is an example of such
a resource. Also shown in Table 10.1A are Web sites that provide a complete annotation of
the prokaryotic genomes that have been sequenced.

Eukaryotic Genomes

Centromeres hold new-
ly replicated daughter
chromosomes together
and serve as a point of
attachment for pulling
the chromosomes apart
during cell division.

Telomeres are neces-
sary for chromosomal
replication.

In addition to having linear chromosomes within a nucleus, and differing from prokary-
otic genomes in this respect, eukaryotic genomes commonly have tandem repeats of
sequences and include introns in protein-coding genes.

Sequence Repeats

Because of the skewed base composition of regions that have repeats, they may be purified
by virtue of having different buoyant densities and are known as satellite DNA. The
sequences fall into different types, each with a different repeat unit of length 5-200 bp.
Most of this repetitive DNA is found near the centromere. Also found in eukaryotic
genomes are minisatellites made up of repeat units of up to 25 bp and microsatellites com-
posed of repeat units of 4 bp or less. Microsatellite repeats are found at the ends of eukary-
otic chromosomes at the telomeres, which in humans comprise hundreds of copies of a 6-
bp repeat TTAGGG.

In nondividing cells, a mixture of lightly and darkly stained chromosomal regions called
heterochromatin and euchromatin, respectively, are observed. The centromeric and
telomeric regions are located in the heterochromatin, which is in a compact configuration
and is thought not to be transcribed. Genes that are transcribed are located in the less com-
pact euchromatin, to which regulatory proteins have access (for review, see Brown 1999).

Transposable Elements

These elements can comprise a large proportion of the eukaryotic genome as repetitive
sequences. Transposable elements (TEs) are thought to play an important role in the evo-
lution of these genomes (Kidwell and Lisch 1997, 2000). TEs are DNA sequences that can
move from one chromosomal location to another faster than the chromosome can replicate.
Hence, TEs have the potential to increase in number until they comprise a large proportion
of the genome sequence, a feature already observed in many plants and animals. They
remain detectable in the genome until they blend into the background sequence by muta-
tion. The presence of these elements may be demonstrated using programs for detection of
low-complexity regions in sequences (see Chapter 6, p. 308). The percentage of genomes
that are composed of TEs is depicted in Figure 10.1. For example, more than one-third of
the human genome consists of interspersed repetitive sequences derived from TEs.
Eukaryotic TEs fall into two main classes according to sequence similarity and the
mechanism of transposition. Class I elements encode a reverse transcriptase and use RNA-
mediated mechanisms of transcription. There are three main subclasses of these TEs—the
long terminal repeat (LTR) retrotransposons, retroposons, and retrovirus-like elements
with LTRs. The LTR retrotransposons are related by genetic structure to retroviruses. The
retroposons include short (80-300 bp long) interspersed nuclear elements (SINES) and
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Figure 10.1. Percentages of representative genomes that are made up of transposable elements. The
genomes include those of humans, maize, the fruit fly Drosophila, the model plant Arabidopsis, the
nematode C. elegans, and budding yeast S. cerevisiae, respectively. (Adapted, with permission, from
Kidwell and Lisch 2000 [copyright Elsevier Science].)

long (6-8 kbp long) interspersed nuclear elements (LINES). The types of transposable ele-
ments that are present in high copy numbers in mammalian genomes are illustrated in Fig-
ure 10.2. Ten percent of the human genome comprises one particular family of the SINE
element, designated Alu (1.2 million copies) and 14.6% of one particular LINE designated
LINEI1 (593,000 copies)(Smit 1996).

Vertebrate chromosomes have long (>300 kb) regions of distinct GC richness, repeat con-
tent, and gene density, designated isochores in a model of genome organization proposing
that genomes are made up of distinct segments of unique composition (Bernardi 1995).
Human and mouse chromosomal regions that have a low density of genes are AT-rich and
have more Alu or B1/B2 (SINES) than LINEI elements, whereas the reverse is true for regions
that have a high gene density, and those regions are more GC-rich (Henikoff et al. 1997).

The other class of TEs, class I, is made up of elements that employ a DNA-based mech-
anism of transposition. The human genome contains about 200,000 copies of this class of
elements that probably predate human evolution (Smit 1996). Class II elements also include
the Activation-Dissociation (Ac-Ds) family in maize and the P element in Drosophila.

A third category of TEs has features of both class I and class II TEs. These miniature,
inverted repeat TEs (MITES) are 400 bp in length and were discovered in diverse flowering
plants where they are frequently associated with regulatory regions of genes. Hence, they
could be exerting an influence on regulation of gene expression (Kidwell and Lisch 1997).

The abundance of TEs in the genomes of humans, yeast, maize, and E. coli is illustrated
in Figure 10.3. The following features are apparent: (1) TEs are present in all of the chro-
mosomes, ranging from bacteria to humans, but their abundance varies; (2) TEs can com-
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Figure 10.2, Transposable elements that produce high-copy-number interdispersed repeats in mam-
malian genomes. Shown are class of element, a representation of the structure, size of element plus, in
some cases, size of terminal repeats. l RNA polymerase II or III promoter; I long terminal repeat
(LTR); ™, d inverted terminal repeats; RT reverse transcriptase. Parentheses above elements indicate
protein found in autonomous elements, (Redrawn, with permission, from Smit 1996 [copyright Else-
vier Science].)
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Figure 10.3. Comparison of genome composition in four genomes. {A) Human B T-cell receptor
locus on chromosome 7. V28 and V29.1 encode parts of the B T-cell receptor proteins that are joined
during development of the immune system (Rowen et al. 1996). TRY4, the gene for trypsinogen, and
TRYS5, a pseudogene related to the trypsinogen family, are not related to the receptor sequence. Why
they are located here is not known. (B) Segment of yeast chromosome III (Oliver et al. 1992). (C, D)
50-kb fragments of the maize and E. coli chromosomes, respectively (SanMiguel et al. 1996; Blattner
et al. 1997). The maize repeats are LTR retrovirus-like elements (Fig. 10.2) that have inserted within
the last 3 million years (SanMiguel et al. 1998). (Redrawn, with permission, from Brown 1999 [copy-
right Wiley-Liss].)
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prise a large portion of the genomes of higher eukaryotes, both plants and animals. Thus,
only a small fraction of the genome of these organisms carries gene sequences.

Gene Structure Varies in Eukaryotes

Eukaryotic genes that encode proteins are interrupted by introns of varying length and
number. In S. cerevisiae (budding yeast), only a small fraction of the genes contain introns,
and there are a total of 239 introns in the entire genome. In contrast, in individual human
genes, introns may be present in numbers exceeding 100 and comprise more than 95% of
the gene. Introns can remain at a corresponding position in a eukaryotic gene for long
periods of evolutionary time. The origin of introns in eukaryotic genes is not understood
but has been accounted for by two models. The “introns-early” view proposes that introns
were used to assemble the first genes from sets of ancient conserved exons, whereas the
“introns-late” view proposes that introns broke up previously continuous genes by insert-
ing into them (Gilbert et al. 1997).

The intron structure of genes in a particular eukaryote is used for predicting the loca-
tion of genes of genome sequences. Other features of eukaryotic genes in a particular
organism that are useful for gene prediction include the consensus sequences at
exon—intron and intron—exon splice junctions, base composition, codon usage, and pref-
erence for neighboring codons. Computational methods described in Chapter 8 incorpo-
rate this information into a gene model that may be used to predict the presence of genes
in a genome sequence. Although not always correct, these methods provide a useful anno-
tation of a new genome sequence, and in combination with database similarity searches

Table 10.3.  Number of genes predicted to encode proteins in model organisms and humans

Organism

Haploid genome size ~ Predicted number
Biological features (Mb) of genes

Arabidopsis thaliana

Caenorhabditis elegans

Drosophila melanogaster

Escherichia coli

Homo sapiens (human)

Saccharomyces cerevisiae

plant with small genome; genes for metabolism, 130 ~25,0007
development by hormones and cell-cell interactions
and environmental responses

worm (nematode) genes for development by a unique 100 18,424
cell lineage, nervous system, and reproduction

fruit fly; model for developmental processes by 180 13,601
hormones and cell-cell interactions

bacterium; genes for growth on external sources of 4.7 4,288

energy, transport of molecules through cell
membrane, metabolic pathways, and replication
as a single cell
duplicates many gene functions in other model 3 x10° 120,000°
organisms and in addition includes control of
higher brain functions
budding yeast; genes for existence as a single-celled 13.5 6,241
organism with the basic structure and organization
of the eukaryotic cell

Examples of other model organisms that are to be sequenced include the mouse (Mus musculus), 3,300 Mb, and rice (Oryza sativa),
565 Mb.The mouse genome is a model for the human genome with which it shares a large amount of sequence homology and local
gene order. The rice genome is a model for the cereal crops such as wheat (Triticum aestivum, genome size 1,700 Mb). The cultivated
grasses all share similar genes, and cultivation has resulted in changes in the same genes (Paterson et al. 1995). Plant genomes in gen-
eral vary in genome size due to the presence of repetitive elements including the number of copies of haploid chromosomes. Wheat, for
example, has a hexaploid constitution (for review, see Devos and Gale 2000). The largest plant genomes are members of the Liliaceae
family (>87,000 Mb) (see Bennetzen 2000).

# Based on the annotation of chromosomes 2 and 4 (Kaneko et al. 1999; Lin et al. 1999).

® Based on analysis of 2,000,000 carefully indexed ESTs (Liang et al. 2000). This is higher than previous estimates based on annota-
tion of chromosome 22 (45,000).



GENOME ANALYSIS = 491

described below, provide an indication of the genetic potential of an organism. Numbers
of predicted genes estimated from the complete genome sequence of four model eukary-
otic organisms are given in Table 10.3. The number of predicted genes in E. coli is also
given for comparison. Due to the compact gene density in E. coli (see Fig. 10.3), there is
about one gene per kb of genome sequence. Yeast is about twofold less compact than E.
coli. Of the remaining genomes, C. elegans and A. thaliana have approximately the same
density of genes (one gene per 6 kb), Drosophila being the least dense (one gene per 14 kb).
One-sixth of the Drosophila sequence is composed of TEs and one-third is heterochro-
matic regions that do not include genes. Hence, in the euchromatic regions, the gene den-
sity in the Drosophila genome is one gene per 9 kb. Despite the fact that the lower number
of predicted genes in Drosophila is smaller than that of the other genomes, the amount of
functional diversity, as evidenced by protein family representation, is similar (Adams et al.
2000). Assessment of genome functional diversity is discussed in the following sections.

Pseudogenes

New gene functions are thought to be gained by duplication of an existing gene creating
two tandem copies. Functional differentiation then occurs between the copies by mutation
and selection. However, because most mutations are deleterious, and because only one
gene copy may be needed for function, there is a strong tendency of one copy to accumu-
late mutations that render the gene nonfunctional. Accordingly, pseudogenes are DNA
sequences that were derived from a functional copy of a gene but which have acquired
mutations that are deleterious to function (Li 1997). In Figure 10.3A, the pseudogene
TRY5 is similar to the nearby functional gene TRY4.

There is also a second type of pseudogene found in eukaryotic genomes called a pro-
cessed pseudogene. Processed pseudogenes are also derived from a functional gene, but
they do not contain introns and lack a promoter; hence, they are not expressed. The origin
of these pseudogenes is probably due to reverse transcription of the mRNA of the func-
tional gene and insertion of the cDNA copy into a new chromosomal location by a LINE1
(Fig. 10.2) reverse transcriptase (Weiner 2000).

As discussed in Chapter 2, sequencing of genomes depends on the assembly of a large
number of DNA reads into a linear, contiguous DNA sequence. The cost and efficiency of
this process has been greatly improved by automatic methods of sequence assembly, first
used for the sequencing of the bacterium H. influenzae (see Prokaryotic genome, p. 481).
This same method of assembly was also used, in part, to complete the sequencing of the
Drosophila (Myers et al. 2000) and human genomes in a timely manner.

As illustrated and explained in the Chapter 10 flowchart (p. 492), each genome sequence
is scanned for protein-encoding genes using gene models trained on known gene sequences
from the same organism. Methods of gene prediction in eukaryotic genomic DNA are dis-
cussed in Chapter 5 (for RNA-encoding genes) and Chapter 8 (for protein-encoding genes).

Identification of the function of protein-encoding genes is discussed in the Chapter 10
flowchart and in Chapter 7. For a new genome, each predicted gene is translated into a pro-
tein sequence; the collection of protein sequences encoded by the genome is the proteome
of the organism. As illustrated in Figure 10.4, left panel, every protein in the proteome is
then used as a query sequence in a database similarity search. Matching database sequences
are realigned with the query sequence to evaluate the extent and significance of the align-
ment, as described in Chapter 2.
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Screening the predicted protein sequences against an expressed sequence tag (EST)
library confirms the prediction and expression of the gene (see Adams et al. 2000). The col-
lective information on proteome function can then be further analyzed by self-comparison
to find duplicated genes (paralogs) and by a proteome-by-proteome comparison to iden-
tify orthologs, genes that have maintained the same function through speciation, and other
sequence and evolutionary relationships that are important for metabolic, regulatory, and
cellular functions. These proteome comparisons are described in the next section.
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1. Genome sequences are assembled from DNA sequence fragments of approximate length 500 bp
obtained using DNA sequencing machines as described in Chapter 2. Chromosomes of a target
organism are purified, fragmented, and subcloned in fragments of size hundreds of kbp in bacterial
artifical chromosomes (BACs). The BAC fragments are then further subcloned as smaller fragments
into plasmid vectors for DNA sequencing (although the ends of BACs may also be sequenced as a way
to circumvent problems with sequence repeats; see Myers et al. 2000). Full chromosomal sequences
are then assembled from the overlaps in a highly redundant set of fragments by an automatic com-
putational method (Myers et al. 2000) or from the fragment order on a physical map.

2. Eukaryotic genomes comprise classes of repeated elements, including tandem repeats present in cen-
tromeres and telomeres, dispersed tandem repeats (minisatellites and macrosatellites), and interdis-
persed TEs. TEs can comprise one-half or more of the genome sequence. Analysis of sequence repeats
is discussed in Chapters 3 and 7. Identification of classes of repeated elements is aided by searchable
databases discussed in Chapter 7 (p. 309).

3. Gene identification in prokaryotic organisms is simplified by their lacking introns. Once the sequence
patterns that are characteristic of the genes in a particular prokaryotic organism (e.g, codon usage,
codon neighbor preference) have been found, gene locations in the genome sequence can be pre-
dicted quite accurately. The presence of introns in eukaryotic genomes makes gene prediction more
involved because, in addition to the above features, locations of intron—-exon and exon-intron splice
junctions must also be predicted. Methods of gene prediction in prokaryotes and eukaryotes are dis-
cussed in Chapter 8.

4. Gene prediction methods involve training a gene model (e.g., a hidden Markov model or neural net-
work, see Chapter 8) to recognize genes in a particular organism. Due to variations in gene codon
preferences and splice junctions (see note 3, Fig. 10.3), a model must usually be trained for each new
genome.

5. Since gene prediction methods are only partially accurate (for review, see Bork 1999; see Chapter 8),
gene identification is facilitated by high-throughput sequencing of partial cDNA copies of expressed
genes (called expressed sequence tags or EST sequences). Presence of ESTs confirms that a predicted
gene is transcribed. A more thorough sequencing of full-length cDNA clones may be necessary to
confirm the structure of genes chosen for a more detailed analysis.

6. The amino acid sequence of proteins encoded by the predicted genes is used as a query of the protein
sequence databases in a database similarity search. A match of a predicted protein sequence to one or
more database sequences not only serves to identify the gene function, but also validates the gene pre-
diction. Pseudogenes, gene copies that have lost function, may also be found in this analysis. Only
matches with highly significant alignment scores and alignments (see Chapter 3, page 58) should be
included. The genome sequence is annotated with the information on gene content and predicted
structure, gene location, and functional predictions. The predicted set of proteins for the genome is
referred to as the proteome. Accurate annotation is extremely important so that others users of the
information are not misinformed. Procedures for searches starting with genome, EST, and ¢cDNA
sequence are described in Chapter 8. Usually, not all query proteins will match a database sequence.
Hence, it is important to extend the analysis by searching the predicted protein sequence for charac-
teristic domains (conserved amino acid patterns that can be aligned) that serve as a signature of a
protein family or of a biochemical or structural feature (see note 17). A further extension is to iden-
tify members of protein families or domains that represent a structural fold using the computation-
al tools described in Chapter 9. This additional information also needs to be accurately described and
the significance established.

7. Microarray analysis provides a global picture of gene expression for the genome by revealing which
genes are expressed at a particular stage of the cell cycle or developmental cycle of an organism, or
genes that respond to a given environmental signal to the same extent. This type of information pro-
vides an indication as to which genes share a related biological function or may act in the same bio-
chemical pathway and may thereby give clues that will assist in gene identification.

8. Genes that are found to be coregulated either by a microarray analysis or by a protein two-dimen-
sional analysis should share sequence patterns in the promoter region that direct the activity of tran-
scription factors. The types of analyses that are performed are discussed in Chapter 8 (pp. 357-373),
and additional tools for analyzing coregulated genes are listed in Table 10.1E.
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As genes are identified in a new genome sequence, some will be found that are known to act
sequentially in a metabolic pathway or to have a known role in gene regulation in other organ-
isms. From this information, the metabolic pathways and metabolic activities of the organism
will become apparent. In some cases, the apparent absence of a gene in a well-represented path-
way may lead to a more detailed search for the gene. Clustering of genes in the pathway on the
genome of a related organism can provide a further hint as to where the gene may be located (see
note 20).

Individual proteins produced by the genome can be separated to a large extent by this method
and specific ones identified by various biochemical and immunological tests. Moreover, changes
in levels of proteins in response to an environment signal can be monitored in much the same
way as a microarray analysis is performed. Microarrays only detect untranslated mRNAs, where-
as a two-dimensional gel protein analysis detects translation products, thus revealing an addi-
tional level of regulation. Resources for analysis of regulation by this method are given in Table
10.1D.

Protein spots may be excised from a two-dimensional protein gel (see note 10) and subjected to
a combination of amino acid sequencing and cleavage analyses using the techniques of mass spec-
trometry and high-pressure liquid chromatography. Genome regions that encode these
sequences can then be identified and the corresponding gene located. A similar method may be
used to identify the gene that encodes a particular protein that has been purified and character-
ized in the laboratory. The computational methods are described in Chapter 7 (p- 295, FASTA
tools) and Table 10.1D.

Functional genomics involves the preparation of mutant or transgenic organisms with a mutant
form of a particular gene usually designed to prevent expression of the gene. The gene function is
revealed by any abnormal properties of the mutant organism. This methodology provides a way to
test a gene function that is predicted by sequence similarity to be the same as that of a gene of
known function in another organism. If the other organism is very different biologically (com-
paring a predicted plant or animal gene to a known yeast gene), then functional genomics can also
shed light on any newly acquired biological role. When two or more members of a gene family are
found (see notes 16 and 17), rather than a single match to a known gene, the biological activity of
these members may be analyzed by functional genomics to look for diversification of function in
the family.

Since the entire genome sequence is available, as each gene is identified, the relative position of the
gene will be known.

A map showing the location of each identified gene is made. These relative positions of genes can be
compared to similar maps of other organisms to identify rearrangements that have occurred in the
genome. Gene order in two related organisms reflects the order that was present in a common ances-
tor genome. Chromosomal breaks followed by a reassembly of fragments in a different order can
produce new gene maps. These types of evolutionary changes in genomes have been modeled by
computational methods (p. 512). Gene order is revealed not only by the physical order of genes on
the chromosome, but also by genetic analysis. Populations of an organism show sequence variations
that are readily detected by DNA sequencing and other analysis methods. The inheritance of genet-
ic diseases in humans and animals (e.g., cancer and heart disease), and of desirable traits in plants,
can be traced genetically by pedigree analysis or genetic crosses. Sequence variations (polymor-
phisms) that are close to (tightly linked) a trait may be used to trace the trait by virtue of the fact that
the polymorphism and the trait are seldom separated from one generation to the next. These linked
polymorphisms may then be used for mapping and identifying important genes.

A comparison is made in which every protein is used as a query in a similarity search against a
database composed of the rest of the proteome, and the significant matches are identified by a low
expect value (E<10™° was used in a recent analysis by Rubin et al. [2000]). Since many proteins com-
prise different combinations of a common set of domains, proteins that align along most of their
lengths (80% identity is a conservative choice) are chosen to select those that have a conserved
domain structure.

A set of related proteins identified in step 15 is subjected to a cluster analysis in order to identify the
most closely related groups of proteins and to avoid domain-matching. This group of proteins is
derived from a gene family of paralogs that have arisen by gene duplication.
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Each protein in the predicted proteome is again used as a query of a curated protein sequence
database such as SwissProt in order to locate similar domains and sequences. The domain compo-
sition of each protein is also determined by searching for matches in domain databases such as
Interpro, described in Table 9.5. The analysis reveals how many domains and domain combinations
are present in the proteome, and reveals any unusual representation that might have biological sig-
nificance. The number of expressed genes in each family can also be compared to the number in
other organisms to determine whether or not there has been an expansion of the family in the
genome.

Comparative genomics is a comparison of all the proteins in two or more proteomes, the relative
locations of related genes in separate genomes, and any local groupings of genes that may be of func-
tional or regulatory significance.

Orthologs are genes that are so highly conserved by sequence in different genomes that the proteins
they encode are strongly predicted to have the same structure and function and to have arisen from
a common ancestor through speciation. To identify orthologs, each protein in the proteome of an
organism is used as a query in a similarity search of a database comprising the proteomes of one or
more different organisms. The best hit in each proteome is likely to be with an ortholog of the query
gene. In comparing two proteomes, a common standard is to require that for each pair of orthologs,
the first of the pair is the best hit when the second is used to query the proteome of the first. To find
orthologs, very low E value scores (E<10%°) for the alignment score and an alignment that includes
60-80% of the query sequence are generally required in order to avoid matches to paralogs. Although
these requirements for classification of orthologs are very stringent, a more relaxed set of conditions
will lead to many more false-positive predictions. In bacteria, the possibility of horizontal transfer of
genes between species also has to be considered (p. 508).

In related organisms, both gene content of the genome and gene order on the chromosome are like-
ly to be conserved. As the relationship between the organisms decreases, local groups of genes
remain clustered together, but chromosomal rearrangements move the clusters to other locations.
In microbial genomes, genes specifying a metabolic pathway may be contiguous on the genome
where they are coregulated transcriptionally in an operon by a common promoter. In other organ-
isms, genes that have a related function can also be clustered. Hence, the function of a particular
gene can sometimes be predicted, given the known function of a neighboring, closely linked gene.
Genomes are also compared at the level of gene content, predicted metabolic functions, regulation
as revealed by microarray analysis, and others. These comparisons provide a basis for additional
predictions as to which genes are functionally related. Gene fusion events that combine domains
found in two proteins in one organism into a composite protein with both domains in a second
organism are also found and provide evidence that the proteins physically interact or have a relat-
ed function.

Evolutionary modeling can include a number of types of analyses including (1) the prediction of
chromosomal rearrangements that preceded the present arrangement (e.g., a comparison of
mouse and human chromosomes), (2) analysis of duplications at the protein domain, gene, chro-
mosomal, and full genome level, and (3) search for horizontal transfer events between separate
organisms.

Due to the magnitude of the task, the earlier stages of genome analysis including gene predic-
tion and database similarity searches are performed automatically with little human intervention.
The genome sequence is then annotated with any information found without involving human
judgment. The types of genome analyses in the flowchart also provide many predictions and give
rise to many preliminary hypotheses regarding gene function and regulation. As more detailed
information is collected by laboratory experiment and by a closer examination of the sequence
data, this information needs to be linked to the genome sequence. In addition, the literature, past
and present, needs to be scanned for information relevant to the genome. A carefully crafted
database that takes into account the entire body of information should then be established. In
addition to information on the specific genome of interest, the database should include cross-
references to other genomes, To facilitate such intergenome comparisons, common gene vocab-
ularies have been proposed. This slow, expensive, and time-consuming phase of genome analysis
is of prime importance if the genome information is to be available in an accurate form for
public use.
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Figure 10.4. Analysis of the proteome encoded by genomes. (A) Types of proteome analyses. (B)
Examples of database hits resulting from domain structure of proteins. (C) Cluster analysis of simi-
lar sequences. (D) Domain identification.

Notes:

1. Due to the large number of comparisons that must be made in these types of analyses (as many
as 20,000 by 20,000 sequences) and due to the volume of program output, the procedure must be
automated on a local machine using Perl scripts or a similar method and a database system. For
BLAST, setting an effective database size appropriate for each search and program is important
for obtaining a correct statistical evaluation of alignment scores. The bioperl project provides
valuable resources for this purpose (http://www.bioperl.org).
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B. Examples of database hits resulting from domain structure of proteins®
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2. Each protein encoded by the genome is used as a query in database similarity searches to identi-
fy similar database proteins, some having a known structure or function. Additional searches of
EST databases can be used to identify additional relatives of the query sequence. These searches
and evaluation of the alignment scores of matching sequences are described in Chapter 7.

3. An all-against-all analysis requires first making a database of the proteome. This database is then
sequentially searched by each individual protein sequence of the proteome using a rapid database
similarity search tool such as BLAST, WU-BLAST, or FASTA. The scoring systems of these pro-
grams vary and are described in Chapter 7. Note also that P values of WU-BLAST (Chervitz et al.
1998) are similar to E values of NCBI BLAST (Rubin et al. 2000) for values of P and E < 0.05.
This analysis generates a matrix of alignment scores, each with an E value and corresponding
alignment for each pair of proteins. Recall that the E value of an alignment score is the probabil-
ity that an alignment score as good as the one found would be observed between two random or
unrelated sequences in a search of a database of the same size. The lower the E value, the more
significant the alignment betwéen a pair of matching sequences. In an all-against-all comparison
within one proteome, significantly matched pairs of sequences may be paralogs that originated
from a gene duplication event in this genome or the genome of an ancestor organism. Unique
proteins can be identified through their not matching any other protein. A conservative cutoff E
value (e.g., 107% Rubin et al. 2000) limits the matches to the most significant ones, which are then
clustered into families as described below and in the text.

4. To perform a between-proteome analysis, proteome databases are made for the known and pre-
dicted genes of two or more genomes. Both single (Chervitz et al. 1998) and combined proteome
databases may be made (Rubin et al. 2000). Each protein of one proteome is then selected in turn
as a query of the proteome of another organism or the combined proteome of a group of organ-
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isms. As in an all-by-all protein comparison within a proteome, a matrix of alignment scores with
E values is made, and the most closely related sequences in the two organisms are identified. This
analysis can predict orthologs, i.e., proteins that have an identical function attributable to descent
of the respective genes from a common ancestor. The types of criteria used in bioinformatics to
define orthologs include (1) reciprocal database searches with one sequence as query give a best
hit of the other sequence (Tatusov et al. 1997); (2) the alignment of the sequences includes at least
80% of each sequence (Chervitz et al. 1998; Rubin et al. 2000); and (3) the sequences are clustered
when all matching sequences are subjected to a cluster analysis. The likelihood of orthology is also
increased if a set of orthologous pairs are linked together on the respective genomes. The types of
analyses are discussed further in the text.

The cluster search option is most useful for prokaryotic organisms. Each protein in the proteome
is used as a query of a database of protein clusters using the program COGNITOR (Table 10.1,
COGs entry). These clusters are composed of orthologous pairs of sequence defined by criterion
1, described in note 4. The database was made by performing an all-by-all genome comparison
across a spectrum of prokaryotic organisms and a portion of the yeast proteome (Tatusov et al.
2000). Orthologous pairs of sequence were then merged with clusters or orthologous pairs
(COGs) for multiple proteomes as described in the text. COGs have been linked to classes of bio-
chemical function (Tatusov et al. 1997). Hence, matching a query sequence to the COG can
potentially identify unique orthologs in another proteome that may have the same function. The
COGs database is designed to provide a preliminary indication of orthologous relationships that
can be tested by more detailed similarity searches, sequence alignments, and phylogenetic analy-
sis of the matching sequences.

. Due to the modular nature of proteins, several types of matches may be identified in the all-

against-all and between-proteome comparisons. Each colored box represents a hypothetical con-
served domain that is matched in the search. The dotted box (sequence 5) represents a less simi-
lar domain that will not align as well. Highest-scoring matches corresponding to matching of
multiple domains present in the query and in the matched sequence ([i] and [ii}, sequence pairs
1 and 2, 6 and 7, etc.). The alignment scores of these pairs should have extremely low E values. A
multidomain query protein will also match database proteins that have a single domain (as in
sequences 1 and 3, 6 and 8). Because only one domain is represented by the alignment, the align-
ment will in general be shorter and have a poorer (higher) E value score than a multidomain
alignment. The analysis will also identify matches of a query with a database protein that has two
or more copies of query sequence domain (sequence 10). Query sequences with a minimal
domain representation (ii) will not score particularly well with any sequence (sequence 3). Dupli-
cate comparisons generated by the method are eliminated. When only an EST library of an organ-
ism is available, the proteome may be compared to this library. However, since these databases
are generally not complete and any alignments are shorter, it is diffcult to compare these results
with the full proteome comparisons. From a biological standpoint, ESTs define expressed genes,
whereas proteomes are predicted genes.

WU-BLAST produces P scores and BLAST (NCBI) E scores where E = —In (1 — P). For values
less than 0.05, E = P. The score ranges depicted in this column are hypothetical examples. The
choice of a <107 score is a conservative one for identification of orthologs that should have a
similar domain structure, as do the sequences in this example (see Chervitz et al. 1998; Rubin et
al. 2000). To define these groups, the distribution of hits below different thresholds should be
examined, as in the above references. The higher cutoff score for EST matches is used because the

-search of an EST database may only produce short alignments.

. Shown are two representations of the sequence relationships found in part B. In (i) the sequences,

color coded to represent domain structure, are represented by vertices on graph. In comparing
the graphic (i) and single linkage (ii) clusters, note that in (i) each sequence has multiple edges
representing links to related sequences, whereas in (ii) the sequences are only connected to one
branch on the outermost part of the tree.

. The sequence alignments found above represent the presence of one or more conserved domains

in each cluster or group of clusters. These clusters are next analyzed for the presence of known
domains by searches of domain databases as described in Chapter 9. This analysis identifies the
number and types of domains that are shared between organisms, or that have been duplicated
in proteomes to produce paralogs.
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Comparative genomics includes a comparison of gene number, gene content, and gene
location in both prokaryotic and eukaryotic groups of organisms. The availability of
complete genome sequences makes possible a comparison of all of the proteins encoded
by one genome, the proteome of that organism, with those of another. Because the
genome sequence provides both the sequence and the map location of each gene, both
the sequence and location can be compared. Sequence comparisons provide information
on gene relationships—the number of genes in two organisms that are so similar that
they must have the same function and evolutionary history—these genes are orthologs
(Fitch 1970). Map locations of orthologous genes may also be compared. If a set of genes
is grouped together at a particular chromosomal location, and if a set of similar genes is
also grouped together in the genome of another organism, these groups share an evolu-
tionary history.

Proteins may also be clustered into families on the basis of either sequence or struc-
tural similarity, as discussed in Chapter 9. Proteins are modular and often comprise sep-
arate domains. The number of protein sequences that are available is sufficient to deter-
mine that domain shuffling occurs in evolution—domains appear or disappear in
particular families, become combined to make new families, or else become separated
into two different proteins that are predicted to interact (Snel et al. 2000a). The com-
parisons of proteomes of different organisms can identify the type of domain changes
and also provide an indication as to what biological role they may have in a particular
organism.

The assortment and reassortment of protein domains takes place in individual
genomes. Proteins with new functions are produced by a gene duplication event in
which two tandem copies of a gene are produced (see Fig. 3.3, p. 55). Through mutation
and natural selection, one of the copies can develop a new function, leaving the other
copy to cover for the original function. However, because most mutations are deleteri-
ous to function, often one of the copies becomes a pseudogene. Not all gene duplications
are thought to have the above effects. Another scenario is that two duplicated genes both
undergo change, but interactions between the proteins stabilize the original function and
support the evolution of new ones (Force et al. 1999).

The processes of domain assortment and gene duplication produce families of pro-
teins in organisms. Following speciation, a newly derived genome will inherit the fami-
lies of ancestor organisms, but will also develop new ones to meet evolutionary chal-
lenges. Comparison of each of the proteins encoded by an organism with every protein,
an all-against-all comparison, reveals which protein families have been amplified and
what rearrangements have occurred as steps in the evolutionary process. When two or
more proteins in the proteome share a high degree of similarity because they share the
same set of domains (illustrated in Fig. 10.4B), they are likely to be paralogs (Fitch 1970),
genes that arose by gene duplication events. Proteins that align over shorter regions
share some domains, but also may not share others. Although gene duplication events
could have created such variation, other rearrangements may have also occurred, blur-
ring the evolutionary history.

The following sections describe methods to compare prokaryotic and eukaryotic
genomes for orthologs and paralogs. It is important to keep in mind the predictive
nature of these types of analyses. Decisions about gene relationships depend on careful
manual inspection of sequence alignments (Huynen et al. 2000).
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Proteome Analysis

All-against-all Self-comparison Reveals Numbers of Gene Families and
Duplicated Genes

A comparison of each protein in the proteome with all other proteins distinguishes
unique proteins from proteins that have arisen from gene duplication, and also reveals the
number of protein families. The domain content of these proteins may also be analyzed.
One type of all-against-all proteome comparison is described in Figure 10.4A, second
panel. In this analysis, each protein is used as a query in a similarity search against the
remaining proteome, and the similar sequences are ranked by the quality and length of
the alignments found. The search is conducted in the manner described in Chapter 7,
with each alignment score receiving a statistical evaluation (P or E value). As shown in
Figure 10.4B, a match between a query sequence and another proteome sequence with the
same domain structure will produce a high-scoring, highly significant alignment. These
proteins are designated paralogs because they have almost certainly originated from a
gene duplication event. Lower-scoring, less significant alignments may have identified
proteins that share domains but not the high degree of sequence similarity that is appar-
ent in the best-scoring alignments. These may also be paralogs, but they may also have a
complicated history of domain shuffling that is difficult to reconstruct.

Cluster analysis. To sort out relationships among all of the proteins that are found
to be related in a series of searches of the types shown in Figure 10.4B, they are subjected
to a clustering analysis shown in Figure 10.4C. Only the relationships revealed by the
hypothetical set of searches illustrated in part B are shown. Some of the proteins may have
other relationships, which are not depicted in order to simplify the example.

Clustering organizes the proteins into groups by some objective criterion. One criteri-
on for a matching protein pair is the statistical significance of their alignment score (the
P or E value from BLAST searches). The lower this value, the better the alignment. There
will be a cutoff P or E value at which the matches in the BLAST search are no longer con-
sidered significant. A value of P or E > 0.01-0.05 is usually the point at which the align-
ment score is no longer considered to be significant in order to focus on a more closely
related group of proteins. A second criterion for clustering proteins is the distance
between each pair of sequences in a multiple sequence alignment. The distance is the
number of amino acid changes between the aligned sequences.

Clustering by making subgraphs. Figure 10.4 indicates two ways of clustering relat-
ed sequences based on the above criteria. Part (i) is a graph in which each sequence is a
vertex and each pair of sequences that is matched with a significant alignment score is
joined by an edge that is weighted according to the statistical significance of the alignment
score. One way to identify the most strongly supported clusters is simply to remove the
most weakly supported edges in the graph, in this case the alignments with the highest P/E
scores (dotted edges). As weaker and weaker links are removed, the remaining combina-
tions of vertices and edges represent most strongly linked sequences. This type of analy-
sis was performed on an initial collection of E. coli genes by Labedan and Riley (1995).
Their analyses revealed that E. coli genes clustered in this manner encode proteins already
known to belong to the same broad functional category, EC number, or to have a similar
physiological function. For another approach to identify orthologs in microbial genes, see
Bansal (1999).

Another method for clustering similar sequences that are likely to be paralogs is
described in Rubin et al. (2000). In this method, edges of E value > 1 X 107° are removed.
The remaining graph is then broken down into subgraphs comprising sequences that
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share a significant relationship to each other but not to other sequences. The criterion
chosen is that the group should mutually share at least two-thirds of all of the edges from
this group to all proteins in the proteome. If two proteins A and B share a domain but do
not share another domain in A, and if A shares this other domain with a number of other
sequernces, the algorithm would tend not to cluster A with B (Rubin et al. 2000). Thus, the
algorithm favors the selection of proteins with the same domain structure reflecting that
these proteins are the most likely ones to be paralogs. ‘

Clustering by single linkage. A second method for clustering related sequences is
shown in Figure 10.4C, part (ii). This method is based on the distance criterion for
sequence relationships described above. First, a group of related sequences found in the
all-against-all proteome comparison is subjected to a multiple sequence alignment usual-
ly by CLUSTALW (Chapter 4, p. 154). A distance matrix that shows the number of amino
acid changes between each pair of sequences is then made. This matrix is then used to
cluster the sequences by a neighbor-joining algorithm. This procedure and the algorithms
are the same as those used to make a phylogenetic tree by the distance methods, described
in Chapter 8. These methods produce a tree (Fig. 10.4C, part ii, left) or a different repre-
sentation of the tree called a dendrogram (Fig. 10.4C, part ii, right), that minimizes the
number of amino acid changes that would generate the group of sequences. The tree is
also defined as a minimum spanning tree (Duran and Odell 1974). The tree and dendro-
gram cluster the sequences into the most closely related groups. Branches joining the least
related sequences may be removed, thus leaving two sub-trees with a small group of
sequences. As smaller groups are chosen, the most strongly supported clusters are likely
to be made up of paralogs. However, it is not easy to distinguish sequences that are par-
alogs, i.c., share several domains, from those that share domains but that also share other
domains with more distantly related sequences without inspection of the alignments.
GeneRage (Table 10.1E) provides an automatic system for classifying protein data sets by
means of an iterative refinement approach using local alignments, matrix methods, and
single-linkage clustering.

Core proteome. The above types of all-against-all analyses provide an indication as to
the number of protein/gene families in an organism. This number represents the core pro-
teome of the organism from which all biological functions have diversified. A representa-
tive sample is shown in Table 10.4.

In Hemophilus, 1247 of the total number of 1709 proteins do not have paralogs (Rubin
et al. 2000). The core proteomes of the worm and fly are similar in size but with a greater
number of duplicated genes in the worm. It is quite remarkable that the core proteome of
the multicellular organisms (worm and fly) is only twice that of yeast.

Table 10.4. Numbers of gene families and duplicated genes in model organisms (Rubin et al. 2000)

Organism Total number of genes Number of gene families® Number of duplicated genes®
Hemophilus influenzae (bacteria) 1709 1425°¢ 284
Saccharomyces cerevisiae (yeast) 6241 4383 1858
Caenorhabditis elegans (worm) 18,424 9453 8971

Drosophila melanogaster (fly) 13, 600 8065 5536

* The number of clustered groups in the all-against-all analysis using the algorithm described in the text. This number represents the
core proteome of the organism.

b Count of number of duplicated genes within the protein family clusters.

€ 178 families have paralogs.
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Between-proteome Comparisons Identify Orthologs,
Gene Families, and Domains

Comparisons between proteomes of organisms are illustrated by the third panel in Figure
10.4A. In this analysis, each protein in the proteome is used as a query in a database simi-
larity search against another proteome or combined set of proteomes. When the proteome
of an organism is not available, an EST database may be searched for matches, but the type
of search is less informative than a full-genome comparison (see below). As in the all-
against-all search for paralogs, the search should identify highly conserved proteins of sim-
ilar domain structure and other similar proteins that show variation in the domain struc-
ture as illustrated in Figure 10.4B. A pair of proteins in two organisms that align along
most of their lengths with a highly significant alignment score are likely to be orthologs,
proteins that share a common ancestry and that have kept the same function following
speciation. These proteins perform the core biological functions shared by all organisms,
including DNA replication, transcription, translation, and intermediary metabolism. They
do not include the proteins unique to the biology of a particular organism.

Other matching sequences in this class could also be orthologs, but could also represent
a match between a sequence in proteome A to a paralog of a true ortholog of the sequence
in proteome B. In one method designed to identify true orthologs, the most closely relat-
ed pairs of sequences in proteomes A and B are identified. Two proteins, X in proteome A
and Y in proteome B, are predicted to be an orthologous pair if reciprocal searches of pro-
teome A with Y and proteome B with X each produce the highest-scoring match with the
other protein. Furthermore, the E value for each alignment should be < 0.01 and the align-
ment should extend over 60% of each protein (Huynen and Bork 1998).

In another method to identify the mostly closely related sequences in different pro-
teomes, Chervitz et al. (1998) kept only matched sequences with a very conservative P
value for the alignment score. The steps for identifying a group of related sequences
between the yeast and worm proteomes were as follows:

1. Choose a yeast protein and perform a database similarity search of the worm proteome
using WU-BLAST, a yeast-versus-worm search.
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2. Group the worm sequences that match the yeast query sequence with a high P value
(10 7% to 10 7'%°) and include the yeast query sequence in the group.

3. From the group in proteome B, choose a worm sequence and make a search of the yeast
proteome, using the same P value limit as in step 2.

. Add any matching yeast sequence to the grouping made in step 2.
. Repeat steps 3 and 4 for all initially matched worm sequences.
. Repeat steps 1-5 for every yeast protein.

. Perform a comparable worm-versus-yeast analysis as outlined in steps 1-6.

o NN U

. Coalesce the groups of related sequences and remove any redundancies so that every
sequence is represented only once.

9. Eliminate any matched pairs in which less than 80% of each sequence is in the align-
ment.

The above steps locate groups of highly related sequences in two proteomes based on
high-scoring alignments among the group. These groups are then subjected to the single
linkage cluster analysis described above and illustrated in Figure 10.4C. The analysis cre-
ates a multiple sequence alignment and a tree/dendrogram representation of sequence
relationships very similar to that produced in a phylogenetic analysis. Orthologs appear as
nearest neighbors on the tips of this tree.

The results of the above analysis with the yeast and worm proteomes are shown in Table
10.5. The numbers of sequence groups decrease about fivefold as the stringency of the E
value of the required scores decreases from 107'? to 107", and a similar effect is observed
for the subcategories shown in the table. Given that these sequences also align to the extent
of 80%, they represent highly conserved sets of genes.

Clusters of orthologous groups.  As described above, a pair of orthologous genes in two
organisms share so much sequence similarity that they may be assumed to have arisen
from a common ancestor gene. When entire proteomes of the two organisms are available,
orthologs may be identified. Using the protein from one of the organisms to search the
proteome of the other for high-scoring matches should identify the ortholog as the high-
est-scoring match, or best hit. However, in many cases, each of the orthologs belongs to a
family composed of paralogous sequences related to each other by gene duplication events.
Hence, in the above database search, the ortholog will not only match the orthologous
sequence in the second proteome but also these other paralogous sequences. The objective
of the clusters of orthologous groups (COG) approach is to identify all matching proteins
in the organisms, defined as an orthologous group related by both speciation and gene
duplication events. Related orthologous groups in different organisms are then clustered
together to form a COG that will include both orthologs and paralogs. These clusters cor-

Table 10.5. Numbers of closely related yeast and worm sequences

Cut-off P value <107 <107% <107% <1071
Total number of sequence groups 1171 984 552 236
Number of groups with more than 560 442 230 79
two members
Number and percent of all yeast 2697 (40) 1848 (30) 888 (14) 330 (5)
proteins (6217) represented in
groups
Number and percent of all worm 3653 (19) 2497 (13) 1094 (6) 370 (2)

proteins represented in groups
Adapted, with permission, from Chervitz et al. 1998 (copyright AAAS).




GENOME ANALYSIS & 505

respond to classes of metabolic function. A database produced by analysis of the available
microbial genomes and part of the yeast genome has been made, and a newly identified
microbial protein may be used as a query to search this database (see Table 10.1D). Any
significant matches found will provide an indication as to the metabolic function of the
query protein (Tatusov et al. 1997).

To produce COGs, similarity searches were performed among the proteomes of phy-
logenetically distinct clades of prokaryotes (see Fig. 6.3, p. 243 for a tree). Orthologous
pairs were first defined by the best hits in reciprocal searches. A cluster of three orthologs
in three different species was then represented as a triangle on a diagram. Some triangles
included a common side, representing the presence of the same orthologous pair in a
comparison of four or more organisms. Triangles with this feature were merged into a
cluster similar in appearance to Figure 10.4C(i). Paralogs defined by sets of three match-
ing sequences in the selected organisms were also added to these clusters. Paralogs may
include a best hit or a high-scoring match of one of the sequences by another, but the
reciprocal match can have low similarity that does not have to be significant (Koonin et
al. 1998). Sixty percent of the original set of 720 COGs does not include paralogs, or
includes paralogs from one lineage only, suggesting that there has not been extensive
duplication of this group.

Some of the clusters defined in this manner include proteins having a different domain
structure, as illustrated in Figure 10.4B. In other cases, examination of sequence similarity
between some pairs of paralogs reveals that a particular paralog has disappeared in a par-
ticular lineage. The affected COGs have been modified to reflect more accurately the
domain organization of proteins and loss of paralogs. Finally, some additional COGs not
represented in the data set were produced by single linkage cluster analysis as described in
Figure 10.4C and in the above sections (Tatusov et al. 1997). The proteins encoded by 13
prokaryotic organisms have been analyzed for COG relationships (Koonin et al. 1998). A
COG analysis provides an initial assessment of the genome composition of prokaryotic
organisms and should be followed by a more detailed analysis as described above for the
worm and yeast genomes.

Comparison of proteomes to EST databases of an organism. For many eukaryotic
organisms, the complete genome sequence is not available. What is available for some of
these organisms is a large collection of EST sequences obtained by random sequencing of
¢DNA copies of cell mRNA sequences. These sequences are single DNA sequence reads
that contain a small fraction of incorrect base assessments, insertions, and deletions. Many
sequences arise from near the 3’ end of the mRNA, although every effort is usually made
to read as far 5 as possible into the upstream portion of the cDNA. Because not all of the
genes may be expressed in the tissues chosen for analysis, the library will often not be com-
plete. EST libraries are useful for preliminary identification of genes by database similarity
searches as described in Chapter 7. A more detailed analysis may then be made by cloning
and sequencing the intact cDNA.

An EST database of an organism can be analyzed for the presence of gene families,
orthologs, and paralogs. A protein from the yeast or fly proteome, for example, can be used
as a query of a human EST database by translating each EST sequence in all six possible
reading frames. The program TBLASTN is frequently used for this purpose. The TFASTX
and TFASTY programs are designed to accommodate the errors inherent in EST sequences
(p. 295). The limitations to whole-proteome searches against EST libraries are that the
short length of the translated EST sequence (the equivalent of 100-150 amino acids) will
only match a portion of the query protein; for example, a domain or part of domain as
illustrated in Figure 10.4B. Hence, it is not possible to impose the requirement of align-
ment with 60-80% of the query sequence that greatly improved the prediction of
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A computer script is a
set of computer com-
mands that are placed
in a disk file. When the
script is run, the com-
mands are executed in
the order given by the
script. For example, the
script may include col-
lecting EST sequence
by FTP, analyzing
them by TBLASTN or
TFASTY, collecting the
alignment scores, ot-
dering them, and mak-
ing charts. The Perl
programming  lan-
guage is used for pro-
ducing such scripts.

orthologs. Predictions of EST relationships can be improved by identifying overlapping
EST sequences so that a longer alignment can be produced, as discussed in Chapter 7.
Another method is to perform an exhaustive search for a protein family, described next.

Searching for orthologs to a protein family in an EST database. Searches of EST
databases for matches to a query sequence routinely produce large amounts of output that
must be searched manually for significant hits. Retief et al. (1999) have described an auto-
matic method utilizing a computer script, FAST-PAN, that scans EST databases with mul-
tiple queries from a protein family, sorts the alignment scores, and produces charts and
alignments of the matches found. An example of using this method is shown in Figure
10.5. A chart showing the E value, percent identity, fraction of query sequence matched,
and type of query matched (color coded) is shown in Figure 10.5A.

In an example by Retief et al. (1999), the large family of known glutathione transferase
proteins was first subjected to multiple sequence alignment, and a phylogenetic tree was
made by distance methods to identify classes of proteins within the family. These proteins
represented a broad range of phylogenetic context and included classes with sometimes
less than 20% identity. The object was to choose class representatives for a similarity search
of mammalian EST databases for paralogs and to decide which of these sequences were
orthologs.
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Figure 10.5. Prediction of paralogs and orthologs by searches of EST databases by gene panning (Retief et al. 1999). In this
analysis, one class of glutathione transferase family members was used as queries to search mammalian EST databases for high-
ly significant matches using TFASTY3 (Chapter 7). FAST_PAN is a Perl-script program (see Table 10.1D) that automatically
searches EST databases as they are updated and compiles the results of the search. (A) Display of protein class matched (color),
log Expect value (height of bar), length of query sequence matched (height of color bar), and percent identity (position of hor-
izontal line in bar) on one graph as produced by FAST_PAN. Note that the log scales clearly reveal the lowest E value and high-
est identity matches. Shown are matches of two mouse ESTs to a query sequence. (B) Example of phylogenetic analysis to pre-
dict orthologs between species (bracketed). Amino acid sequences of ESTs in the matched regions were aligned, and this
sed to direct an alignment of the EST codons. A phylogenetic tree was produced by the aligned EST
sequences by the maximum likelihood method using the program DNAML in the PHYLIP package. As discussed by the
authors, this method allows researchers to search rapidly and easily through EST databases to identify matching sequences and
to examine the quality of the alignments found. In this example, a large number of glutathione transferase members were used
as queries, allowing an exhaustive search of the EST database for representative family members. (Redrawn, with permission,
from Retief et al. 1999.)

alignment was then u
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A novel feature of these searches was to use a lower-scoring PAM matrix to search for
paralogs of a recently evolved group of sequences. Use of an appropriate PAM matrix that
matches the expected evolutionary separation of a group of sequences provides an
improved higher-scoring alignment, as described in detail in Chapter 3 (p. 82). ESTs with
a high percent identity with the query sequence, a long alignment with the query sequence,
and a very low E value of the alignment score represent groups of paralogous and orthol-
ogous genes. To identify orthologs as the most closely related sequence, ESTs were aligned
using the amino acid alignment as a guide, and a phylogenetic tree was produced by the
maximum likelihood method. This method, described in Chapter 6 (see flowchart for
Chapter 6), is suitable for a divergent but recently evolved group of sequences. The pre-
dicted tree shown in Figure 10.5B predicts those pairs of sequences that are likely to be
orthologous.

Family and Domain Analysis

As shown in the flowchart (p. 492), gene identification of predicted proteins in the genome
is designed to discover the metabolic features of an organism. An important feature of pro-
teins discussed in Chapter 9 is their organization into domains that represent modules of
structure and function. Different proteins are mosaics of domains that occur in different
combinations in a given protein. In a particular organism or group of organisms, one par-
ticular domain can be expanded to perform a particular function. Comparison of the
domain content of an entire proteome with that of another proteome can reveal the bio-
logical roles of diverse domains in different organisms. Extensive comparisons for both
prokaryotic and eukaryotic genomes have been performed (Chervitz et al. 1998; Huynen
and Bork 1998; Rubin et al. 2000). A descriptive list of protein domain databases that may
be used for such an analysis is given in Table 9.5. In a detailed analysis of the fly, worm,
and yeast proteomes, 744 families and domains were common to all three organisms. More
than 2000 fly and worm proteins are multidomain proteins, compared to about one-third
this number in yeast (Rubin et al. 2000). Tekaia et al. (1999) have introduced the concept
of a genome tree. A tree or dendrogram based on the proportion of proteins in one organ-
ism that is shared by another organism is produced by the single linkage clustering method
described in Figure 10.4C.

Ancient Conserved Regions

Phylogenetically diverse groups of organisms have been analyzed for the presence of con-
served proteins and protein domains that have been conserved over long periods of evolu-
tionary time, called ancient conserved regions or ACRs (Green et al. 1993). The method
involves database similarity searches of the SwissProt database with human, worm, yeast,
or E. coli genes and identification of matches with sequences from a different phylum than
the query sequence. An analysis of ACRs that predate the radiation of the major animal
phyla some 580-540 million years ago suggested that 20-40% of coding sequences are
ACRs. For example, a search with 1916 E. coli proteins detected 266 ACRs found in 439
sequences, roughly one-quarter of the SwissProt database. These ACRs may represent
proteins present at the time of the prokaryotic—eukaryotic divergence.

With the later addition of complete genome sequences of phylogenetically diverse
prokaryotic organisms, the number of ACRs may be estimated by the proportion of genes
that match database sequence of known function. For the hyperthermophilic archaea Pyro-
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coccus hirokoshii (Kawarabayasi et al. 1998), this proportion was 20%, perhaps represent-
ing an ancient set of prokaryotic ACRs. COGs described above represent sets of proteins
that are conserved across distant phylogenetic lineages. For 11 prokaryotic genomes, the
proportion of genes represented in COGs is approximately 50% (Koonin et al. 1998), and
other studies suggest that as many as 70% of prokaryotic genomes contain ACRs (Koonin
and Galperin 1997). However, one needs to take into account that horizontal transfer of
genetic material discussed below increases the sharing of genes by different lineages of
prokaryotes.

Horizontal Gene Transfer

The genomes of most organisms are derived by vertical transmission, the inheritance of
chromosomes from parents to offspring from one generation to the next. However, in
rare instances, genomes may also be modified by horizontal (sometimes called lateral)
gene transfer (HT), the acquisition of genetic material from a different organism. The
transferred material then becomes a permanent addition to the recipient genome.
Although these exchanges do not occur very often on a generation-to-generation basis, a
significant number can occur over a period of hundreds of millions of years. An extreme
example is the proposed endosymbiont origin of mitochondria in eukaryotic cells and
chloroplasts in plants. The endosymbiont theory proposes that these organelles were
transferred from free-living bacteria to another organism with which they shared a sym-
biotic relationship (see Chapter 6 in Brown 1999).

Horizontal gene transfer is a significant source of genome variation in bacteria (for
review, see Ochmann et al. 2000), allowing them to exploit new environments. Such
transfer is rendered possible by a variety of natural mechanisms in bacteria for transfer-
ring DNA from one species to another. Detection of HT is made possible by the fact that
each genome of each bacterial species has a unique base composition. Hence, transfer of
a portion of a genome from one organism to another can generally be detected as an
island of sequence of different composition in the recipient. If the amino acid composi-
tion of transferred genes is typical, these islands may be detected by a codon usage analy-
sis as described in Chapter 8. Very ancient transfers may not be detectable because the
base composition and codon usage of the transferred DNA will eventually blend into
those of the recipient organism. The time of transfer of DNA may be estimated by the
degree to which the composition of the HT DNA has blended into that of the recipient
genome. Comparisons of completely sequenced bacterial genomes have revealed that they
are mosaics of ancestral and horizontally transferred sequences. The proportion of the
genome due to HT sequences also varies considerably roughly in proportion to genome
size. A total of 12.8% of the genome of E. coli is due to HT DNA (the highest level found),
whereas it is 0.0% in Mycoplasma genitalium, whose genome is less than one-quarter the
size of that of E. coli. Mycoplasma have lost many of the genes needed to be a free-living
organism and instead depend on nutrients provided by the interior of the host cell.
Hence, these organisms would not be expected to carry any extra unnecessary genetic
baggage. HT DNA contributes in a major way to the disease-producing ability of
pathogenic bacteria, and this DNA frequently has flanking direct repeats characteristic of
transposable elements. Note that when genes are clustered on the chromosome of the
donor organism (described below), the recipient organism may gain an entire metabolic
pathway from another by means of horizontal transfer. Hence, clustering in combination
with horizontal transfers provides an evolutionary mechanism for altering metabolic
pathways in diverse organisms.
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Once sequences have been annotated, a useful next step is to classify the annotated genes
by function. Genes that are significantly similar in an organism, i.e., paralogous sequences,
frequently are found to have a related biological function. This discovery follows the
expected origin of paralogs by gene duplication events, leaving one copy to perform the
original function and producing a second copy to develop a new function not too distant
from the original one under evolutionary selection. An early classification scheme for eight
related groups of E. coli genes included categories for enzymes, transport elements, regula-
tors, membranes, structural elements, protein factors, leader peptides, and carriers. Nine-
ty percent of E. coli genes related by significant sequence similarity fell into these same
broad categories (Labedan and Riley 1995).

The Enzyme Commission numbers formulated by the Enzyme Commission of the
International Union of Biochemistry and Molecular Biology provide a detailed way to clas-
sify enzymes based on the biochemical reactions they catalyze (Webb 1992; Tipton and
Boyce 2000). The designation ECa.b.c.d gives the following information: (a) one of six
main classes of biochemical reactions, (b) the group of substrate molecule or the nature of
chemical bond that is involved in the reaction, (c) designation for acceptor molecules
(cofactors), and (d) specific details of the biochemical reaction. Using this system to com-
pare sequence-related pairs of E. coli genes, Labedan and Riley (1995) found that 70% of
them shared the first two EC designators (a and b) in the annotation of the corresponding
genes, thereby indicating that they catalyze biochemically similar reactions. A third mea-
sure of functional similarity is based on a physiological characterization of E. coli proteins
into 118 possible categories (e.g., DNA synthesis, TCA cycle, etc.) (Riley 1993). Approxi-
mately one-quarter of E. coli genes fall into the same category by this scheme.

An alternative approach to classification of genes that encode enzymes is to examine
relationships among multiple enzymes that perform the same biochemical function in the
same organism. Although catalyzing the same reaction, these enzymes showed variations
in metabolic regulation of their activity. More than one-half of multiple enzymes in E. cols
share significant sequence similarity; i.e., they are paralogs. However, the remainder do not
share any sequence similarity. Either they were acquired by horizontal transfer from anoth-
er bacterial species or the two enzymes were formed by convergent evolution from two dif-
ferent genetic starting points (Riley 1998). Accordingly, sequence similarity is frequently a
good indicator of related biochemical function, but two enzymes that perform the same
biochemical task may not share sequence similarity of evolutionary history.

Other functional classification schemes for genes include a broader category for genes
involved in the same biological process, e.g., a three-group scheme for energy-related,
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information-related, and communication-related genes has also been used. By this scheme,
plants devote more than one-half of their genome to energy metabolism, whereas animals
devote one-half of their genome to communication-related functions (Ouzounis et al.
1996). Another scheme, described below, is to identify proteins that physically interact in
a structure or biochemical pathway.

A system for functional annotation of the yeast genome has also been produced (Cher-
ry et al. 1997) and used in a comparison of the yeast and worm proteomes (see SGD, Table
10.4B) (Chervitz et al. 1998). D. melanogaster genes were classified using the Gene Ontol-
ogy (GO) classification scheme (Adams et al. 2000), a collaboration among yeast, fly, and
mouse informatics groups to develop a general classification scheme useful for several
genomes (see GO site, Table 10.1F). This classification scheme provides a description of
gene products based on function, biological role, and cellular location.

ED ON CHROMOSOMES OF RELATED
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Two species that have recently diverged from a common ancestor might be expected to
share a similar set of genes and also similar chromosomes with these genes positioned
along the chromosomes in the same order. Over evolutionary time, the sequence of each
pair of genes will slowly diverge, as the species diverge and other changes such as gene
duplication and gene loss change the gene content. In addition, the order of genes also
changes over evolutionary time as a result of chromosomal rearrangements. These rear-
rangements may be modeled by occasional chromosomal breaks, random with respect to
chromosomal location, and by random rejoining of the fragments by a DNA repair mech-
anism. Rearrangements may be analyzed by comparing the location of orthologs, genes of
highly conserved sequence and function in prokaryotic and eukaryotic proteomes from
different phylogenetic lineages.

Two important observations have been made with regard to gene order: First, order is
highly conserved in closely related species but becomes changed by rearrangements over
evolutionary time. As more and more rearrangements occur, there will no longer be any
correspondence in the order of orthologous genes on the chromosome of one organism
with that of a second organism. Second, groups of genes that have a similar biological func-
tion tend to remain localized in a group or cluster. Examples of these observations and
their significance are described below.

Chromosomal Rearrangements

In Figure 10.6, a genome plot of the positions of orthologs and paralogs on the genomes of
two related bacteria, Mycoplasma pneumoniae and Mycoplasma genitalium, both human
pathogens, is shown (Himmelriech et al. 1997). This plot is very similar to the dot matrix
plot used for sequence alignment (see Chapter 3), except that in this case a dot or symbol
is shown at the intersection of the position of one member of an orthologous pair of
sequences on genome 1 and the position of the other member of the pair on genome 2.The
plot clearly shows that large sections of chromosome are conserved but also that a number
of rearrangements have occurred, making the gene order different from that of the other
genome and from the common ancestor of these two organisms. In contrast, a similar plot
of orthologous genes in the genomes of the bacterial species E. coli and H. influenzae
appears quite random (Tatusov et al. 1996), even though the organisms are only slightly
more distant in evolution than the two Mycoplasma species. However, on close inspection
of gene function and order, similarities can be found. By classifying genes using a nine-
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Figure 10.6. Genome plot of orthologous genes. Alignment of orthologous and paralogous genes in the genomes of Mycoplas-
ma genitalium and Mycoplasma pneumoniae (Table 10.1A, comparative genome analysis in P. Bork laboratory). Horizontal axis
is genome position in M. preumoniae, vertical axis is genome position of M. genitalium. Positions of orthologs are shown in
red, paralogs in green. Orthologous genes are in the same order in both genomes except for several chromosomal rearrange-
ments. These genes are defined by high E values in database searches in which one of an orthologous pair is used as query of
the proteome of the other species. Proteins should also align along 60% of the length of each (Huynen and Bork 1998). Par-
alogs are proteins that have striking, high-scoring similarity but are not the highest scoring in reciprocal proteome searches.
Note also the occurrence of paralogs within the conserved stretches of orthologs, presumably representing gene duplication in
these regions. In contrast to this conserved order of gene position in the Mycoplasma species, the orthologous genes in two other
equally related species, E. coli and Hemophilus influenzae, show no detectable conservation of order on a similar genome plot.

class functional classification scheme (see above), several genes falling into the same func-
tional category are clustered together on the chromosomes of both of these organisms, and
the clusters are in a similar order (Ouzounis et al. 1996). Comparison of the number of
rearrangements in a given period of evolutionary history may vary significantly from one
organism to the next. In one analysis of prokaryotic organisms of diverse phylogenetic ori-
gin, it has been shown that if gene A has a neighboring gene B, then if an ortholog of A
occurs in another genome, there is an increased probability of an ortholog of B also occur-
ring in the other organism. However, the B ortholog is less likely to be a neighbor of the A
ortholog of the genome of the second species if the two species are more divergent (Huy-
nen and Bork 1998).

The TIGR Web site (Table 10.1D) includes a resource for comparing any two prokary-
otic genomes of the 30+ available by means of a genome plot, as shown in Figure 10.6. In
general, the order of orthologs is not well conserved in prokaryotes when the genomes have
diverged sufficiently that the orthologs have <<50% identity (Huynen and Bork 1998).
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A similar conservation of gene order also appears to be present in closely related eukary-
otic genomes. The evidence is based on chromosome painting experiments in which DNA
from a section of a chromosome of one organism is labeled and then hybridized to chro-
mosomes of a second organism. Regions of the second chromosome that are labeled reveal
the presence of a homologous region. Although this method does not have the precision
and sensitivity of sequence analysis methods, these experiments reveal that eukaryotic
chromosomes also undergo rearrangements both within chromosomes and between chro-
mosomes during evolution. An example of the differences between mouse and human
chromosomes is shown in Figure 10.7. A much larger data collection from a variety of
mammalian chromosomes suggests that each chromosome is a mosaic of a similar set of
ancestral fragments (O’Brien et al. 1999). Similar studies with plant genomes have also
indicated that they have a similar overall gene content but that many regional duplications
and rearrangements have occurred during evolution (Bennetzen 1998, 2000; Bennetzen et
al. 1998). The availability of genome sequences of plants and animals offers some exciting
opportunities for determining the chromosomal changes that have occurred during evolu-
tion of the plant and animal kingdoms.

Computational Analysis of Gene Rearrangements

As genome-by-genome comparisons of the chromosomes of related species are made and
the rearrangements are discovered, a further challenge to computational and evolutionary
biologists is to estimate the number and types of rearrangements that have occurred and
also to determine when they occurred. For example, a comparison of the mouse and
human chromosomes reveals many rearrangements (Fig. 10.7). A computational approach
to these questions is outlined in Figure 10.8. In aligning gene and protein sequences, one
assumes a model in which no rearrangements have occurred so that lines can be drawn
between the corresponding positions in the sequences and no lines will cross or intersect,
as shown in Figure 10.8A. For comparing gene orders on chromosomes that have under-
gone rearrangements, lines joining the corresponding genes will intersect, as shown in Fig-
ure 10.8B, and the greater the amount of rearranging, the greater the number of intersects.
In the random shuffling model, one tries to estimate the number of rearrangements that
produces the observed number of intersections and to compare this number to one that
would randomly shuffle the same fragments. The analysis shown in Figure 10.8C attempts
to reconstruct the number and types of rearrangements (inversions, etc.) that have given
rise to the observed variation in gene order between the chromosomes.

Clusters of Genes on Chromosomes Have a Metabolically Related Function

In a given organism or species, genes are found in a given order that is maintained on the
chromosomes from one generation to the next. Genetic analysis has revealed that genes
with a related function are frequently found to be clustered at one chromosomal location.
Clustering of related genes presumably provides an evolutionary advantage to a species,
but the underlying biological reason is not understood. One possibility is that there is
genetic variation (alleles) within each gene in a cluster of a given species and that only cer-
tain allelic combinations of different genes are compatible. Another possibility is some
kind of coordinated translation of the proteins that may aid their folding. In the model
bacterial species E. coli, genes that act sequentially in a biochemical pathway are frequent-
ly found to be adjacent to each other at one chromosomal location. For example, the genes
required for synthesis of the amino acid tryptophan (trp genes) are clustered together on
the chromosome of E. coli, as illustrated in Figure 10.8, where their expression is coordi-
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Figure 10.7. Similarity between local gene clusters in human and mouse chromosomes. Human
chromosomes can be cut into >100 pieces and reassembled into a reasonable facsimile of the mouse
chromosome. Only larger fragments are represented. Chromosomes of all mammals may share a sim-
ilar relationship (O'Brien et al. 1999).
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Figure 10.8. Computational analysis of genome arrangements. (A) In aligning two sequences, one
sequence is written above the other and the highest number of consecutive matches between the
sequences provides an optimal alignment as described in Chapter 3. The alignment includes matches
(solid lines), mismatches (dotted lines), and insertions/deletions in order to produce an optimal num-
ber of matches. The matches are in a consecutive order in two sequences such that no rearrangements
would be found. (B) Alignments of linear and circular chromosomes that have undergone rearrange-
ments such as those found in mammalian chromosomes and mitochondria. In contrast to sequence
alignment, lines indicating homologous positions in linear chromosomes (left) now cross, producing
points of intersection. The more rearrangements there are, the more intersections will occur. For
alignment of circular chromosomes (right), depending on how the chromosomes are aligned, there are
two ways of showing a moved region. To go from A on the outer genome to A on the inner genome,
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nately regulated by a common promoter. This coordination of expression avoids wasteful
production of one enzyme when others in the same pathway are not available.

With the availability of other prokaryotic genome sequences, important metabolic genes
such as trp can be identified in these species, and the chromosomal location of these genes
can be compared with that of E. coli. Using the predicted tryptophan genes as an example
(Fig. 10.9), the following observations were made: (1) At least some of the trp genes are also
clustered together on the chromosomes of other species of Bacteria and Archaea; (2) the
order of the genes within the cluster is conserved within the first four species listed in Fig-
ure 10.9, all of which are bacteria; (3) the order is much less conserved in the last three
species, all of which are Archaea, and some of the genes have been moved to a more dis-
tant location; (4) there are multiple examples of gene fusions that give rise to a new pro-
tein that performs both biochemical functions of the single-gene, parent proteins. trpC has
been fused independently with two other genes, trpD and trpF. Alternatively, a composite
gene may produce two smaller single-component genes by fission of a parent composite
gene. Fission events have only been observed in thermophiles among prokaryotes (Snel et
al. 2000a). However, biochemical reasons have been presented that fission events may pro-
vide a mechanism for evolution of protein complexes (Marcotte et al. 1999b).

When a series of predicted genes in a known E. coli pathway is in the same order in
another organism as in E. coli, e.g., trpB-trpA and trpE-trpG in the Archaea in Figure 10.9,
then the same biochemical pathway is predicted also. Even if the genome annotation is
based on a weak prediction of the biochemical function of two individual genes, the pre-
diction is stronger if the two genes act in the same pathway and is strongest if the genes are
clustered (Huynen et al. 2000). In the trp example shown in Figure 10.9, the presence of
the genes in such a phylogenetically diverse group of organisms indicates that the pathway
is an ancient one. Clustering of the genes further indicates that they probably originated as
a group in the single chromosomal region of an ancient ancestor organism, assuming there
has not been a driving force for repeated independent clustering events. What is also
revealed in the trp example in Figure 10.9 is that some trp genes are found at a much more
remote chromosomal location. The diverse location of the trp genes in Methanococcus jan-
naschii is an outstanding example. Apparently, rearrangements can break clusters and
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the line joining them can go clockwise or counterclockwise and, as a result, there will be either 0 or 1
intersections with the line joining B. The complexity of alignments of circular chromosomes is
reduced by limiting the joining lines to 180 degrees of relative genome positions. Sankoff and Gold-
stein (1989) devised a shuffling model for estimating the number of rearrangements when the num-
ber of intersections is known. The method is analogous to shuffling an ordered deck of cards and then
predicting how much order remains. Eventually, after n log n shuffles, where # is the number of cards,
the order becomes random. Given an observed remaining order, how many shuffles have occurred?
The number of observed intersections is compared to the number expected for completely shuffled
genomes (Sankoff et al. 1993). (C) Another method for determining numbers of rearrangements is to
assume that they have occurred by a number of transposition or recombination events. The object of
this analysis is to try to identify the rearrangements that occurred and then to undo (or derange) the
alignments accordingly. The goal is to minimize the number of rearrangements, this number then
representing a genetic distance between the sequences. (a) Alignments of genes 1-10 in two genomes
where some genes are in the same order (red lines) and others are inverted (blue lines). Groups of
genes such as the two joined by the blue lines may be combined into a single unit representing a con-
served segment since no recombination event would be required. (b) Alignment that can be account-
ed for by these inversion events. The program DERANGEII is available from the authors and FTP
from fip.ebi.ac.uk/pub/software/unix/derange2.tar.Z. These methods have been used to analyze rear-
rangements in mitochondrial and bacterial genomes (Sankoff et al. 1992; Blanchette et al. 1996;
Sankoff and Nadeau 1996) and additional algorithms have also been developed (Kececioglu and
Sankoff 1995; Kececioglu and Gusfield 1998). (Adapted from Sankoff et al. 1992, 1993.)
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Figure 10.9. Structure of tryptophan operon in different prokaryotic organisms. Numbers indicate
gene number in genome; arrows indicate direction of transcription; double lines indicate a separation
of more than 50 genes due to dispersion of the operon. Shown also are examples of gene fusion so
examples of domain fusions (e.g., trpD and trpG) are fused in E. coli. Note that only the trpA and trpB
genes are genetically linked and separate genes in all of the species. (Reprinted, with permission, from
Dandekar et al. 1998 [copyright Elsevier Science].)

move genes to other locations, although another possibility is that the dispersed arrange-
ment is a more ancestral state.

Two methods have been described for identifying clusters or coordinately regulated
genes. In one study with three separate groups of three distantly related prokaryotes (Dan-
dekar et al. 1998), approximately 100 genes were found to be conserved as a cluster of two
pairs. (Looking for a pair in three species avoided possible complications from horizontal
transfer.) The direction of transcription was the same for all genes, implying a regulatory
relationship as in an operon. For approximately 75% of the genes, a physical interaction
between the genes had previously been demonstrated and could be predicted for almost all
proteins based on additional sequence comparisons. These conserved proteins have core
biological functions such as transcription, translation, and cell division.

In a second method (Overbeek et al. 1999), a full reciprocal search like that used in Fig-
ure 10.4 for comparing yeast, worm, and fly genomes and for making COGs was per-
formed between the proteomes of two prokaryotes: Each protein of one proteome was
used to search the proteome of the second. Protein pairs that gave a best hit with the other
genome and that had an E value of less than 107 were identified, called a bidirectional best
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hit (BBH). Pairs of close bidirectional best hits (PCBBH) that are within 300 bp of each
other on the chromosomes of the respective organisms and that are transcribed from the
same strand, i.e., are in a “typical” operon, were then identified. A score for these pairs was
formulated that is higher when the number of organisms in which the pair is observed is
greater and the phylogenetic distance between the organisms is larger. Forty percent of a
set of higher-scoring pairs corresponded to proteins that are known to act in a common
metabolic pathway, as defined in metabolic function databases (see Table 10.1D). Hence,
a significant proportion of the pairs of PCBBH correspond to genes that have a related
function and lie on the same pathway. This same approach could play an important role
in assigning a function to uncharacterized genes in genomes based on proximity to other
genes of known function.

Composite Genes with a Multiple Set of Domains Predict Physical
Interactions and Functional Relationships between Protein Pairs That
Share the Same Domains

As illustrated in Figure 10.9, single trp genes can be fused into larger composite genes.
Observation of such evolutionary events provided a major step forward in understanding
relationships among the proteins of diverse organisms (Enright et al. 1999; Marcotte et al.
1999b). The occurrence of a fused or composite gene in one organism is called a “Rosetta
Stone sequence” because it provides evidence that the single component genes in a separate
organism encode proteins that physically interact (Marcotte et al. 1999b). For example, if a
composite human gene has two domains A and B, the analysis assumes that A and B phys-
ically interact within the protein. If two separate genes in other organisms (yeast or E. coli)
make two proteins, one with domain A and a second with domain B, then these two pro-
teins are assumed to interact because A and B interact. These sequence relationships may
be found by sequence alignment of the composite AB protein with each of the single-com-
ponent A and B proteins. However, A and B will not align with each other. If A and B do
not interact in composite proteins, the prediction is a false-positive result. However, these
proteins are still predicted to have related functions based on the gene fusion result.

Composite proteins were found by searching SwissProt for statistically significant
matches to domains in the ProDom domain database (see Table 9.5, p. 430). Six percent
of the Rosetta Stone proteins were found to be represented in the DIP database of inter-
acting proteins (see Table 9.5). Rosetta Stone predictions of interacting proteins were com-
pared to predictions by another method for predicting related proteins, the phylogenetic
profile method (Pelligrini et al. 1999; see also “bag of genes” concept in Huynen and Bork
1998). This method is based on the assumption that proteins that function together in a
biochemical pathway should evolve in a correlated fashion. Databases are searched for sig-
nificant matches to two proteins A and B. If A and B have related functions, they should
be found together in a large proportion of genomes, whereas if they do not, they will be
found to have a random association in genomes.

Enright et al. (1999) used reciprocal searches among three complete prokaryotic pro-
teomes, as described above in Figure 10.4, and identified related proteins that have the
expected alignments for composite (AB) and component (A or B) proteins. These proteins
interact functionally, act in the same biochemical pathway, or are coregulated. Predictions
are stronger when component proteins (A and B) have few paralogs, since the interacting
pair can be more readily identified. Conversely, the presence of paralogs of the composite
proteins increases the strength of the prediction because the number of possible interac-
tions is increased (Enright et al. 1999).
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Figure 10.10. Automatic analysis of genome sequences with the MAGPIE system. The sequence is
input into an automatic system (a daemon) that sends the sequence to local and remote resources for
analysis (BLAST search, PROSITE search, etc.). The information retrieved is stored in a feature
database, and the data are interpreted by a set of rules and placed in Web-browsable reports. (Redrawn,
with permission, from Gasterland and Sensen 1998 [copyright Kluwer Academic/Plenum].)

Resources for Genome Analysis

The above types of analyses depend on a labor-intensive annotation of the genome and
functional analysis of the predicted proteins. Computational tools have been made avail-
able to automate some of these steps. Examples are MAGPIE and GeneQuiz, listed in
Table 10.1F.

MAGPIE analyzes the genome using a set of automated processes that are illustrated in
Figure 10.10. Designed for high-throughput genome sequence analysis, MAGPIE auto-
matically annotates genomic sequence data and maintains a daily up-to-date record in
response to user queries about one or more genomes. The system also uses a set of rules
in logic programming to make decisions that may be used to interpret information from
various sources. MAGPIE has been used to locate potential promoters, terminators, start
codons, Shine-Dalgarno sites, DNA motif sites, co-transcription units, and putative oper-
ons in microbial genomes. These sites are shown on a map display of the genome that may
be edited.

GeneQuiz is an integrated system for large-scale biological sequence analysis that uses
a variety of search and analysis methods using current sequence databases. By applying
expert rules to the results of the different methods, GeneQuiz creates a compact summa-
ry of findings. It focuses on deriving a predicted protein function, based on a variety of
available evidence, including the evaluation of the similarity to the closest homolog in a
database.
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One way to obtain useful information about a genome is to determine which genes are
induced or repressed in response to a phase of the cell cycle, a developmental phase, or a
response to the environment, such as treatment with a hormone. Sets of genes whose
expression rises and falls under the same condition are likely to have a related function.
In addition, a pattern of gene expression may also be an indicator of abnormal cellular
regulation and is a useful tool in cancer diagnosis (see, e.g., Golub et al. 1999; Perou et al.
1999). Because genomes, especially eukaryotic genomes, are so large, a new technology
has been developed for studying the regulation of thousands of genes on a microscope
slide.

Microarray (or microchip) analysis is a new technology in which all of the genes of an
organism are represented by oligonucleotide sequences spread out in an 80 X 80 array on
microscope slides, but can also be synthesized directly on the slide at densities of up to
one million per square centimeter. The oligonucleotides are collectively hybridized to a
labeled cDNA library prepared by reverse-transcribing mRNA from cells. The amount of
label binding to each oligonucleotide spot reflects the amount of mRNA in the cell. The
analysis of the data collected in this type of experiment is depicted and described in Fig-
ure 10.11. Genes that are responding the same way to an environmental signal, in this case
the addition of serum to serum-starved skin cells, are clustered together in a display.
From this analysis, a set of genes that responds in an identical manner may be identified.
Automatic methods for clustering related sets of genes have been devised, and three rep-
resentative methods are shown and described in Figure 10.12. The first of these methods,
hierarchical clustering (Eisen et al. 1998), is commonly used, but the other two methods
are better designed to detect differences in patterns over a set of time points or samples.
The derivation of clustering algorithms for microarray analysis has become an active area
of bioinformatics.

Once a set of genes that are coregulated has been found, the promoter regions of these
genes may be analyzed for conserved patterns that represent sites of interaction with spe-
cific transcription factors. This type of analysis is described in detail in Chapter 8 (Table
8.6, p. 370), and additional resources are given in Table 10.1E.

Microarray analysis is designed to detect global changes in transcription in a genome
but does not provide information about the levels of protein products of the genes, which
may also be subject to translational regulation. Labeled protein samples may also be
extracted from treated cells and separated by two-dimensional gel electrophoresis. The
proteins are first separated in a column on the basis of size and then across a second
dimension on a slab on the basis of charge. The amount of protein in each spot is then
determined. This method also can resolve thousands of proteins based on size and charge.
There are databases of the patterns found in different organisms; these are listed in Table
10.1E. The technology can also be extended to further purification and microsequencing
of the protein spots or of proteins in complexes so that the genes encoding the protein
may be identified by proteome similarity searches.
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Figure 10.11. Example of cluster analysis of microarray data. Rows represent changes in an individ-
ual hybridization signal for a single gene on a ¢cDNA microarray display system. Columns show
changes in the expression of a selected 9800 human ¢DNA set. These genes change their level of
expression in human skin fibroblasts that have been deprived of serum growth factors and serum then
added back (time 0). The time points vary from 0 to 24 hours, left to right, and the last column is a
control. RNA was removed from cells and the amount was measured by quantitative reverse tran-
scription in the presence of the fluorescent dye Cy5. A reference time 0 sample was labeled in parallel
with the green fluorescent dye Cy3 and mixed with samples taken at a later time. The labeled cDNA
preparations were then hybridized to the cDNA microarray and the Cy5/Cy3 fluorescence ratio of
each spot was measured. Each ratio is expressed as a log odds ratio to the base 2. Thus, a value of +4
at time t indicates 16 times more mRNA at time ¢ than at time 0; 0 means no change and —4 means
16 times less RNA at time ¢ than at time 0. Tables of these raw data are kept (see http://rana.stan-
ford.edu/clustering). The color display in the figure varies from saturated green (log odds — 3.0) to
saturated red (log odds + 3.0) with black as the intermediate color (log odds 0). The dendrogram on
the right of the color display was made by a hierarchical clustering algorithm that is similar to the sin-
gle-linkage cluster analysis described in Fig. 10.4. The object of clustering is to identify genes that
respond the same way to the environmental treatment. Each gene is compared to every other gene and
a gene similarity score (metric) is produced. If X; is the log odds value for gene X at time i, then for
two genes X and Y and N observations, a similarity score is calculated. (Reprinted, with permission,
from Eisen et al. 1998 [copyright National Academy of Sciences].)

S(X, Y) = 1/N Z (Xz - Xoffset) (Yi - Yoffset)

i=1N (I)X QY

_ 2
whereCDX=\/ z X = Xoffeet)®
i= LN N

(Y, — )
and Qy = \/ Yi 15
i SN

S(X,Y) is also known as the Pearson correlation coefficent. Xoge: and Y s can be the mean of the
observations on X or Y, respectively, in which case ® is the standard deviation, or else X g and
Yostser can be set to zero when a reference state is used (as in the present example). After values of
S(X,Y) have been calculated for all gene combinations, the most closely related pairs are identified in
an above-diagonal scoring matrix. A node is created between the highest-scoring pair, and the gene-
expressed profiles of these two genes are averaged and the joined elements are weighted by the num-
ber of elements they contain. The matrix is then updated replacing the two joined elements by the
node. For n genes, the process is repeated n —1 times until a single element remains. In the final den-
drogram, the order of genes within a cluster is determined by simple weighting schemes, e.g., average
dendrogram level (Eisen et al. 1998). The"software availability is given in Table 10.1E, microarray
guide. This image is available at http://rana.stanford.edu/clustering/serum.html. On the left side of the
color display are letters A—E which identify clusters of genes that show clearly distinct responses to the
treatment.
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Figure 10.12. Examples of methods of cluster analysis for microarray data. (A) Hierarchical cluster-
ing (Eisen et al. 1998). (B) Self-organizing maps (Tamayo et al. 1999). (C) Support vector machines
(Brown et al. 2000). (A) The hierarchical clustering method is described in detail in Fig. 10.11. Basi-
cally, the method generates a similarity score [S(X,Y)] for all gene combinations, places the scores in
a matrix, joins those genes that have the highest score, and then continues to join progressively less
similar pairs. The disadvantage of this method is that it fails to discriminate between different patterns
of variation. For example, a gene expression pattern for which a high value is found at an intermedi-
ate time point will be clustered with another for which a high value is found at a late time point in the
experiment. These variations have to be separated in a subsequent step (see Fig. 10.11). Methods B
and C below are able to discriminate such differences. (B) In the SOM method, a choice is made of a
number of clusters by which to organize the data. Shown is a 2 X 2 SOM comprising nodes 1-4 that
assumes the presence of four clusters. Only two data points are shown in the example, but more data
can be included by adding more dimensions to the analysis. The object is to move each node to the
center of a cluster of data points. At each iteration, a data point P is selected, and the node closest to
that point is identified. The location of that node is then moved slightly toward the point. Thus, node
1 in the example will gradually migrate to the center of cluster A, node 2 to cluster B, and so on. In
practice, the size of the SOM is gradually increased until clearly different sets of expression patterns
are identified. The computer program that performs the SOM analysis is GENECLUSTER (Table
10.1E). (C) SVMs are a binary classification method to discriminate one set of data points from anoth-
er. They are similar to the types of discriminant analyses described for gene prediction in Chapter 9.
For microarray analysis, sets of genes are identified that represent a target pattern of gene expression.
The SVM is then trained to discriminate between the data points for that pattern and other data points
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When two proteins share a considerable degree of sequence identity throughout the
sequence alignment, they are likely to share the same function. A considerable fraction of
a genome may encode proteins whose function may not be identified in this manner
because the proteins are not related to another of known function. In the above sections,
other types of evidence for a relationship between two genes are also given that are not
dependent in sequence similarity. These include (1) genes are closely linked on the same
chromosomes and transcribed from the same DNA strand, implying coordinated regula-
tion in an operon-like structure; (2) gene fusions are observed between otherwise separate
genes (suggests the encoded proteins are physically associated in a common complex); and
(3) phylogenetic profiles reveal the genes are both commonly present in many organisms
(implying they have interdependent metabolic functions). Three additional types of data
have been used as evidence for gene relatedness: (1) the encoded proteins each have
homologs in another organism that operate in a common metabolic pathway, (2) experi-
mental data suggest an interaction between the proteins (stored in databases of interacting
proteins; Table 9.5, p. 430), and (3) patterns of mRNA expressions are found to be corre-
lated in microarray data. The results of using the above tests for the identification of a
group of related genes in yeast are shown in Figure 10.13. In an examination of the entire
yeast proteome, proteins that share a relationship with the yeast Sup35 protein based on
one or more of the above tests are shown as points in a two-dimensional cluster where the
distances between the points are proportional to the weight of the evidence for a relation-
ship between the protein pair and the strength of the connection is proportional to the
amount of evidence for a relationship. These types of predictions can be an important basis
for hypotheses that can be tested experimentally.

-l
3

that do not show the pattern. Shown in the diagram are two sets of data points (red and blue) in a
three-dimensional plot that illustrate these two classes of data points. As the SVM learns to discrimi-
nate between the data sets, a hyper-plane (pink) is drawn between the sets. The hyper-plane is then
used as a basis for classifying unknown data points. Only three dimensions are shown for illustrative
purposes, but additional ones can be included, adding more dimensions to the analysis. SVMs were
used to categorize genes based on 79 different sets of data points from studies of the yeast cell cycle
and are particularly useful for such complex data sets. Data points are log-transformed and normal-
ized as in method A, where for N observations of a gene i, the log transform X; of the expression level
E; and reference level R; is:

log (Ei/R;)

Xi =
i z IOgZ (E]/RJ)
j=1LN

so that X; is positive if the gene is more strongly expressed than in the reference condition, and neg-
ative if expression is reduced. Gene combinations averaged over all experimental conditions are then
examined by a multidimensional analysis (see http://www.cse.ucsc.edu/research/compbio/genex). A
tutorial on SVMs is available through http://www-ai.cs.uni-dortmund.de/SOFTWARE/
SVM_LIGHT/svm_light.eng.html. (Adapted, with permission, from Gaasterland and Bekinanov
2000 [copyright Nature Publishing].)
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Figure 10.13. Genome-wide prediction of protein functions by a combinatorial method (Enright et al. 1999; Marcotte et al.
1999a). This figure shows the network of yeast proteins that are linked to the yeast prion and translation factor Sup35 (double
circle in center of network). Each point represents a yeast protein, and branches between proteins indicate a relationship by one
of several criteria indicated in the legend. Branch lengths are shorter for closely related proteins and thicker when two or more
prediction methods indicate a relationship. Related to Sup35 protein are proteins involved in protein folding and targeting. The
links are based on experimental data, proteins whose homologs are known to operate sequentially in metabolic pathways, pro-
teins that evolved in a correlated fashion as evidenced by presence in fully sequenced genomes (see Snel et al. 1999), proteins
whose homologs are fused into a single protein in another organism, and proteins whose mRNA expression profiles are simi-
lar under a range of cellular and environmental conditions. (Reprinted, with permission, from Marcotte et al. 1999a [copyright




A genome database
may also be interfaced
with other types of
data, such as clinical
data. This type of
organization, termed
data warehousing, can
facilitate the search for
novel  relationships
among the data by
data-mining methods.
These methods include
genetic  algorithms,
neuronetworks, and
others described else-
where in this text.

GENOME ANALYSIS m 525

Genome analysis depends to a large extent on sequence analysis methods that identify gene
function based on similarity between proteins of unknown function and proteins of known
function. Known functions are derived from experimental evidence in molecular biology
and genetic studies with model organisms. Orthologous genes between biologically distinct
species (for example, yeast and fruit flies) can be identified, and the high sequence similar-
ity between them is strong evidence for a related function. However, given the more com-
plex multicellular biology of flies, the fly gene could have an additional function that is not
predictable by the yeast model. In other cases, the occurrence of families of paralogous genes
that share common domains can make a precise guess of function of one of these proteins
more difficult because all match a model protein to some degree. Sequence-based methods
of gene prediction can be augmented by the types of genome comparisons described above
that are designed to identify related genes based on common patterns of expression, evolu-
tionary profiles, chromosomal locations, and other features. However, all of the above
methods can fail to provide a precise determination of gene function. Hence, methods have
been devised for directing mutations into specific genes that inactivate or modify the gene
function, and the effect is then analyzed in the mutant organism.

Two general types of approaches illustrated in Figure 10.14 are used—one in which a
genetic construct is made that interferes with the expression of a particular gene (and
sometimes a set of related genes) and a second in which a large number of random muta-
tions are generated in a population of organisms. The individual with a mutation in a par-
ticular gene is then identified. Once mutants are obtained, the effect of the mutant genes
on phenotype is determined. The gene function may then be predicted on the basis of the
observed alterations. Because such extreme genetic experiments cannot be performed with
humans, the mouse model for the human genome serves the same purpose. Web sites that
compare the mouse and human genomes listed in Table 10.1C provide an important basis
for analyzing the human genome. An orthologous gene is identified in the mouse genome,
the sequence or expression of the gene is disrupted in some fashion, and a transgenic
mouse homozygous for the mutant gene is then produced. Using this technology, one can
systematically go through genes that regulate cell division, for example, and determine the
significance of these genes in normal versus abnormal (tumor) growth.

The ultimate step in genome analysis is to collect the information found on gene and pro-
tein sequences, alignments, gene function and location, protein families and domains, rela-
tionships of genes to those in other organisms, chromosomal rearrangements, and so on,
into a comprehensive database. This database should be logically organized so that all types
of information are readily accessible and easily retrievable by users who have widely diver-
gent knowledge of the organism. This goal is best achieved by using controlled vocabular-
ies that can identify the same genetic or biochemical function in different organisms with-
out ambiguity. Examples of groups that are developing systematic ways of defining terms
and of collecting and organizing data are given in Table 10.1E. Other examples of database
tools used to express biological information are given in Chapter 2 (page 44). The genome
sites of model organisms listed in Table 10.1B, especially SGD and Flybase, provide exam-
ples for further study. In addition to the care needed in organizing genome databases, a
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Figure 10.14. Reverse-genetics analysis of gene function. Steps for identification of gene function in
an organism are identified. Even though a particular gene may be a highly predicted ortholog of a gene
of known function in another organism, that gene may be acquired by a novel function. For example,
a defect in a plant or animal gene that is a homolog of a yeast gene may have an effect on a develop-
mental process or other biologically unique function of multicellular organisms. Information on
knockout mutants in model organisms is available through the genome Web sites given in Table
10.1C. Directed gene knockout and mutagenesis methods are described in Fire et al. (1998) and
McCallum et al. (2000), respectively.

great deal of human input is needed to annotate the genome manually with information
about individual genes and proteins, effects of mutations in these genes, and other types of
genome variations that cannot be readily incorporated into the database by automated
methods. For the human genome, this activity will occupy the time of many scientists for
many years to come.
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