CHAPTER

Protein Classification and
Structure Prediction

381



382 ® CHAPTER 9

INTRODUCTION

O NE OF THE MAJOR GOALS OF BIOINFORMATICS is to understand the relationship between
amino acid sequence and three-dimensional structure in proteins. If this relationship were
known, then the structure of a protein could be reliably predicted from the amino acid
sequence. Unfortunately, the relationship between sequence and structure is not that sim-
ple. Much progress has been made in categorizing proteins on the basis of structure or
sequence, and this type of information is very useful for protein modeling. A review of pro-
tein synthesis and structure is therefore in order.
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The polypeptide chain is first assembled on the ribosome using the codon sequence on
mRNA as a template, as illustrated in Figure 9.1. The resulting linear chain forms sec-
ondary structures through the formation of hydrogen bonds between amino acids in the
chain. Through further interactions among amino acid side groups, these secondary struc-
tures then fold into a three-dimensional structure. Chaperone proteins and membranes
may assist with this process. For the protein to have biological activity, processing of the
protein by cleavage or chemical modification may also be necessary. Therefore, protein
structure is largely specified by amino acid sequence, but how one set of interactions of the
many possible occurs is not yet fully understood (Branden and Tooze 1991).

Some protein sequences have distinct amino acid motifs that always form a characteris-
tic structure. Prediction of these structures from sequence is quite achievable using
presently available methods and information. For most proteins, however, the accuracy of
secondary structure prediction is approximately 70-75%. Methods for matching sequence
to three-dimensional structure have been formulated, but they are not yet very reliable.
However, great forward strides have been made, and there is a very active community of
structural biochemists and bioinformaticists working on improvements. The need for such
an effort is revealed by the rapid increases in the number of protein sequences and struc-
tures.

As of June 2000, more than 12,500 protein structures had been deposited in the
Brookhaven Protein Data Bank (PDB), and 86,500 protein sequence entries were in the
SwissProt protein sequence database, a ratio of approximately 1 structure to 7 sequences.
The number of protein sequences can be expected to increase dramatically as more
sequences are produced by research laboratories and the genome sequencing projects. As
more and more sequences and structures have been found, there have been some quite
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Figure 9.1. Pathway for folding a linear chain of amino acids into a three-dimensional protein struc-
ture.
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remarkable revelations that make the goals of reliable structure prediction more within
reach.

It has first been estimated that there are approximately 1,000 protein families composed
of members that share detectable sequence similarity (Dayhoff et al. 1978; Chothia 1992).
Thus, as new protein sequences are obtained, they will be found to be similar to other
sequences already in the databases and can be expected to share structural features with
these proteins. Whether this low number represents physical restraints in folding the
polypeptide chain into a three-dimensional structure or merely the selection of certain
classes of three-dimensional structure by evolution has yet to be discovered (Gibrat et al.
1996). The sequence alignment, motif-finding, block-finding, and database similarity
search methods described in Chapters 3, 4, and 7 may be used to discover these familial
relationships. Understanding these relationships is fundamentally important because this
information can greatly assist with structural predictions. As discussed below, information
from amino acid substitutions at a particular sequence position as obtained from a multi-
ple sequence alignment has been found to increase significantly the prediction of sec-
ondary structures from protein sequences. A second major advance in protein structure
analysis has been the revelation that proteins adopt a limited number of three-dimension-
al configurations.

Protein structures include a core region comprising secondary structural elements
packed in close proximity in a hydrophobic environment. Specific interactions between
the amino acid side chains occur within this core structure. At a given amino acid position
in a given core, the amino acids that can substitute are limited by space and available con-
tacts with other nearby amino acids. Outside of the core are loops and structural elements
in contact with water, other proteins, and other structures. Amino acid substitutions in
these regions are not as restricted as in the core. Through a close comparison of a newly
generated three-dimensional structure with previously found structures, the new structure
has often been found to fold into a-helical and B-sheet structural elements in the same
order and spatial configuration as one or more structures already in the structural
database. Proteins that show such structural similarities often do not share any detectable
sequence similarity in these same regions. Hence, entirely different sequences can fold into
similar three-dimensional configurations. Databases of these common structural features
have been prepared and are available on Web sites described later in this chapter.

The finding that only certain amino acids can be substituted at each position in a par-
ticular protein core underscores two difficulties in using sequence alignments to make
structural predictions. First, because a different set of substitutions apply to each position
in each protein core, standard amino acid substitution matrices such as the Dayhoff PAM
matrices and the BLOSUM matrices, described in Chapter 3, may not provide an align-
ment that has structural significance. The substitutions used to produce these tables are
averaged over many sequence alignments, representing observed substitutions in both core
regions and loops of sequence families.

Scoring matrices that represent a conserved region in the multiple sequence alignment
of a set of similar proteins may also be produced, as described in Chapters 4 and 7. These
matrices store information on the amino acid variation found in each column of the mul-
tiple sequence alignment. They are powerful tools for searching a new protein sequence for
the presence of a sequence pattern that is similar to those in the original set of proteins.
These scoring matrices include the profile, which represents gapped alignments, and the
position-specific scoring matrix (PSSM), which represents ungapped alignments. A con-
served region with gaps in a multiple sequence alignment may also be represented by a pro-
file hidden Markov model (profile HMM), which provides a probability-based model of
the multiple sequence alignment. Like the scoring matrices, the profile HMM representa-
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A special case is the use
of the term “structural
homology,” meaning
as it did with sequence
homology that the
sequences were derived
from a common ances-
tor, as evidenced by
their having significant
sequence similarity. As
described above, two
proteins may have sig-
nificant structural sim-
ilarity but no detect-
able sequence similari-
ty. Therefore, it may be
incorrect to refer fto
these proteins as homo-
logous in the absence of
evidence that they are
derived from a com-
mon ancestor.

tion of a sequence alignment can be used to identify related sequences. These methods are
discussed in detail in Chapters 4 and 7.

Scoring matrices and profile HMMs can provide a direct link between sequence and
structure. If one of the sequences that is represented by the matrix or profile model has a
known three-dimensional structure, then any other sequences that match the model are
also predicted to have the same structure. Conversely, if the model can be shown to match
a protein of known structure, a sequence—structure link may be made. A related method is
to produce a HMM (also called a discrete state-space model in the protein structure liter-
ature) for a set of proteins that belong to a structural family. These models include infor-
mation on amino acid preference for positions in secondary structures. A query sequence
can then be searched by a set of such models to determine whether the sequence has
sequence patterns that represent the structure. A range of Web sites provide a variety of
these types of analyses (see Fig. 9.30).

A second difficulty in making sequence alignments reflect structural similarity is that
gaps in the alignment should be confined to regions not in the core. Alignments that reflect
structures in core regions should have few if any gaps. Some multiple sequence alignment
programs such as CLUSTALW (see Chapter 4, p. 153) and the Bayes block aligner (Chap-
ter 3, p. 124) do provide for such variation in gap placement. These programs place align-
ment gaps where the alignment scores are low and, from a structural viewpoint, represent
variable loops. The profile models described above also accommodate such variations of
placement.

In addition to sequence-by-sequence alignment and sequence-by-structure alignment,
it is also possible to perform a structure-by-structure alignment. In this type of alignment,
sequential positions of the backbone carbon atoms for each amino acid in the two
sequences are compared to determine whether the chain of atoms is tracing the same path
in space. If two or more similar paths are found in the same relative positions and orien-
tations, the structures corresponding to those paths are similar. From these methods, dis-
cussed below, databases of structural elements have been made and are available to the lab-
oratory.

What is a reasonable goal for protein structure prediction from the perspective of a
molecular biologist? The most satisfying result is to find sequence and structural align-
ments of a newly identified protein with a protein of known three-dimensional structure.
Even if such a prediction can be made, the positions of individual amino acids will proba-
bly not be accurately known. If the sequence identity is 50% or better, one sequence can be
superimposed on the structure of the other sequence and the predicted structure will be
quite accurate. If the sequence identity is greater than 30%, it may be possible to identify
common structural features, but it will become more difficult to identify the precise posi-
tions of the amino acids in the structure as sequence identity decreases.

The prediction of protein structure is an active and promising area of research. As more
three-dimensional structures are found and the computational tools for predicting struc-
ture are improved, structural predictions will undoubtedly improve. The existence of new
groups of proteins for structural analysis is suggested by the existence of genome “ORFans”
that may represent new sets of families (superfamilies) with a unique structure and func-
tion (Fischer and Eisenberg 1999). One group of investigators that works on protein
classification has developed a protein structure initiative to identify new protein targets
for structural analysis (http://www.structuralgenomics.org/main.html). A method for
estimating the probability for a protein to have a new fold has been described previously
(Portugaly and Linial 2000). The Human Proteome/Structural Genomics Pilot Project
(http://proteome.bnl.gov), a consortium of Brookhaven National Laboratory, the Rocke-
feller University, and Albert Einstein College of Medicine, is examining the feasibility of
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high-throughput determination of three-dimensional structures of proteins starting with
genomic sequences.

With a larger set of protein models, the usefulness of structure prediction is increased
even further (Pennisi 1998). Many additional methods for structural classification of pro-
teins and for displaying the structures have meanwhile been devised, and the Web has pro-
vided these resources to the research community. Formerly, special software and hardware
were required to view structures. Now, there are a variety of visualization tools that work
with a Web browser and allow one to view a molecule in three dimensions, to compare
structures, and to perform other useful procedures. A representation of several useful Web
sites for protein structure analysis is given in Table 9.1.

In this chapter, basic features of protein structure and structural terminology and the
terms describing them are first reviewed. Some terms refer to sequence similarity, some to
structural similarity, and some to both sequence and structure, and it is important not to

- confuse them.

Table 9.1. Main Web sites for protein structural analysis

Name of resource Resources available Internet address

Protein data bank (PDB) at the
State University of New Jersey
(Rutgers)®

atomic coordinates of structures as PDB
files, models, viewers, links to many
other Web sites for structural analysis
and classification

Molecular Modelling Database (MMDB),
Vector Alignment Search Tool (VAST)
for structural comparisons, viewers,
threader software

SCOP database of structural
relationships among known
protein structures classified by
superfamily, family, and fold

http://www.rcsb.org/pdb;
also at mirror Web sites
(Berman et al. 2000)

National Center for Biotechnology
Information Structure Group

http://www.ncbi.nlm.nih.gov/Structure/

Structural Classification of Proteins
at Cambridge University

http://scop.mrc-lmb.cam.ac.uk/scop;
also at Web mirror sites

Biomolecular Structure and
Modelling group at the
University College, London

European Bioinformatics Institute,
Hinxton, Cambridge

The PredictProtein server at the
European Molecular Biology
Laboratory at Heidelberg,
Germany

Swiss Institute of Bioinformatics,
Geneva

CATH database, a hierarchical domain
classification of protein structures by
class, architecture, fold family and
superfamily, other databases and
structural analyses, threader software

databases, TOPS protein structural
topology cartoons, Dali domain server,
and FSSP database®

important site for secondary structure
prediction by PHD, predator,
TOPITS, threader

basic types of protein analysis? databases,
the Swiss-Model resource for prediction
of protein models, Swiss-PdbViewer

http://www.biochem.ucl.ac.uk/bsm;
also at Web mirror sites

http://www2.ebi.ac.uk/

http://cubic.bioc.columbia.edu/predictprotein;
also at Web mirror sites®

http://www.expasy.ch/

Additional sites are listed in the text. In addition to these sites,

there are a number of Web sites and courses that discuss protein struc-

ture, The Swiss Institute for Bioinformatics (ISREC server) provides a tutorial on Principles of Protein Structure, Comparative Protein
Modelling, and Visualisation at http://www.expasy.ch/swissmod/course/course-index.htm. There is also a Web course in protein struc-
ture at Birkbeck College http://www.cryst.bbk.ac.uk/teaching/.

b

* A summary of the PDB entries is provided at http://www.biochem.ucl.ac.uk/bsm/pdbsum/ (Laskowski et al. 1997).
3Dee database of protein domains at http://barton.ebi.ac.uk/servers/3Dee.html, Dali domain server is at http://www2.embl-

ebi.ac.uk/dali/domain/ and FSSP database at http://www2.embl-ebi.ac.uk/dali/fssp/fssp.html.

© Also performed at the structure prediction server at http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html.

4 This site offers a series of basic types of protein analysis to assist with protein identification, including identification by amino acid
composition, charge, size, and sequence fingerprint. Predictions of posttranslational modifications and oligosaccharide structures are

also available.
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Other terms that are used to describe protein structure and the methods for displaying
and comparing protein structures are described. Some of the more easily found structures
and then the methods used to predict secondary and three-dimensional structures are dis-
cussed. A flowchart showing the steps to be followed to analyze a new protein sequence is
included at the beginning of the Methods section (p. 399). The chapter concludes with a
discussion of methods used to evaluate the success of these predictions.

Proteins are chains of amino acids joined by peptide bonds, as illustrated in Figure 9.2.
Many conformations of the chain are possible due to the rotation of the chain about each
C,, atom. It is these conformational variations that are responsible for differences in the
three-dimensional structures of proteins. Each amino acid in the chain is polar, i.e., it has
separated positive and negatively charged regions with a chemically free C=O group,
which can act as a hydrogen bond acceptor, and an NH group, which can act as a hydro-
gen bond donor. These groups interact in protein structures. The 20 amino acids found in
proteins can be grouped according to the chemistry of their R groups, as depicted in Table
9.2. The R side chains also play an important structural role. Special roles are played by
glycine, which does not have a side chain and can therefore increase local flexibility in
structures, and cysteine, which can react with another cysteine to form a cross-link that can
stabilize the protein structure.

Much of the protein core comprises regular secondary structures, « helices and {3 sheets,
folded into a three-dimensional configuration. In these secondary structures, regular
patterns of H bonds are formed between neighboring amino acids, and the amino acids

Figure 9.2. The structure of two amino acids in a polypeptide chain. Each amino acid is encircled by
a different color ring. The R group is different for each of the 20 amino acids. Neighboring amino
acids are joined by a peptide bond between the C=0 and NH groups. The N-C,-C sequence is repeat-
ed throughout the protein, forming the backbone of the three-dimensional structure. The amino acid
at one end of the chain has a free NH, group (chain beginning) and the amino acid at the other end
has a free COOH group (chain end). The bonds on each side of the C, atom are quite free to rotate,
but many combinations of angles are not possible for most amino acids due to spatial constraints
from the R group and neighboring positions in the chain. The conformation of the protein backbone
in space is determined by the angles of these bonds, ® of the bond between the N and C, atoms and
W of the bond between the C, and C of the C=0 group, also named Cg. The distribution of these two
angles for the amino acids in a particular protein is often plotted on a graph called a Ramachandran
plot. The angle Q of the peptide bond joining the C=0 and NH groups (not shown) is nearly always
180°.
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Table 9.2. Chemical properties of the 20 amino acids

Chemical group Amino acid (one-letter code) Name

Hydrophobic

alanine

valine
phenylalanine
proline
methionine
isoleucine
leucine

H= o< <

Charged

aspartic acid
glutamic acid
lysine
arginine

=~ m g

Polar

serine
threonine
tyrosine
histidine
cysteine
asparagine
glutamine
tryptophan

TOZOTI<Aw

Glycine

o

glycine
Cross-linking
cysteine + cysteine

have similar @ and ¥ angles, as depicted in Figure 9.3. The formation of these structures
neutralizes the polar groups on each amino acid. The secondary structures are tightly
packed in the protein core in a hydrophobic environment. Each amino acid side group has
a limited volume to occupy and a limited number of possible interactions with other near-
by side chains, a situation that must be taken into account in molecular modeling and
alignments.

The o helix depicted in Figure 9.3A is the most abundant type of secondary structure in
proteins. The helix has 3.6 amino acids per turn with an H bond formed between every
fourth residue; the average length is 10 amino acids (3 turns) or 10 A but varies from 5 to
40 (1.5 to 11 turns). The alignment of the H bonds creates a dipole moment for the helix
with a resulting partial positive charge at the amino end of the helix. Because this region
has free NH, groups, it will interact with negatively charged groups such as phosphates.
The commonest location of a helices is at the surface of protein cores, where they provide
an interface with the aqueous environment. The inner-facing side of the helix tends to have
hydrophobic amino acids and the outer-facing side hydrophilic amino acids. Thus, every
third of four amino acids along the chain will tend to be hydrophobic, a pattern that can
be quite readily detected. In the leucine zipper motif, a repeating pattern of leucines on the
facing sides of two adjacent helices is highly predictive of the motif. A helical-wheel plot
can be used to show this repeated pattern (see below). Other a helices buried in the pro-
tein core or in cellular membranes have a higher and more regular distribution of
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B Sheet

A. o helix B. B-sheet configurations

parallel antiparallel

bttt it

Figure 9.3. The a helix and B sheets of protein secondary structure. The backbone of the chain is
shown in red, the C, atoms and the C=0 and NH groups are shown in blue, yellow, and green,
respectively. (A) In the a helix, note that each C=0O group at amino acid position 7 in the sequence
is hydrogen-bonded with the NH group at position n + 4. There are 3.6 residues per turn. The helix
is usually right-handed, but short sections of 3-5 amino acids of left-handed helices occur occasion-
ally. The average ® and ¥ angles of the amino acids in the right-handed helix are approximately 60°
and 40°, respectively. The R side chains of the amino acids are on the outside of the helix. (B) The B
sheet is made up of B strands that are portions of the protein chain. The strands may run in the same
(parallel) or opposite (antiparallel) chemical directions (or a mixture of the two), and the pattern of
hydrogen bonds is different in each case and also varies in antiparallel strands.

hydrophobic amino acids, and are highly predictive of such structures. Helices exposed on
the surface have a lower proportion of hydrophobic amino acids. Amino acid content can
be predictive of an a-helical region. Regions richer in alanine (A), glutamic acid (E),
leucine (L), and methionine (M) and poorer in proline (P), glycine (G), tyrosine (Y), and
serine (S) tend to form an « helix. Proline destabilizes or breaks an « helix but can be
present in longer helices, forming a bend. There are computer programs for predicting
quite reliably the general location of o helices in a new protein sequence.

B Sheets are formed by H bonds between an average of 5-10 consecutive amino acids in
one portion of the chain with another 5-10 farther down the chain, as shown in Figure
9.3B. The interacting regions may be adjacent, with a short loop in between, or far apart,
with other structures in between. Every chain may run in the same direction to form a par-
allel sheet, every other chain may run in the reverse chemical direction to form an antipar-
allel sheet, or the chains may be parallel and antiparallel to form a mixed sheet. As illus-
trated in Figure 9.3, the pattern of H bonding is different in the parallel and antiparallel
configurations. Each amino acid in the interior strands of the sheet forms two H bonds
with neighboring amino acids, whereas each amino acid on the outside strands forms only
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one bond with an interior strand. Looking across the sheet at right angles to the strands,
more distant strands are rotated slightly counterclockwise to form a left-handed twist,
which is apparent in some of the structures shown below. The C, atoms alternate above
and below the sheet in a pleated structure, and the R side groups of the amino acids alter-
nate above and below the pleats. The ® and ¥ angles of the amino acids in 8 sheets vary
considerably in one region of the Ramachandran plot (see Fig. 9.2 legend). It is more dif-
ficult to predict the location of 8 sheets than of a helices. The situation improves some-
what when the amino acid variation in multiple sequence alignments is taken into account.

Loops are regions of a protein chain that are (1) between o helices and B sheets, (2) of var-
ious lengths and three-dimensional configurations, and (3) on the surface of the structure.
Hairpin loops that represent a complete turn in the polypeptide chain joining two antipar-
allel B strands may be as short as two amino acids in length. Loops interact with the sur-
rounding aqueous environment and other proteins. Because amino acids in loops are not
constrained by space and environment as are amino acids in the core region, and do not
have an effect on the arrangement of secondary structures in the core, more substitutions,
insertions, and deletions may occur. Thus, in a sequence alignment, the presence of these
features may be an indication of a loop. The positions of introns in genomic DNA some-
times correspond to the locations of loops in the encoded protein. Loops also tend to have
charged and polar amino acids and are frequently a component of active sites. A detailed
examination of loop structures has shown that they fall into distinct families.

A region of secondary structure that is not a helix, a sheet, or a recognizable turn is com-
monly referred to as a coil.

Proteins may be classified according to both structural and sequence similarity. For struc-
tural classification, the sizes and spatial arrangements of secondary structures described in
the above section are compared in known three-dimensional structures. For classification
by sequence similarity, alignments of protein sequences are made using the methods
described in Chapters 3 and 4. Classification based on sequence similarity was historically
the first to be used. Initially, similarity based on alignments of whole sequences was per-
formed. Later, proteins were classified on the basis of the occurrence of conserved amino
acid patterns. Databases that classify proteins by one or more of these schemes are avail-
able.

In considering protein classification schemes, it is important to keep several observa-
tions in mind. First, two entirely different protein sequences from different evolutionary
origins may fold into a similar structure. Conversely, the sequence of an ancient gene for a
given structure may have diverged considerably in different species while at the same time
maintaining the same basic structural features. Recognizing any remaining sequence sim-
ilarity in such cases may be a very difficult task. Second, two proteins that share a signifi-
cant degree of sequence similarity either with each other or with a third sequence also share
an evolutionary origin and should share some structural features also. However, gene
duplication and genetic rearrangements during evolution may give rise to new gene copies,
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which can then evolve into proteins with new function and structure. Examples of these
events are discussed at the beginning of Chapter 2 and in Chapters 6 and 10. To make
assessments of protein structure, a number of terms that describe protein similarity and
structural relationships are used.

Terms Used for Classifying Protein Structures and Sequences

The more commonly used terms for describing evolutionary and structural relationships
among proteins are listed below. Many additional terms are used to describe various kinds
of structural features found in proteins. Descriptions of such terms may be found at the
CATH Web site (http://www.biochem.uclac.uk/bsm/cath/lex/glossary.html), the Struc-
tural Classification of Proteins (SCOP) Web site (http://pdb.wehi.edu.au/scop/gloss.html
and Web mirror sites), and a Glaxo-Wellcome tutorial on the Swiss bioinformatics Expasy
Web site (http://www.expasy.ch/swissmod/course/ course-index.htm).
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Classes of Protein Structure

From the work of Levitt and Chothia (1976), four principal classes of protein structure
were recognized based on the types and arrangements of secondary structural elements.
These classes are described and illustrated below. In addition, several other classes recog-
nized in the SCOP database discussed below (p. 402) (Murzin et al. 1995) are also includ-
ed. Examples of this classification are taken from Branden and Tooze (1991).

1. Class o comprises a bundle of o helices connected by loops on the surface of the pro-
teins (see Fig. 9.4).
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Figure 9.4, Structure of o class proteins. (A) Diagram showing o-helical pattern of this class. a helices
are red cylinders, and black lines are loops. (B) Example of the class, hemoglobin, PDB file 3hhb dis-
played using Rasmol, using ribbons display and group color.

2. Class B comprises antiparallel B sheets, usually two sheets in close contact forming a
sandwich (see Fig. 9.5). Alternatively, a sheet can twist into a barrel with the first and
last strands touching. Examples are enzymes, transport proteins, antibodies, and virus
coat proteins such as neuraminidase.

3. Class a/p comprises mainly parallel B sheets with intervening « helices, but may also
have mixed B sheets (see Fig. 9.6). In addition to forming a sheet in some proteins in
this class, as illustrated below, in others parallel B strands may form into a barrel struc-
ture that is surrounded by a helices (not shown). This class of proteins includes many
metabolic enzymes.

4. Class o + P comprises mainly segregated o helices and antiparallel 8 sheets (Fig. 9.7).

5. Multidomain (o and ) proteins comprise domains representing more than one of the
above four classes.

6. Membrane and cell-surface proteins and peptides excluding proteins of the immune
system comprise this class (see Fig. 9.8).

Protein Databases

A protein can be analyzed in the laboratory at the levels of sequence and structure. The
amino acid sequence and the atomic coordinates of each atom in the structure are unique
to each protein. The sequence is obtained in the molecular biology laboratory as a DNA
sequence and translated into the amino acid sequence of the encoded protein (see Chapter
8). DNA sequences are deposited in the DNA sequence databases such as GenBank and
EMBL, where they are automatically translated to produce the Genpept and TrEMBL pro-
tein databases, respectively. Sometimes protein fragments are also sequenced, and match-
es with DNA sequence databases are used to identify the encoding gene (Chapter 8). The
encoded proteins are additionally annotated in databases such as SwissProt and PIR as
described in Chapter 2.
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Figure 9.5. Structure of B class proteins. (A) Diagram showing typical arrangement of the antiparallel B strands (blue arrows)
joined by loops (black lines) in B sheet. (B) Example of protein in this class, T-cell receptor CD8, PDB file 1c¢d8, image from
http://expasy.hcuge.ch/pub/Graphics/IMAGES/.

The three-dimensional structure of a protein is usually obtained by making crystals of
the protein and using X-ray diffraction to determine the positions of molecules that are
fixed within the crystal. The technique of nuclear magnetic resonance (NMR) is also used
to obtain protein structures. Once the three-dimensional coordinates of each atom in the
protein molecule have been found, a table of these coordinates is deposited with the
Brookhaven Data Bank as a PDB entry. PDB entries such as shown in Table 9.3 give the
atomic coordinates of the amino acids in proteins, protein fragments, or proteins bound
to substrates or inhibitors. PDB files may be easily retrieved from the PDB Web site
(http://www.rcsb.org/pdb/) and displayed with a molecular viewer such as Rasmol. Struc-
tural information may also be stored in forms other than PDB, but PDB is the most acces-
sible for the molecular biologist. There are three different kinds of databases that provide
an analysis of proteins, one kind for sequences, a second for structures, and a third for
comparing sequences and structures.

As more and more protein structures have been solved by X-ray crystallographic and
NMR methods, these structures have been classified by various means into structural
databases. This classification is based on comparison and alignment of the protein struc-
tures. The types, order, connections, and relative positions of secondary structures are
compared using the known atomic coordinates of atoms in each structure and methods
described below. This type of information can then be combined with sequence informa-
tion to identify other proteins that might have similar structural features.
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Figure 9.6. Structure of o/p class proteins. (A) Diagram showing one possible configuration of parallel § strands (blue arrows)
in a B sheet and an intervening o helix (red cylinder), joined by loops (black lines). (B) Example of protein in this class, trypto-
phan synthase B subunit obtained from http://expasy.hcuge.ch/pub/Graphics/IMAGES/.

Figure 9.7. Structure of o + P class proteins. (A) Diagram showing arrangement of typical motif of antiparallel B strands (blue
arrows) in P sheet and segregated from a helix (red cylinder) and showing loops (black lines). (B) Example of protein in this
class, G-specific endonuclease complex with deoxy-dinucleotide inhibitor, PDB file 1rnb viewed with Rasmol.
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Figure 9.8. Structure of membrane proteins. a helices are of a particular length range and have a high content of hydropho-
bic amino acids traversing a membrane, features that make this class readily identifiable by scanning a sequence for these
hydrophobic regions (see below). (A) Diagram showing typical arrangement of membrane-traversing, hydrophobic a helices
(red). Membrane bilayer shown as green lines. (B) Example of protein in this class, integral membrane light-harvesting com-
plex, PDB file lkzu viewed with Rasmol.

Another type of protein sequence analysis is a sequence alignment of protein sequences
discussed in Chapter 3 or a search for similar sequences in the sequence databases, as
described in Chapter 7. The alignment will reveal any significant similarity and the degree
of amino acid identity between two sequences. Similarity may be present throughout the
sequences or localized to certain regions. Localization of sequence similarity can best be
performed by global and local sequence alignment methods, as discussed in Chapter 3. The
stronger the similarity and identity, the more similar are the three-dimensional folds and
other structural features of the proteins. Another level of sequence analysis is examining a
group of sequences for common amino acid patterns. Methods for finding different types
of patterns, including motifs (short gapped or ungapped patterns), blocks (ungapped pat-
terns), and patterns with gaps (represented by profile scoring matrices and profile HMMs)
are discussed in Chapter 4. These patterns may be obtained from sequences of proteins that
are already known to have the same function, or they may be obtained by statistical or pat-
tern-finding methods of any set of sequences of biological interest. Depending on the
extent and significance of these patterns and additional information about the function of
the proteins, their presence may or may not represent structural similarity or an evolu-
tionary relationship among the proteins. A combined form of sequence and structural
alignments provides an additional level of analysis.

When proteins of unknown structure are similar to a protein of known structure at the
sequence level, multiple sequence alignment and pattern analysis can be used to predict the
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Table 9.3. Brookhaven Protein Data Bank (PDB) entry 3hhb for deoxy hemoglobin

Header Oxygen transport

compnd hemoglobin (deoxy) 13-Jul-93 2hhb
ATOM 1 N VAL A 1 5.428 17.064 5.060 1.00 41.29
ATOM 2 CA VALA 1 6.168 18.292 4.856 1.00 41.33
ATOM 3 C VAL A 1 7.676 18.056 5.068 1.00 31.64
ATOM 4 O VALA 1 8.120 17.488 6.076 1.00 38.31
ATOM 5 CB VAL A 1 5.644 19.268 5.884 1.00 52.26
ATOM 6 CGI VAL A 1 6.044 20.696 5.512 1.00 52.75
ATOM 7 CG2 VAL A 1 4.124 19.120 6.000 1.00 58.75
ATOM 8§ N LEU A 2 8.444 18.512 4.116 1.00 27.63
ATOM 9 CA LEU A 2 9.896 18.420 4.308 1.00 33.62
ATOM 10 C LEU A 2 10.360 19.592 5.216 1.00 32.51
ATOM 11 O LEU A 2 10.128 20.760 4.900 1.00 31.03
ATOM 12 CB LEU A 2 10.568 18.584 2.932 1.00 34.38
ATOM 13 CG LEU A 2 10.284 17.488 1.924 1.00 32.23
ATOM 14 CD1 LEU A 2 11.032 17.676 0.580 1.00 36.30
ATOM 15 CD2 LEU A 2 10.576 16.136 2.560 1.00 38.42

Shown is the initial part of the entry showing ATOM records that provide cartesian coordinates of all atoms in the first two amino
acids Val and Leu. The last columns give the occupancy and temperature factor for each atom. The occupancy gives the frequency with
which the atom is present in the crystal and is usually 1. The temperature gives a measurement of the uncertainty of the position of the
atom due to the motion of the atom in the crystal. The units of temperature are Angstroms squared. A typical value of a crystal at room
temperature at 2 A resolution is 20 A; the higher this value for an atom, the more uncertain the position of that atom. Structural entries
sometimes provide the author’s assignment of a secondary structure to each amino acid.

str

uctures of these proteins. Databases of such related proteins are available. In another

type of analysis, called threading, the sequence of amino acids in a protein of unknown

str

ucture is tested for ability to fit into a known three-dimensional structure. The size and

chemistry of each amino acid R group and proximity to other amino acids are taken into
account. This analysis provides a method for aligning a sequence with a structure.

1.

METHODS

Amino acid sequences of proteins are derived from translation of cDNA sequences or predicted gene
structures in genomic DNA sequences. Partial sequences are also derived by translation of expressed
sequence tag (EST) sequences or genomic DNA sequences in all six reading frames. These predictions
can be improved when genomic and EST sequences can be aligned and when overlapping EST
sequences are identified by gene indexing, as described in Chapters 7 and 8.

. The sequence is used as a query in a database similarity search against the proteins in the Protein Data

Bank (PDB), all of which have a known three-dimensional structure. A significant alignment of the
quéry sequence with a PDB sequence is evidence that the query sequence has a similar three-dimen-
sional structure. If a relationship with a PDB protein is not found, then a second database similarity
search against a protein sequence database such as SwissProt can be performed. Matching sequences
including both closely related and more distantly related ones can then be used in a search against
PDB sequences. The PSI-BLAST tool described in Chapter 7 automates and enhances the process of
finding related sequences in the protein database. The goal is to discover one or more database
sequences that are related both to the query and to a PDB sequence, as illustrated in Figure 7.1.

. If the database similarity search reveals a significant alignment between the query sequence and a PDB

sequence, the alignment between the sequences can be used to position the amino acids of the query
sequence in the same approximate three-dimensional structure. Testing the significance of alignment
scores is discussed in Chapter 3.
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4. Proteins have been classified into families on the basis of sequence similarity. The relationships are
depicted in a multiple sequence alignment of the proteins, as described in Chapter 4. Proteins of
known three-dimensional structure have also been classified into fold families on the basis of a com-
mon arrangement of secondary structures. Sequences of proteins in the same fold family are often not
similar, so they cannot be aligned. However, the individual proteins in a particular fold family are
often members of families based on sequence similarity. Hence, these similar sequences are also pre-
dicted to have the same structural fold as the fold family. The goal of this step in the flowchart is to
exploit these structure-sequence relationships. Two questions are addressed: (1) Is the new protein a
member of a protein family based on sequence similarity? (2) Does the matched family have a pre-
dicted structural fold? The first question is usually addressed by analyzing the test sequence for
patterns that represent each family using PSSMs, profile HMMs, and other tools, as described in
Chapter 7. Web sites such as Interpro (Table 9.5) include a large, composite collection of patterns and
will search a new sequence for matches. 3D-PSSM (Table 9.5) includes a powerful set of scoring matri-
ces based on structural alignments for use in three-dimensional structure prediction. These Web sites
usually provide links to related fold families, thus identifying a predicted structural fold for the new
protein. Other Web sites employ a cluster analysis of proteins based on pair-wise alignment scores of
all of the proteins in the SwissProt database. These sites offer an alternative method for finding rela-
tionships between a new sequence and all of the other sequences in SwissProt, and thus for discover-
ing a link to a known protein structure.

5. If the family analysis reveals that the new protein is a member of a family that is predicted to have a
structural fold, multiple sequence alignments of these proteins can be used for structural modeling.

6. This step in the flowchart includes several different types of analyses that are described below in the
chapter. First, the presence of small amino acid motifs in a protein can be an indicator of a biochem-
ical function. The Prosite catalog can be used to search a new protein sequence for motifs. Second,
spacing and arrangement of specific amino acids, e.g., hydrophobic amino acids, provides important
structural clues that can be used for modeling. Third, the tendency of certain amino acid combina-
tions to occur in a given type of secondary structure provides methods for predicting where these
structures are likely to occur in a new sequence. Fourth, the structural fold families described in note
4 above have been represented by PSSMs and by HMMs that capture the tendency to find each amino
acid at a particular position in a structural fold and variations in the fold itself. Other models of three-
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dimensional structure represent the size and chemistry of amino acids or the energetic stability asso-
ciated with amino acid interactions. A new protein sequence can be aligned with these models to
determine whether the sequence matches one of them, a procedure known as threading a sequence
into a structure.

7. The structural analysis in step 6 provides clues as to the presence of active sites, regions of secondary
and three-dimensional structure, and the order of predicted secondary structures. If these predictions
are convincing enough, it may be possible to identify a new protein as a member of a known struc-
tural class.

8. Sequence or structural alignments of the new protein with a protein of known structure provide a
starting three-dimensional model of the protein. By using computer graphics and protein modeling
software, the amino acids can then be positioned to accommodate available space and interactions
with neighboring amino acids.

9. Proteins that fail to show any relationship to proteins of known structure are candidates for structural
analysis. There are approximately 500-600 known fold families, and new structures are frequently
found to have an already known structural fold. Accordingly, protein families with no relatives of
known structure may represent a novel structural fold.

The first major step in displaying a structure is to identify the correct PDB identification
code for the structural file. Most sites provide a browser program for searching the struc-
tural database for the name of the protein, organism, or other identifying features (see
below). There may be a number of choices from which to choose, including domains,
folds, or protein fragments, or structures of the protein bound to a substrate or inhibitor.
Some databases also include the predicted structure of mutant proteins. The available
choices need to be screened carefully for the correct one.

A number of molecular viewers are freely available and run on most computer platforms
and operating systems, including Microsoft Windows, Macintosh, and UNIX X-Windows.
These programs convert the atomic coordinates into a view of the molecule. They may also
recompute information to remove inconsistencies in the database or to supply missing
information (Hogue and Bryant 1998a,b). Viewers also provide ways to manipulate the
molecule, including rotation, zooming, and creating two images that provide a stereo view.
Rotating a molecule by dragging the mouse across the image can illustrate the three-dimen-
sional structure. Viewers can also be used to show a structural alignment of two or more
structures or a predicted structure. Unless a very high-resolution view is needed, the sim-
plest way to use a viewer is through a network browser. The browser may be readily config-
ured to run a viewer program automatically when the particular file format used by the
viewer is being downloaded from the remote computer. Most sites that provide protein
structural files provide several formats allowing a choice of viewers, and they also provide
Web links to other sites from which the viewer program may be downloaded. The viewer
option usually appears once a particular structural file has been chosen. Shown in Table 9.4
are some representative viewers that are commonly used and their features.

The correct processing of files with molecular structural information through the Web
or through E-mail attachments is made possible by the chemical MIME (multipurpose
internet mail extension) project (http://www.ch.ic.ac.uk/chemime/iupac.html). This pro-
ject acts as a repository for standard types of MIME files. As an example, if the start of the
file includes the label chemical/x-pdb (MIME type chemical and subtype x-pdb), the file is
a text file in the Brookhaven Protein Data Bank file format, and a viewer for a pdb file such
as Rasmol or Chime is needed. Files intended for viewing by Rasmol may also be indicat-
ed by MIME type application/x-rasmol and the pdb file may also be identified by the file-
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Table 9.4.  Programs for viewing protein molecules

Viewer Web location Features

Chime http://www.umass.edu/microbio/chime/ A Web browser plug-in that can be used to display
and manipulate structures inside a Web page.
There are many mouse-driven controls.
Excellent for lecture presentations.

Cn3d? http://www.ncbi.nlm.nih.gov/Structure/ Provides viewing of three-dimensional structures

(Hogue 1997) from Entrez and MMDB.? Cn3D runs on

Windows, MacOS, and Unix; simultaneously
displays structural and sequence alignments;
can show multiple superimposed images from

NMR studies.
Mage http://kinemage.biochem.duke.edu/website/kinhome.html Standard molecular viewing features with
(see Richardson and Richardson 1994) animation and kaleidoscope effects.
Rasmol® http://www.umass.edu/microbio/rasmol/ Most commonly used viewer for Windows,
(Sayle and Milner-White 1995) MacOS, UNIX, and VMS operating systems.
Performs many functions.
Swiss 3D http://www.expasy.ch/spdbv/mainpage.html Protein models can be built by structural
viewer, (Guex and Peitsch 1997) alignments; calculates atomic angles and
Spdbv distances, threading, energy minimation, and

interacts with the Swiss Model server.

Additional viewers are accessible from the referenced Web sites. Viewer functions usually include wireframe of C,, backbone, ribbon
of secondary structures, space-filling displays, color schemes to illustrate features such as residues, structures, temperature, mouse-drag
rotation, several views including stereo, zooming, and exporting to graphic file formats. Assistance with these viewers is provided at the
following Web sites for obtaining molecular coordinates: Molecules R Us at NIH, http://molbio.info.nih.gov/cgi-bin/pdb, and NCBI,
http://www.ncbi.nlm.nih.gov/Structure/. A large list of available graphics viewers may be found at http://www.csb.yale.edu/user-
guides/graphics/csb_hm_graph.html.

* The NCBI structure group has established a new format for databases called ASN.1 (see Chapter 2). The PDB files have been con-
verted into this format to create another database MMDB (Molecular Modelling DataBase) that is highly suitable for structural align-
ments by vector methods described below. Ambiguities in PDB entries have been made explicit in the MMDB database (Hogue and
Br{ant 1998a,b; http://www.ncbi.nlm.nih.gov/Structure/).

Rasmol and other viewers as well have many features in the molecular viewing window in addition to those described above. These
additional features are accessible through a command line window that appears when the program is running.

name extension pdb. There are also additional chemical MIME formats. For Cn3D, chem-
ical/ncbi-asnl-binary and val are the MIME type and filename extension, respectively.
Cn3D files are sent as a binary file rather than a text file, meaning that some bytes include
characters other than the standard ASCII characters. For MAGE, chemical/x-kinemage
and kin are used. Molecules may also be viewed by means of programs called applets writ-
ten in the JAVA programming language. These programs are sent at the same time as the
molecular coordinates and are run by the browser.

In addition to retrieving the three-dimensional coordinates of a molecule, already
prepared graphic views of molecules may be obtained from many of the Web sites that
provide pdb files. The following FTP site contains a database of stored image files:
http://www.expasy.ch/databases/swiss-3dimage/IMAGES/. These views include two file
formats commonly used on the Web, the JPEG (Joint Photographic Experts Group) for-
mat and GIF (graphics interchange format). These formats produce images of a reasonably
high quality but have varying levels of detail and resolution. A higher resolution and more
detailed rendition of the molecule will have a larger file size and take longer to retrieve over
the Internet. These files may be compressed to a smaller size by graphic format conversion
programs. Programs such as Raster3D (http://www.bmsc.washington.edu/raster3d/) and
Molscript (http://www.avatar.se/molscript/) produce very high-quality images in a num-
ber of different formats. These programs require graphics work stations and a more
sophisticated level of programming experience.
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The following databases are accessible on the Web and provide up-to-date structural com-
parisons for the proteins currently in the Brookhaven PDB and access to the sequences of
these proteins. The methods used to classify the protein structures in these databases vary
from manual examination of structures to fully automatic computer algorithms. Hence,
although one can expect to find roughly the same groupings in each database, there will be
some structural relationships that are only identified by one of these methods. Each
database has useful information that may be lacking in the others. The MMDB and SARF
databases (4 and 5 below) are based on a rapid structural alignment method that is designed
to find the most significant alignments in the structural databank. The SCOP, CATH, and
FSSP databases (1, 2, and 3) are based on different comparison methods and are likely to
provide additional complementary information on relationships among protein structures.
These classification schemes have been reviewed previously (Swindells et al. 1998).

1. The SCOP database. The SCOP (structural classification of proteins) database (Murzin et
al. 1995; Brenner et al. 1996), based on expert definition of structural similarities, is locat-
ed at http://scop.mrc-Imb.cam.ac.uk/scop/. Following classification by class, SCOP addi-
tionally classifies protein structures by a number of hierarchical levels to reflect both evo-
lutionary and structural relationships; namely family, superfamily, and fold. Shown in
Figure 9.9 is an example of the lineage for the all a class, globin-like fold, globin-like
superfamily, globin, and phycocyanin families, and finally protein domains such as
hemoglobin 1 which can be viewed by individual entry in PDB using a molecular viewer.

2. The CATH database. The CATH (classification by class, architecture, topology, and
homology) protein structure database resides at University College, London (Orengo et
al. 1997; http://www.biochem.ucl.ac.uk/bsm/cath/). Proteins are classified first into
hierarchical levels by class, similar to the SCOP classification except that o/B and a+
proteins are considered to be in one class. Instead of a fourth class for a+f proteins, the
fourth class of CATH comprises proteins with few secondary structures. Following
class, proteins are classified by architecture, fold, superfamily, and family. Similar struc-
tures are found by the program SSAP, described on page 419. An example of a CATH
entry is shown in Figure 9.10.

3. The FSSP database. The FSSP (fold classification based on structure-structure alignment
of proteins) is based on a structural alignment of all pair-wise combinations of the pro-
teins in the Brookhaven structural database by the structural alignment program DALI
(Holm and Sander 1996; http://www2.embl-ebi.ac.uk/dali/fssp/fssp.html). PDB has a
number of redundant structures of proteins whose sequences and structures are 25% or
more identical. A subset of representative structures in PDB without these redundant
entries was first produced by aligning all of the PDB structures with DALL Each protein
in the subset was then subdivided into individual domains. These domains were then
aligned structurally with DALI to identify the common folds. Redundant folds were
again eliminated, and a set of representative folds was chosen. From 8320 PDB entries,
947 representative structures, 1484 domains, and 540 structurally distinct fold types were
identified in 1997 (Holm and Sander 1998). These fold types represent a unique config-
uration of secondary structural elements in the domains. For example, one fold might be
composed of helix-strand-helix-6 strands joined by loops in a particular configuration.

Corresponding to each representative fold type, there is a cluster of folds that are of
the same approximate structure. The domains that have a given cluster of folds are
structurally related, and the cluster is represented by structural alignments of these
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domains. The higher the statistical score for a given domain alignment and corre-
sponding fold (higher Z value), the greater the degree to which the atoms occupy sim-
ilar structural positions. Z values >16 indicate a very good structural alignment, 8-16
a less good alignment, until a level of 2, which indicates the lowest level of alignment
detection, is reached. Thus, fold clusters may be organized in a hierarchical fashion with
folds represented by the most low-scoring alignments at the top of the hierarchy, as
illustrated in Figure 9.11, FSSP, part D. _

In addition, the sequences of the 1000 representative structures were used as probes
for a sequence similarity search of the SwissProt protein sequence database. The
database search program MAXHOM, which begins with a sequence similarity search
and then with an expanded profile search, was used, as discussed in Chapter 7. The
resulting homology-derived structures of proteins (HSSP) database (Sander and
Schneider 1991; Dodge et al. 1998; http://www.sander.ebi.ac.uk/hssp/) contains lists of
similar proteins, one list for each representative structure. Given the PDB database
number of a known structure, the program will show the closest representative struc-
tures, and one or more may be chosen. The program will then show any significant
structural alignments between the chosen representative and other representative struc-
tures in FSSP. A structural alignment between the chosen representative and each of the
matching proteins in the HSSP database entry for that representative may be selected.
An example of searching for a structural and sequence similarity using the FSSP and
HSSP databases is shown in Figure 9.11.

4. MMDB (molecular modelling database). Proteins of known structure in the Brookhaven
PDB have been categorized into structurally related groups in MMDB by the VAST
(Vector Alignment Search Tool) structural alignment program (Madej et al. 1995).
VAST aligns three-dimensional structures based on a search for similar arrangements
of secondary structural elements (see Fig. 9.12). This method provides a method for
rapidly identifying PDB structures that are statistically out of the ordinary. MMDB has
been further incorporated into the ENTREZ sequence and reference database at
http://www.ncbi.nlm.nih.gov/Entrez (Hogue et al. 1996). Accordingly, it is possible to
perform a simultaneous search for similar sequences and structures, designated neigh-
bors, at the ENTREZ Web site. Structural neighbors within MMDB are based on
detailed residue-by-residue alignments.

5. The SARF database. The SARF (spatial arrangement of backbone fragments) database at
http://www-Ilmmb.ncifcrf.gov/~nicka/sarf2.html/ (Alexandrov and Fischer 1996) also
provides a protein database categorized on the basis of structural similarity. Like VAST,
SARF can find structural similarity rapidly based on a search for secondary structural
elements. These structural hierarchies found by this method are in good agreement with
those found in the SCOP, CATH, and FSSP databases with several interesting differ-
ences. The method also found several new groupings of structural similarity. The SARF
Web site provides a similarity-based tree of structures at http://www-lmmb.ncifcrf.gov/
~nicka/ tree.html/ and some excellent representations of overlaid structures.

e

As more and more protein structures, as well as access to recently developed and rapid meth-
ods for comparing protein structures, have become available on the Web, alignment of pro-
tein structures has become a task achievable by laboratories not trained in the techniques of
structural biology. To perform a sequence alignment, the amino acid sequence of one pro-
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Figure 9.9. A portion of the SCOP structural classification showing the hierarchy of all a-class, globin, and globin-like pro-
teins.
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Figure 9.10. CATH entry for E. coli RecA protein (PDB 2reb). (A) CATH classification of the protein. (B) Ancillary informa-
tion provided by CATH database including structure, sequence-secondary structure alignment, a structural image, and links to
other databases. Figure continues on next pages.

tein is written above the amino acid sequence of a second protein. Similar or identical amino
acids are placed in the same columns and gaps are placed at positions where there is no
matching character. In performing structural alignments, the three-dimensional structure of
one protein domain is superimposed upon the three-dimensional structure of a second pro-
tein domain, fitting together the atoms as closely as possible so that the average deviation
between them is minimum. Sequence alignments are performed to discover sequence simi-
larity, and structural alignments are done to discover structural similarity (evidence that the
structures share a common fold). New structural relationships are being constantly discov-
ered. Just as a laboratory may discover a remote sequence similarity between two protein
domains reflecting a family or superfamily relationship, so may the same laboratory discov-
er a previously unknown structural relationship between two proteins.

There is one important difference between sequence and structural similarity, however.
Statistically significant sequence similarity is an indicator of an evolutionary relationship
between sequences. In contrast, significant structural similarity is common, even among
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Figure 9.10. Continued.
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Figure 9.11. FSSP report for structures in PDB that are similar to PDB entry 1tupA. 1tupA is the struc-
ture of a mutant p53 protein from a cancer cell line complexed with DNA. (A) PDB representative entries
that are structurally similar to 1tupA. Shown is a table of other PDB representatives that show structural
homology with 1tupA. Ticking boxes in the first column chooses entries for viewing alignments or struc-
tures. The columns are the PDB code of the matched representative structure (STRID), a statistical mea-
sure of the strength of the structural similarity (Z score), the root-mean-square-deviation between the
aligned C, atoms in Angstroms (RMSD), and the number of aligned C, atoms in the superimposed
structures (LALI), the length of the second protein in the second, matched structure (LSEQ2), percent
sequence identity over the aligned positions (%IDE), and the name of the aligned protein. Structures that
align with 1tupA with a Z score of at least 2 and representing atomic separation distances that are at least
two standard deviations above background values for unrelated sequences are shown. Clicking the choice
3D superimposition with the mouse provides a PDB-like table of atomic coordinates of each separate
structure. The overlaid structures can then be viewed as separate chains by a molecular viewing program
(not illustrated). Choosing multiple alignment provides a structural alignment of the entries indicating
which amino acids occupy similar relative positions in the structures, as shown in B. Choosing multiple
families provides a multiple sequence alignment of the protein with similar sequences >25% identical in
the protein sequence database, as shown in D.
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A FSSP: select structural neighbours of 1tupA

Please cite: L. Holm and C. Sander (1996) Science 273(5275):595-60.

Select (check) structural neighbours to display

(30 superimposition) (Muitiple alignment] Multiple families} ( Reset selection)
STRIDZ Z RMSD LALI LSEQZ %IDE PROTEIN

JtupA 38.83 0.0 196 196 10@ tumor suppressor p53 DNA (5'-d(t
itsrA 38.5 0.0 19 196 108 p53 tumor suppressor DNA
lycsA 34.6 0.4 191 191 180 p53 fragment 53bp2 fragment (pS3
1tupB 33.9 0.8 194 194 100 tumor suppressor p53 DNA (5'-d(t
1tsrB 33.9 0.8 194 194 100 p53 tumor suppressor DNA
ItsrC 33.6 0.3 194 195 100 p53 tumor suppressor DNA
ItupC 33.6 0.8 194 195 100 tumor suppressor p53 DNA (5'-d(t

JaQ2N_ 7.4 3.8 139 280 8 nfat fragment (nf-at) biological
1bglA. 6.3 4.7 93 997 9 beta-galactosidase

la3gA. 6.1 3.7 119 285 5 nuclear factor-kappa-b p52 fragm
JrhoA 6.1 3.0 102 145 4 rho gdp-dissociation inhibitor 1
3dpg . 5.4 3.3 103 218 6 PapD

ctn _ 5.0 2.9 8 538 11 Chitinase a (ph 5.5, 4 degrees ¢
ImspA. 5. 3.6 93 124 5 major sperm protein (msp)
infa = 4.8 2.7 88 229 7 Fv fragment (murine sel55-4) com
1f13A_ 4.3 3.9 116 721 8 cellular coagulation factor xiii
Iddt = 4.7 3.7 114 523 7 Diphtheria toxin (dimeric)

4.7 3.6 97 601 15 sialidase (neuraminidase)
lhcz = 4.7 3.5 105 250 6 cytochrome f

IxbrA . 4.6 3.5 106 134 6 t protein fragment DNA

Jcdy = 4.6 2.6 78 178 1@ t-cell surface glycoprotein cd4
1cle 4.4 3.4 91 541 3 endoglucanase celd (1,4-beta-d-g
lten 4.4 2.7 83 89 Tenascin (third fibronectin type
1fnf 4.4 2.8 83 368 10 fibronectin

JtcrA 4.4 3.5 92 202 alpha, beta t-cell receptor (vb8
lney 4.3 3.0 88 115 myelin p@ protein fragment
JvcaA 4.3 3.1 81 199 human vascular cell adhesion mol
la 4.3 2.8 98 600 Hemocyanin (subunit type ii)
Jnkr = 43 2.8 8 195 p58-cl42 kir fragment (killer ce
1tf4A 4.2 3.6 106 605 t. fusca endoEXO-CELLULASE E4 CA
ltvdA 4.0 3.1 88 116 t cell receptor fragment (es204
Jahl = 4.0 3.2 92 129 12 ctla-4 fragment (cdl52) biologic
lbec. 3.9 3.4 99 238 5 14.3.D t cell antigen receptor M
lgohA 3.9 3.3 100 143 11 cellulosome-integrating protein

ey

COo0O000D0o0D00D0ooooOoOoooodoonoooooon

Continues on next page
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Figure 9.11. Continued.
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stat-1 biological_unit DNA

igg2a intact antibody - mab231
alpha-hemolysin (alphatoxin) bio
Cd8 (t cell c@-receptor, n-termi
cellulosomal scaffolding protein
granulocyte colony-stimulating f
Exo-1,4-beta-d-glycanase (cellul
titin, 127 (connectin i27, titin
Galactose oxidase (ph 4.5)

Cd2 (human)

neural cell adhesion molecule fr
epo receptor fragment (ebp) epo
e-cadherin (epithelial cadherin
kb5-c20 t-cell antigen receptor
Drosophila neuroglian (chymotryp
hemolin

Cd4 (domains 3 and 4)

growth hormone (hgh) Mutant grow
collagen adhesin fragment (cbdl9
Cu, zn superoxide dismutase
intercellular adhesion molecule-
gpl30 fragment

antibody a6 fragment interferon-
Telokin

chitobiase (beta-n-acetylhexosam
cyclodextrin glucanotransferase
phospholipase a2 fragment (calb
protein kinase c fragment (pkc)
allergen phl p 2 (phl p ii)
interleukin-1 beta biological_un
ceruloplasmin biological_unit
phosphatidylethanolamine binding
b*@801 fragment (b8) beta-2 micr
mhc class ii i-ak hen eggwhite 1
Plastocyanin (cu2+, ph 6.0)
anthrax protective antigen (pa)
gelation factor fragment (abp-12
beta-glucuronidase (gus gene pro
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3.6 65 552 11 Ascorbate oxidase

4.0 93 227 10 gp7@ fragment (su)

5.2 8 252 10 cytochrome ¢ oxidase (cytochrome
4.4 84 126 6 african horse sickness virus (se
3.6 70 185 10 mhc class ii i-ak hen eggwhite 1
3.2 93 424 5 purple acid phosphatase

4.4 71 449 11 proaerolysin

2.9 72 149 14 cowpea chlorotic mottle virus (c
3.8 74 123 6 pseudoazurin Mutant biological_u
3.7 86 136 2 deoxyuridine 5'-triphosphate nuc
3.7 85 158 4 cyoa fragment Mutant biological_
3.5 71 118 9 Transthyretin (prealbumin) mutan
3.6 61 146 5 Aspartate carbamoyltransferase (
3.8 73 104 2 tailspike protein fragment (late
2.5 62 395 15 tick-borne encephalitis virus gl
4.2 86 349 7 Bluetongue virus 10 (usa) vp7 (b
4.3 91 237 10 concanavalin a biological_unit
3.8 86 146 7 c¢d40 ligand fragment

3.7 81 151 8 rusticyanin biological_unit

4.4 103 577 6 cryia(a)

3.8 93 137 9 alpha-2-macroglobulin fragment
3.4 65 9% 6 cucumber basic protein

3.5 76 283 4 Tomato bushy stunt virus

return to FSSP home page / Dali Domain Dictionary
(C) L. Holm, EMBL-EBI, Hinxton, May 1996

Figure 9.11. Continued. Continues on next page

proteins that do not share any sequence similarity or evolutionary relationship. Thus,
structural similarity may or may not be an indicator of an evolutionary relationship. Fur-
ther light may be shed on this question by a close examination of the similarity. The simi-
larity may be quite simple, such as a common arrangement and spacing of several sec-
ondary structural elements. Alternatively, there may be a highly significant alignment of
many of the proteins through the same sequence of secondary structures and loops, and
many of the atoms in the two proteins may be quite superimposable. Such structural close-
ness may be an indication of a possible evolutionary relationship. The results of a search
for remote sequence similarity by sensitive statistical methods (Gibbs sampling, expecta-
tion maximization methods, and Bayesian alignment methods discussed in Chapter 4)
may be found to provide further support for such a possibility. The ability to make such
comparisons has depended on the development and availability of fast and efficient meth-
ods for performing structural comparisons.

Structural comparison methods share some of the features of methods for comparing
sequences, but with additional considerations. For comparing two sequences, one search-
es for a row of amino acids in one sequence that matches a row in the second, allowing for
substitutions and the insertion of gaps in one sequence to make up for extra characters in
the other. For comparing structures, positions of atoms in two three-dimensional struc-
tures are compared. These methods initially examine the positions of secondary structural
elements, « helices and 3 strands, within a protein domain to determine whether or not
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B. FSSP: structural neighbours of 1tupA

Please cite: L. Holm and C. Sander (1996) Science 273(5275):595-60.

Structural alignment by Dali

Notation: Uppercase: structurally equivalent with 1tupA; lowercase: structurally non-equivalent with 1tupA

Identities computed with respect to sequence: (1) 1tupA
Colored by: identity+property

1 60
1 1tupA 100.0% S Y P S s e e e
2 2tbvA  2.9% gvtvtshreyltqvnnssgfvvnggivgnsiqlnpsngtlfswlpalasnfdqysfnsvv
61 1 . 120
1 1tupA 100.0% @~
2 2tbvA  2.9% 1dyvplcgttevgrvalyfdkdsqdpepadrvelanfgvlketapwaeaml riptdkvkr
121 . 180
1 1tupA 100.0% @ —=mm e e
2 2tbvA  2.9% ycndsatvdgklidlgqlgiatyggagadavgel flarsvtlyfpgptntikridltgsl
181 . 2 . . . . 240
1 1ltupA 100.0% QKTYQGSYGFRLGFLHSGTAKSYTUTYSPALNKMFCQLAKTU PYQLWVDSTPPPGTRVRA
2 2tbvA  2.9% ADATGP---GYLV -~ v e mmme e e 1+RTPT---vLTHTFRA- -~~~ tgTFNLS
241 : . . . . 3
1 1tupA 100.0% MATYKQSQHMTEVVRRCPHHERC SDSDGLAPPQHLIRVEGNL - ---RVEYLDDRNTFR-H
2 2tbvA  2.9% GGL-—-m e e rcltSLTLGATgavviNDILAIdnvgtasD
301 . . . . : . 360
1 1ltupA 100.0% SVVVPYEPPEVGSDCTTIHYNYMONSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRY
2 2tbvA  2.9% YFLNCTVSS----LPATVTFTVSG---~~-~~-~ VAAGILLVGRARANVWN11~- -~~~
361 . 3 375
1 1tupA 100.0% CACPGRDRRTEEENL
2 2tbvA  2.9% = cememmmeeeeee

mview 1.16 Copyright (¢) Nigel P. Brown, EMBL-EBI 1997.
return to ESSP home page / Dali Domain Dictionary
(C) L. Holm, EMBL-EBI, Hinxton, May 1996

Figure 9.11. Continued.

(B) Two representative structures that can be aligned with 1tupA with a high level of significance. Amino acid colors reflect
side-chain chemistry and use the multiple alignment display program of N.P. Brown (Brown et al. 1998), which can be
obtained from the author (see FSSP Web site). The aligned amino acids represent a structural alignment obtained with pro-
gram DALI, not a sequence alignment. The capitalized amino acids match 1tupA structurally; lowercase amino acids do not
match. Note that the percent sequence identity between the p53 sequence of 1tupA and the other two proteins is quite low at
11% for chitinase A (structure 1ctn) and 15% for sialidase-neuraminidase (structure leut).
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FSSP Fold Tree
The FSSP database

The FSSP database includes all protein chains from the Protein Data Bank which are longer than 30 residues. The
chains are divided into a representative set and sequence homologs of structures in the representative set. Sequence
homologs have more than 25 % sequence identity, and the representative set contains no pair of such sequence
homologs. An all-against-all structure comparison is performed on the representative set. The resulting alignments are
reported in the FSSP entries for individual chains. In addition, FSSP entries include the structure alignments of the
search structure with its sequence homologs.

Reference

L. Holm and C. Sander (1998) Touring protein fold space with Dali/FSSP. Nucl. Acids Res. 26, 316-319.
Availability

Free academic use. No commercial use. No incorporation into other databases.

This table

is a fold classification of the representative set. A hierarchical clustering method is used to construct a tree based on the
structural similarities from the all-against-all comparison. Family indices are constructed by cutting the tree at levels of
2,3,4,5,10 and 15 standard deviations above database average.

Related tables
PROTEIN INDEX is sorted according to PDB codes. See the accompanying README file for additional information.
Hyperlinks

Click on Family index for a summary of aligned pairs. Click on PDB-code for the complete FSSP entry. Click on
alignment to view the structural alignments.

Family index PDB-code Alignments compound
1.1.1.1.1.1 lgfs galigoment "i-crei (DNA endonuclease i-crei) Mutant"”
2.1.1.1.1.1 1ibg daligmment “glucose permease fragment”
3.1.1.1.1.1 Jjgie alignment "p53 fragment”
4,1.1.1.1.1 1bbg dlignment "Bovine pancreatic polypeptide (bpp) (NMR, mean struct
4.1.2.1.1.1 __1ppt alignment “Avion pancreatic polypeptide”
5.1.1.1.1.1 Jlemn alignment "fibrillin fragment”
6.1.1.1.1.1 1hcgB aligmment "Blood coagulation factor xa"
7.1.1.1.1.1 lpft galignment "tfiib fragment (pftfiibn)"
8.1.1.1.1.1 1gvp alignment "RNA polymerase ii fragment”
8.1.1.2.1.1 dlignment "Transcriptional elongation factor sii (tfiis, nucleic
9.1.1.1.1.1 1bgf" glidnment "stat-4 fragment”

Figure 9.11. Continued. Continues on next page
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115.1.1.1.1.1 2plg alignment "phosphatidylinositol-specific phospholipase ¢ (pi-plc
115.1.1.2.1.1  ___1uroA alignment ‘“uroporphyrinogen decarboxylase (uro-d, urod) biologic
115.1.1.2.1.2 _____}1gQcA alignment "xylose isomerase (glucose isomerase) biological_unit'
115.1.1.2.1.2 ______4xis alignment "Xylose isomerase complex with xylose and mnC12"
115.1.1.2.2.1 ____lgagfA alignment "1,3-1,4-beta-glucanase (1,3-1,4-beta-d-glucan 4-glucc
115.1.1.2.2.1 ______1lbglA galignment "beta-galactosidase"
115.1.1.2.2.1 ______1bhgA galignment "beta-glucuronidase (gus gene product) biological_unit
115.1.1.2.2.1 ______Jlceo alignment “"cellulase celc (1,4-beta-d-glucan-glucanohydrolase, ¢
115.1.1.2.2.1 ______leceA glignment “endocellulase el fragment (endo-1,4-beta-d-glucanase;
115.1.1.2.2.1 _____ ledg glignment "endoglucanase a fragment (endo-(1,4)-beta-glucanase,
115.1.1.2.2.1 ______JgowA glignment "beta-glycosidase biological_unit"
115.1.1.2.2.1 ______2Zmvr alignment “"myrosinase (thioglucoside glucohydrolase) biological_
115.1.1.2.2.2 _____lbvb alignment "Beta-amylase reacted with 20@ mm maltose and complexe
115.1.1.2.2.2 ______1xyzA galignment "1,4-beta-d-xylan-xylanohydrolase (endo-1\,4-beta-xylc
115.1.1.2.2.3 labg alignment "chitobiase (beta-n-acetylhexosaminidase, n-acetyl-bet
115.1.1.2.2.4 _____lcpnv alignment "concanavalin b”
115.1.1.2.2.4 _____ _lctn alignment "Chitinase a (ph 5.5, 4 degrees c)"
115.1.1.2.2.4 ______lnar alignment "Narbonin"
115.1.1.2.2.4 _____ Zebn alignment "Endo-beta-n-acetylglucosaminidase fl1 (endoglycosidase
115.1.1.2.3.1 ____lonrA alignment "transaldolase b"
115.1.1.2.4.1 ____lnsi alignment "phosphoribosyl anthranilate isomerase (prai)”
115.1.1.2.4.2 ____ }ligs alignment "indole-3-glycerolphosphate synthase (igps)"
115.1.1.2.4.2 ______lpii alignment "N-(5'phosphoribosyl)anthranilate isomerase complex wi
115.1.1.2.4.2 ______2tysA galignment "tryptophan synthase Mutant biological_unit”
115.1.1.2.4.3 _____laj2 aglignment "dihydropteroate synthase (dhps) biological_unit”
115.1.1.2.4.4 ____law5 aligoment "S5-aminolevulinate dehydratase (porphobilinogen synthc
4907.1.1.1.1.1 lhev aligoment ‘“"Hevein (NMR, 6 structures)"
407.1.1.1.2.1 ____9wggA glignment "Wheat germ agglutinin (isolectin 2)"
increasing level of structural
- similaritg of domains with same fold
f1ris — 1 H 1 1 1 2plec
1 1luora
2 laOch, etc

1 laqg0A, etc

2 1byb, etc

3 1lgba, etc

4 1lcnv, etc

1 lonra

1 1lnsj

2 1ligs, etc

3 laj2

4 1laws

Figure 9.11. Continued.

(C) Hierarchical clustering of folds and domains. All of the current folds represented by domain alignments in FSSP have
been organized into a dendogram that indicates the relationships among them. The dendogram for fold 115 is first illustrated,
and a tabular representation is then shown. Domains are identified by the PDB file from which they were derived. If only one
of several domains is represented by the fold, the domain is identified by the PDB file name plus a letter code; e.g, luorA is a
domain of the structure luor. Domains that are grouped on the right are the most structurally alike and give a high statistical
score for an alignment of the representative fold (a certain combination of secondary structures in space and their connections)
when they are aligned with the DALI program. Although these domains have very little sequence similarity, their very close
structural similarity suggests that they could possibly be homologous and represent a superfamily. Domains that are joined in
deeper branches of the dendogram, e.g., luorA and laqOA, are less structurally alike, and the score for their alignment is lower.
Although domain 1plc has the same fold as the rest of the domains, its atoms align the least well with the other domains. The
structures and alignments represented can be viewed by the links on the Web page. The page is accessible from the main page
of the FSSP database.
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° FSSP: family alignment around 1tupA

Please cite: L. Holm and C. Sander (1996) Science 273(5275):595-60.

Structures aligned by Dali with sequence neighbours from HSSP

Notation: parent structure[:domain-identifier]lSwissprot-identifier; uppercase: structurally equivalent to 1tupA; lowercase: bounds
sequence insertion; - deletion from HSSP; ~ structurally nonequivalent to 1tupA

Identities computed with respect to sequence: (1) 1tupA
Colored by: identity+property

17 . . . . : . 69
1 1tupA 100.0% SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMF QLAKTCPVQLWVDSTPPP
2 1tupAlp53_human 100.0% SSSYPSQKTYQGSYGFRLGFLHSGTAKSVTC TYSPALNKMF{ QLAKTCPVQLWDSTPPP
3 1tupAlp53_macmu 97.4% SSSVPSQKTYHGSYGFRLGFLHSGTAKSVT TYSPDLNKMF. QLAKT¢ PVQLWVDSTPPP
4 1tupAlp53_cerae 97.4% SSSVPSQKTYHGSYGFRLGFLHSGTAKSVTCTYSPDLNKMEC QLAKT! PVQLWDSTPPP
4& 1tupAlp53_oryla 59.4% ~TTVPVTTDYPGSYELELRFQKSGTAKSVTSTYSETLNKLY: QLAKTSPIEVRVSKEPPK
45 1tupAlpS3_plafe 58.0% SSTVPVVTDYPGEYGFQLRFQKSGTAKSVTSTFSELLKKLY! QLAKTSPVEVLLSKEPPQ
61 . . . 1 . . 120
1 1tupA 100.0% GTRVRAMATYKQSQHMTEVVRR! PHHERC SDSDGLAPPQHL IRVEGNLRVEYLDDRNTER
2 1tupAlp53_human 100.0% GTRVRAMAIYKQSQHMTEVVRR! PHHER: SDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
3 1ltupAlp53_macmu 97.4% GSRVRAMAIYKQSQHMTEVVRRY PHHER! SDSDGLAPPQHL IRVEGNLRVEYSDDRNTFR
4 1tupAlp53_cerae 97.4% GSRVRAMATYKQSQHMTEVVRR( PHHER SDSDGLAPPQHLIRVEGNLRVEYSDDRNTFR
44 LltupAlp53_oryla 59.4% GAILRATAVYKKTEHVADVVRR? PHHQN---EDSVEHRSHL TRVEGSQLAQYFEDPYTKR
45 1tupAlp53_plafe 58.0% GAVLRATAVYKKTEHVADVVRR{PHHQT ~--EDTAEHRSHL IRLEGSQRALY FEDPHTKR
121 . . : . . . 180
1tupA 100.0% HSVVVPYEPPEVGSDCTTIHYNYMUNSS MGGMNRRPILTIITLEDSSGNLLGRNSFEVR

1tupAlp53_human 100.0% HSVVVPYEPPEVGSDUTTIHYNYMUNSS. MGGMNRRPILTITTLEDSSGNLLGRNSFEVR
LtupAlp53_macmu 97.4% HSVVVPYEPPEVGSDC TTIHYNYMONSSTMGGMNRRPILTIITLEDSSGNLLGRNSFEVR
1tupAip53_cerae 97.4% HSVVVPYEPPEVGSD: TTIHYNYMUNSS/ MGGMNRRPILTIITLEDSSGNLLGRNSFEVR

c AWN

4 1tupAlpS3_oryla 59.4% QSVTVPYEPPQPGSEMTTILLSYMONSS{MGGMNRRPILTILTLET-EGLVLGRRCFEVR
45 1tupAipS3_plafe 58.0% QSVTVPYEPPQLGSETTAILLSFMUNSS{MGGMNRRQIL TILTLETPDGLVLGRRCFEVR

181 . 1 196
1 1tupA 100.0% VCACPGRDRRTEEENL
2 1tupAlpS3_human 100.0% V{ATPGRDRRTEEENL
3 1tupAip53_macmu 97.4% VA7 PGRDRRTEEENF
4 VCACPGRDRRTEEENF

1tupAip53_cerae 97.4%

44 1tupAlpS3_oryla 59.4%  IrA‘PGRORKTEEES~
45 1tupAipS3_plafe 58.0%  VCACPGRDRKTDEES~

mview 1.16 Copyright (¢) Nigel P. Brown, EMBL-EBI 1997,

return to FSSP home page / Dali Domain Dictiopary
(C) L. Holm, EMBL-EBI, Hinxton, May 1996

Figure 9.11. Continued.

(D) Structural alignment of 1tupA with other protein sequences in SwissProt that are similar in sequence to p53. The infor-
mation on matching sequences is stored in the HSSP database described in the text. Shown on each row of the alignment are
the PDB structure identification, matched SwissProt sequence, percent sequence identity between the sequence of the structural
entry and the SwissProt sequence, and the multiple sequence alignment of the sequence with the other matching SwissProt
sequences based on a structural alignment. This alignment reveals which amino acid residues in these proteins are predicted to
occupy the same structural position. Sequence notations are indicated on the page. Only a portion of the alignment is shown.
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i VAST Structure Neighbors

Structures similar to MMDB 2890, 2REB domain 1

Rec A Protein (E.C.3.4.99.37)

(View / save Alignments) l New '

Options: Viewer: Complexity:
@ Launch Viewer & Cn3D v2.0 (asn.1) @ Aligned Chains only @ Alpha Carbons only
(D See File {3 Mage (Kinemage) {2 All Chains {3 All Atoms
(@ Save File Q (PDB)
[ ek € o [rutsD [wees | %14 [Descripiion
‘ [ O ] 1REA 1 I 03 l 275 1 100.0 iRec A Protein (E.C.3.4.99.37) Complex With Adenosine Diphosphate (Rec A-Adp)
1[Q AKLES 3.1 160 1 14.4 {Crystal Stmcture Of The Nucleotlde Free Alpha3beta3 Sub-Complex Of F]—Atpase
; ; ' From The Thermophlhc Bacillus Ps3
o Imﬁ I 41[ 99 I 91|Thenmtase(EC342166)
17 lAUAABS | 2.5 93 | 17.2 |Structure Of The Rep Hehcase-Smgle Stranded Dna Complex A13.0 An stroms
2
1 ; « Resoluuon
' a l WAG 2 I 4.5 [ 81 l 86 ‘Udp-N Acetylmuramoyl—L-Alamne d_Glutamate ngase
: J1POX A 3 3.1 [ 106 4 7| Pyruvate Ox1dase (EC. 1 2.3.3) Mutant With Pro 178 Replaced By Ser, Ser 188
‘ : Replaced By Asn, And Ala 458 Replaced By Val (P1785,5188n,A458v)
) FIEN l 4.2 l 106 l 85 !Cystatluomne Beta-Lyase (Cbl) From Escherichia Coli
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Figure 9.12. Example of searching for structural neighbors identified by the VAST algorithm. Shown is the result of a search
for neighbors to chain 1 of the E. coli RecA protein structure (PDB identifier 2reb). If the rightmost column box next to any of
the listed structural neighbors and the view/save structures box are sequentially checked, then an overlay view of the structures
is provided by ENTREZ for viewing by Cn3d or Mage. In the output table of structural neighbors, PDB is a four-character PDB-
identifier of the structural neighbor, C is the PDB chain name, D is the MMDB domain identifier, RMSD is the root mean
square deviation in Angstroms between the superimposed atoms, NRES is the number of equivalent pairs of C, atoms super-
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imposed between the two structures, %Id is the percent identical residues in the aligned sequence region, and description of
the neighbor is taken from the PDB database entry. The options in the lower part of the page influence the number of match-
es reported in the table, and this number may be varied by mouse-clicking the “display subset” box. The MMDB database is
organized into groups based on sequence similarity, and only a representative member of each group is included. Groups are
based on extensive BLAST searches for sequence similarity followed by clustering by a neighbor-joining procedure (see Chap-
ter 6). Several different levels of clustering based on different ranges of BLAST scores are shown. The lower the score chosen,
the more group members are reported. Note that the format of a structural entry in the MMDB database is different from that
in the PDB database and requires visualization by the Cn3d viewer.
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the number, type, and relative positions of these elements are similar or if the proteins have
a similar architecture. Distances between the C, or Cg atoms within these structures are
then examined in detail to determine the degree to which the structures may be superim-
posed. If a few elements can be aligned and are joined by a similar arrangement of loops,
the proteins share a common fold. As the arrangement, joining, and alignment of sec-
ondary structural elements within the proteins increase, the degree of structural similarity
between the proteins becomes more and more convincing and significant.

To specify a three-dimensional structure, positions of molecules are expressed as x, y, and
z cartesian coordinates within a fixed frame of reference, as shown in Figure 9.13. The direc-
tion of the bond angles and the interatomic distances between amino acids along the
polypeptide chain may also be represented as a vector. Secondary structures can also be rep-
resented by a vector that starts at the beginning of the secondary structural element, extends
for the length of the element, and has a direction that reveals the orientation of the element
in the overall structure. Comparison of these structural representations in two proteins pro-
vides a framework for comparing the structures of the proteins. In many structural com-
parison methods, distances between C, or between Cg atoms in two protein structures are
used for comparison purposes. A more detailed comparison of the structures can be made
by adding information on side chains such as the amount of outside area of the side chain

A o helix vectors
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Figure 9.13. Alignment of the three-dimensional structure of proteins by their secondary structures.
Representation of arrangement of secondary structures in three-dimensional space is shown on a two-
dimensional projection. In the structural alignment programs VAST and SARF, the atoms of each sec-
ondary structural element in each protein are replaced by a vector of position, length, and direction
determined by the positions of the C, or Cg atoms along the element. Shown are projections of two
o helices and two B strands and their vector representations as gray and green arrows, respectively,
from a common x, ¥, z cartesian coordinate system. The three-dimensional cartesian coordinates of
the start and end of one a-helical vector are diagrammed as wide dashed lines. Only these two sets of
coordinates are needed to specify the location of the vector, whereas many such sets are required to
locate the C,, or Cg atoms in the corresponding « helix. An element that is curved is approximated by
two or more sequential vectors, as depicted for the two strands, which are bent due to the twist of
their composite B sheet. The joining of the helices by a short loop is also recognized by the algorithm.
The vector representations of two proteins are then compared. If the type and arrangement of the ele-
ments are similar in two proteins within a reasonable margin of error and level of significance, the
three-dimensional structures of the proteins are predicted to be similar.
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that is buried under other molecules so that the chain is not accessible to water molecules.
Distances and bond angles to other atoms in the structure may also be compared. Several of
the parameters used for structural comparisons may also be used to classify the environ-
ment of a particular amino acid, e.g., a buried, hydrophobic amino acid in a B strand.

There are two reasons that it is more difficult to align structures than sequences. First, a
similar structure may form by many different foldings of the amino acid C,, backbone. As
a result, matched regions may not necessarily be in the same order in the two proteins so
that two matching segments are often separated by unmatched segments. Second, although
the local environments of many molecules in two proteins may be similar, there may also
be some local differences. For example, central positions, but not the ends, of secondary
structures in two proteins may match closely. For this reason, structural alignment meth-
ods often smooth out the comparisons by comparing several molecules at the same time
and choosing an average resulit.

Structural biologists have been working on the problem of finding similar structural fea-
tures in proteins for a long time, and a variety of methods have been devised for perform-
ing comparisons of protein structures (for review, see Blundell and Johnson 1993; Holm
and Sander 1994, 1996; Alexandrov and Fischer 1996; Gibrat et al. 1996; Orengo and Tay-
lor 1996). A complete discussion of this subject is beyond the scope of this text. Programs
publicly accessible at Web sites, SSAP and DALI, and two programs that utilize a fast search
for common arrangements of secondary structures, VAST and SARF, are described below.

Dynamic Programming

Algorithms like those used for sequence alignment have also been used for aligning struc-
tures. For aligning sequences, the object is to bring as many identical or similar sequence
characters into vertical register in the alignment with a minimum cost of insertions and
deletions. For aligning structures, the local environment of each amino acid expressed in
interatomic distances, bond angles, or R group is given a coded value or vector represen-
tation that reflects the environment of that amino acid. Alternatively, a scoring matrix
much like the amino acid scoring used for sequence alignments may be made. For protein
structures, each sequential column in the scoring matrix gives a score for the fit of any of
the 20 amino acids to a single position in the structure (more on matrices below). An opti-
mal alignment between these sets of values by dynamic programming is then found.

The alignment program SSAP (secondary structure alignment program) uses a method
called double dynamic programming to produce a structural alignment between two pro-
teins (Taylor and Orengo 1989; Orengo et al. 1993; Orengo and Taylor 1996). A local struc-
tural environment is independently defined for each residue in each sequence, and the
method then matches residues by comparing these structural environments. The environ-
ment assigned to each amino acid takes into account the degree of burial in the hydropho-
bic core and type of secondary structure. As in sequence alignment by dynamic program-
ming, a-scoring matrix is derived and the highest-scoring regions in this matrix define the
optimal structural alignment of the two proteins. One of the environmental variables that
is used is a representation of the geometry of the protein by drawing a series of vectors
from the Cg atoms of an amino acid to the Cg atoms of all of the other amino acids in the
protein. If the resulting geometric views in two protein structures are similar, the struc-
tures must also be similar. The double dynamic programming method of aligning struc-
tures using Cg vectors is illustrated in Figure 9.14.

Because each sequential pair of amino acids is compared, an alignment will be possible
only if the two protein chains follow the same approximate conformational changes through-
out their lengths. If the proteins follow the same changes along some of their lengths, then
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diverge, then return again, it is difficult to align them through the divergent region by the
above method, as described. The problem is similar to trying to choose a gap penalty for
sequence alignments, but in the structural case, many kinds of rearrangements are possible.
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Another version of SSAP (SSAP1) has been developed for identifying conserved
folds/motifs, and this method circumvents the above alignment problem. This program
uses all of the vector matrix values in the summary matrix and then uses a local alignment
version of the dynamic programming algorithm to locate the most alike regions in the
structures. The algorithm has been greatly speeded up by comparing only pairs of amino
acids with similar torsional angles (® and W) and extent of residue burial/lack of water
accessibility. SSAP is used to cluster proteins in the CATH database in a fully automated
manner (Orengo et al. 1997).

The distance method uses a graphic procedure very similar to a dot matrix to identify the
atoms that lie most closely together in the three-dimensional structure. If two proteins have
a similar structure, the graphs of these stuctures will be superimposable. Distances between
C, atoms along the polypeptide chain and between C, atoms within the protein structure
can be compared by a two-dimensional matrix representation of the structure, as shown in
Figure 9.15. Instead of aligning environmental variables of each successive amino acid in

Figure 9.14. The double dynamic programming method for structural alignment. (A) Vectors from the
Cg atom of one amino acid to a set of other nearby amino acids in each of two protein segments are
shown as two-dimensional projections. These vectors are given the same coordinate axes. Hence, one
vector may be subtracted from the other to compare the relative positions of the Cg atoms in the two pro-
tein segments, shown in A as a vector difference. The smaller the differences, the more alike the struc-
tures. In SSAP, the vectors are subtracted (the resulting difference is 8) and the difference added to an
empirically derived number, 10. The resulting value is then divided into a second empirically derived
number, 500, to give a score S for the vector difference. For example, if the vector difference is 10°, then
§ =500/ (10 + 10) = 25. (B) Two vector matrices that represent differences between the geometric view
from one amino acid position in one protein and a view for one amino acid in the second protein. The
set of vectors of one protein are listed across the top of the matrix and the set for the other are listed down
the right side. The matrix is then filled with scores of vector differences. For example, if the vector from
F to H in protein 1 less the vector from C to G in protein 2 is 31°, then the score placed in the upper right
corner is S = 500/(31 + 10) = 12. The remaining difference scores are calculated in a similar manner.
Although vectors to neighboring amino acids are shown in this example, vectors to immediate neighbor
positions are actually not used to reduce effect of local secondary structure. An optimal alignment, shown
as a red path through the matrix, is then found through the vector matrix by a global form of the dynam-
ic programming algorithm, using a constant deletion penalty of 50. For performing a structural align-
ment by this method, a similar set of vector differences are determined between the next amino acid V in
protein A and the amino acid in protein B, as shown in the lower matrix in B, and an optimal path (blue)
is obtained. This procedure is repeated until vector views between all amino acid positions have been
compared. Two vector matrices are shown, comparing one position in protein A to each of two positions
in protein B. (C) The resulting alignments (shown as red and blue paths) and the scores on the alignment
path are transferred to a summary matrix. If two optimal alignment paths cross the same matrix position,
the scores of those positions in the two alignments are summed. One part of the alignment path (black)
is found in both comparisons, thereby providing corroborative evidence of vector similarity in these
regions. In the example shown, the sum of the upper right positions in the two vector matrices is 12 +
16 = 28. When all of the alignments have been placed into the summary matrix, a second dynamic pro-
gramming alignment is performed through this matrix. The final alignment found represents the opti-
mal alignment between the protein structures. The logarithm of the final score is scaled such that a max-
imum value of 100 is possible. An adjusted score of 80 indicates a close structural relationship; one of
60-70 indicates a probable common fold. Other types of environmental variables other than the position
of the Cg atoms in this example may also be aligned with this double dynamic programming method, as
described in the text. (Adapted from an example in Orengo and Taylor 1996.)
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two protein structures, the distance matrix method compares geometric relationships
between the structures without regard to alignment. The sequence of the protein is listed
both across the top and down the side of the matrix. Each matrix position represents the dis-
tance between the corresponding C, atoms in the three-dimensional structure. The small-
est distances represent the more closely packed atoms within secondary structures and
regions of tertiary structure. Positions of closest packing are marked with a dot to highlight
them, much as in a dot matrix. Distance matrices are produced for each three-dimensional
structure of interest. Similar groups of secondary structural elements are superimposed as
closely as possible into a common core structure by minimizing the sum of the atomic dis-
tances between the aligned C, atoms. The method is outlined in Figure 9.15.

The program DALI (distance alignment tool) uses this method to align protein struc-
tures (Vriend and Sander 1991). The existing structures have been exhaustively compared
to each other by DALI and the results organized into a database, the FSSP database, which
may be accessed at http://www2.embl-ebi.ac.uk/dali/fssp/fssp.html. A newly found struc-
ture may be compared to the existing database of protein structures using DALI at
http://www2.embl-ebi.ac.uk/dali/. The network version of DALI uses fast comparison
methods to determine whether a new structure is similar to one already present in the FSSP
database.

The similarity score for a structural alignment of two proteins by the distance method
is based on the degree to which all of the matched elements can be superimposed. In the
example shown in Figure 9.16, the score for a matching set of helices is the sum of the sim-
ilarity scores of all of the atom pairs using a particular scheme for scoring each pair. Sup-
pose that two helices a and b have been found to interact in protein A, and that a pair of
helices a’ and b’ in protein B are superimposable on a and b. A certain pair of C, atoms
that are very close in the model, one in helix a (i*) and a second in helix b (j*), is identi-
fied. This set will correspond to a matched pair i® in helix a’ and j® in helix b’ of protein
B. If the distance between * and jA is dija and the distance between i® and jB is dijs, then
the similarity score for this pair of atoms is derived from the fractional deviation
\dija — djsl / dij+, where djj- is the average of djj4 and djp, If two atom pairs can be super-
imposed, they are given a threshold similarity score of 0.20; otherwise they are given a sim-
ilarity score of the threshold less the above fractional deviation. A deviation of 0.20 will
correspond to adjacent B strands matching to within 1 A and to a helices and helix strands
matching to within 2-3 A. As these scores are summed over all of the atoms in the match-
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ing helices, the contributions of more distant atoms are down-weighted by an exponential
factor to allow for bending and other distortions. The result of using this scoring system is
that the similarity score for matching the two helix pairs in proteins A and B will increase
in proportion to the number of superimposable atoms in the two helices. As additional
matching elements are added to the structural alignment of the two proteins, the similari-
ty scores for matching each individual pair of secondary structures are added to give a
higher similarity score that reflects the full alignment of the structures.

The DALI method provides one convenient method, in addition to the others described
herein, to compare a new structure to existing structures in the Brookhaven structural
database, and is accessible from a Web site.

Fast Structural Similarity Search Based on Secondary Structure Analysis

One class of structural alignment methods performs a comparison of the types and
arrangements of o helices and B strands in one protein structure with the a helices and B
strands in a second structure, as well as the ways in which these elements are connected (for
review, see Gibrat et al. 1996). If the elements in two structures are similarly arranged, the
corresponding three-dimensional structures are also similar. Because there are relatively
few secondary structural elements in proteins and the relative positions of these elements
may be quite adequately described by vectors giving their position, direction, and length,
vector methods provide a fast and reliable way to align structures. It is a much simpler
computational problem to compare vector representations of secondary structures than to
compare the positions of all of the C, or Cg atoms in those structures. If an element of a ,
given type and orientation within a given tolerance level is found in the same relative posi-
tion in both structures, they possess a basic level of structural similarity. Elements that do
not match within the tolerance level are not considered to be structurally similar. VAST
and SARF are examples of programs that are available on the Web that use this methodol-
ogy (Hogue et al. 1996; Alexandrov and Fischer 1996; see http://www.ncbi.nlm.nih.gov/
Entrez and http://www-Ilmmb.mcifcrf.gov/ ~nicka/sarf2.html/). Vector methods do not
use the structure authors’ assigned secondary structures in the PDB entry, but rather use
automatic methods to assign secondary structure based on the molecular coordinates of
atoms on the structure. Different methods are used for defining the number and extent of
secondary structural elements and for the thresholds that make up an acceptable match
(Bryant and Lawrence 1993; Madej et al. 1995; Gibrat et al. 1996; Alexandrov and Fischer
1996). Until one of these methods is shown to be superior, it is advisable to try all to
increase the chance of a finding a biologically important match.

Once individually aligning sets of secondary structural elements have been identified,
they are clustered into larger alignment groups. For example, if three matching sets of a
helices have been found in two structures, a similarly oriented group of three o helices
must be present in the structures. The same arrangements of a small number of secondary
structural elements are commonly found in protein structures, thus this method often
finds new occurrences of a previously found arrangement. An arrangement with a large
number of secondary elements is less common and therefore more significant. This clus-
tering step generates a large number of possible groups of secondary structural elements
from which the most likely ones must be selected. Some methods use the clusters with the
largest number of secondary structures as the most significant. Other methods perform a
more detailed analysis of the aligned secondary structures. For example, the atomic coor-
dinates of an a helix in one protein structure will be aligned with those of the matched o
helix in the second structure, and the root mean square deviation (rmsd) will be calculat-
ed. The quality of this new alignment provides an indication of which secondary structure
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A Figure 9.15. Distance matrix of hypothetical three-helix
’ structure. (A) Matrix positions that represent closest dis-
tances of approximately <12 A between the C, atoms in

/‘\ the known three-dimensional structures of the protein are
marked by filling them with dots. Positions marked with
black dots drawn just above the main downward-pointing

a J b c diagonal (dashed line) from upper left to lower right rep-
resent amino acid sequential positions aal-aa2, aa2-aa3,

etc., that are close to each other because they are in the «
helix. Marked regions of shortest C,—C, distances along
this diagonal thus indicate positions of the o helices.
0 20 40 60  Other marked diagonal regions (red and blue dots) indi-

0 K cate tertiary structural interactions, including those
\ between adjacent secondary structural elements. Helices a
\ and b are close to each other and have opposite chemical

(] polarities so that aal0-aall-aal2 . .. are close to aa40-

’. aa39-aa38 . . .. on the red surface of the helices. An

(4 upward-running diagonal (red dots) from lower left to
20 upper right reveals this spatial relationship. Helices b and
N c are also close to each other but have the same polarity so
that aa30-aa31-aa32 . .. are close to aa50-aa51-aa52 .. .,
producing a downward-directed diagonal (biue dots). If

\
another protein has a matrix pattern similar to that of the
above example, then the two protein structures have the
N\

same three-helical arrangement and the loops joining the
\ helices are of approximately the same length and confor-
mation. The distance alignment method will find such
N\ three-helix patterns, even when the loop patterns are not
similar. (B) Search for a common structural pattern in
proteins A and B by DALL A hypothetical example of a
three-helix architecture is again used. In the top row,
DALI first searches the entire distance matrix of protein A
for a set of matching helices, a and b, indicated by an
upward-directed diagonal whose position is the intersection of the locations of the helices in the sequence of protein A (left col-
umn). A similar search is performed for a corresponding pair of helices a’ and b’ in the distance matrix of protein B. In prac-
tice, the algorithm breaks down each full-sized matrix into a set of overlapping submatrices of size 6 X 6 amino acids. Distance
patterns within the submatrices from each protein are then compared to locate similar structural configurations. Some match-
es will be longer than 6 amino acids and will therefore be found in several neighboring submatrices. A computationally sophis-
ticated assembly step in the algorithm (see below) combines these overlaps into a complete structural alignment. Once found,
individual matches are assembled. If a pair of helices is found in each structure, a beginning structural alignment of the
sequences may be made (right column). A search for a third pair of helices c and ¢’ that interact with helices b and b’ in pro-
teins A and B, respectively, is then made, as illustrated in the second row. A hypothetical pair common to A and B is shown. In
this case, the order of regions b’ and ¢’ on the sequence of protein B is reversed from that of b and c. The composite matrices
and alignment of all helices a, b, cand a', b, ¢’ are shown in the third row. Only the top one-half of the matrix is shown, leav-
ing out the mirror image. Finally, DALI removes the insertions and deletions in the matrices and rearranges the sequence of the
protein B to produce a parallel alignment of the elements in the two sequences {(bottom row). By following these steps, an align-
ment of helices a, b, and c and a’, b’, and ¢’ in structures A and B is found by DALIL but the arrangements of sequences that
produce this common architecture are different. Structural features that include  strands in proteins are found in the same
manner, (Diagram derived from Holm and Sander 1993, 1996.)
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A. COOH

NH, Finger

Figure 9.16. The zinc finger DNA-binding domain. This domain is the most commenly found due to
the particular spacing of histidine and cysteine residues. (A) Structure found by nuclear magnetic res-
onance studies of a 25-residue molecule made up of a B hairpin of structural motif sheets of amino
acids 1-10 followed by an a helix of amino acids 12-24. (B) Hypothetical binding pattern of fingers
to DNA. (Adapted from Branden and Tooze 1991.)

clusters are the most feasible. After starting with an alignment that includes the highest
matching number of elements, the VAST algorithm examines alternative alignments that
might increase the alignment score using the Gibbs sampling algorithm described in Chap-
ter 4.

Like other structural alignment methods, VAST and SARF are available on Web pages
and may be used for comparing new structures to the existing databases or for viewing
structural similarities within the existing databases. An important aspect of searches for
structural similarity by the vector method and other methods is the extent of the alignment
found, or as Gibrat et al. (1996) state, is the alignment “surprising”?

Significance of Alignments of Secondary Structure

As in sequence alignment, it is important to estimate the reliability or statistical signifi-
cance of a structural alignment. The problem is to determine the probability with which a
given cluster of secondary structural elements would be expected between unrelated struc-
tures. The analogous problem with sequences is to determine whether or not an alignment
score between two test sequences would also be found between random or unrelated
sequences.

When comparing the arrangement of secondary elements in protein structures, a very
large number of possible alignments are commonly found (Gibrat et al. 1996). The prob-
ability of a chance alignment of a few elements in two large but structurally unrelated pro-
teins that have many such elements is quite high. Therefore, alignment of only a few ele-
ments in an actual comparison of two test sequences is not particularly significant. The
probability of an alignment between most of the elements in large, unrelated proteins,
however, is extremely low. Hence, such an alignment between structures is highly signifi-
cant. The problem of significance thus boils down to assessing the number of possible ways
of aligning elements in two unrelated proteins.
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For calculating the probability of an alignment, the VAST algorithm uses a statistical
theory very similar to that of the BLAST algorithm to calculate this probability. Recall
that BLAST calculates a probability (or expect value) that a sequence alignment score at
least as high as that found between a test sequence and a database sequence would also
be found by alignment of random sequences. Sequence alignment scores are derived by
using amino acid substitution matrices and suitable alignment gap penalties, and the
probabilities that alignments of random sequences could score as high as actual scores
are calculated using the extreme value distribution. The equivalent VAST score is the
number of superimposed secondary structural elements found in comparing two struc-
tures. The greater the number of elements that can be aligned, the more believable and
significant the alignment. The statistical significance of a score is the likelihood that such
a score would be seen by chance alignment of unrelated structures. This likelihood is cal-
culated from the product of two numbers—the probability that such a score would be
found by picking elements randomly from each protein domain and the number of
alternative element pair combinations. Thus, if the chance of picking the number of
matching elements found is 10 ® and the number of combinations is 10%, the likelihood
of an alignment of the same number of elements between unrelated structures is 108 X
10" = 107

Displaying Protein Structural Alignments

The programs and Web sites that perform a structural alignment or that provide access to
databases of similar structures will transmit coordinates of the matched regions. The
aligned regions may then be viewed with a number of molecular viewing programs, includ-
ing Rasmol, Cn3d, and Spdbv. Cn3d also shows a second window with the matching
sequence alignment, and aligned structures may be highlighted starting from this window.
The program JOY provides a method for annotating sequence alignments with three-
dimensional structural information (http://www-cryst.bioc.cam.ac.uk/ ~joy; Mizuguchi et
al. 1998b).

Use of Sequence Patterns for Protein Structure Prediction

Although the sequences of 86,000 proteins are available, the structures of only 12,500 of
these proteins are known. The increasing rate of genome sequencing can also be expected
to outpace the rate of solving protein structures. Protein structural comparisons described
above have shown that newly found protein structures often have a similar structural fold
or architecture to an already-known structure. Thus, many of the ways that proteins fold
into a three-dimensional structure may already be known. Structural comparisons have
also revealed that many different amino acid sequences in proteins can adopt the same
structural fold, and these sequences have been organized into databases described above.
Further examination of sequences in structures has also revealed that the same short amino
acid patterns may be found in different structural contexts. Amino acid sequences present
in secondary structures have been entered into databases that are useful for structure pre-
diction. Many proteins in the sequence databases also have conserved sequence patterns
upon which they may be further categorized.

If two proteins share significant sequence similarity, they should also have similar
three-dimensional structures. The similarity may be present throughout the sequence
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lengths or in one or more localized regions having relatively short patterns that may or
may not be interrupted with gaps. When a global sequence alignment is performed, if
more than 45% of the amino acid positions are identical, the amino acids should be quite
superimposable in the three-dimensional structure of the proteins. Thus, if the structure
of one of the aligned proteins is known, the structure of the second protein and the posi-
tions of the identical amino acids in this structure may be reliably predicted. If less than
45% but more than 25% of the amino acids are identical, the structures are likely to be
similar, but with more variation at the lower identity levels at the corresponding three-
dimensional positions.

Protein Classification Schemes

Proteins have been classified on the basis of sequence similarity or the presence of com-
mon amino acid patterns. First, they have been organized into families and superfamilies
on the basis of the level of sequence similarity in sequence alignments. The current method
of organizing proteins by this method at the Protein Information Resource (PIR)
(http://www-nbrf.georgetown.edu) is that each entry in the PIR protein sequence database
is searched against the remaining entries using the FASTA algorithm. Similar sequences are
then aligned with the Genetics Computer Group multiple sequence alignment program
PILEUP. This level of comparison based on sequence alignment was originally made by the
PIR founded by M. Dayhoff. Using present-day classification schemes (Barker et al. 1996),
families are composed of proteins that align along their entire lengths with a level of
sequence identity of usually 50% or better.

More recent analyses of amino acid patterns in protein sequences have revealed that
many proteins are made up of modules, short regions of similar amino acid sequence that
correspond to a particular function or structure. Furthermore, sets of proteins from wide-
ly divergent biological sources may share several such modules and the modules may not
be in the same order. Hence, it has become necessary to redefine the concepts of family and
superfamily. Proteins that comprise the same set of similar homology domains (extended
regions of sequence similarity) in the same order are referred to as homeomorphic protein
families. Protein families, members of which have the same domains in the same order, but
also have dissimilar regions, are designated as a homeomorphic superfamily (Barker et al.
1996). The superfamily classification of a newly identified protein sequence may be ana-
lyzed at several Web sites (Table 9.5).

The second method of classifying proteins is based on the presence of amino acid pat-
terns. Proteins with the same biochemical function have been examined for the presence
of strongly conserved amino acid patterns that represent an active site or other important
feature. The resulting database is known as the Prosite catalog (A. Bairoch and colleagues;
Hofmann et al. 1999) (Table 9.5). Proteins have also been categorized on the basis of the
occurrence of common amino acid patterns—motifs and conserved gapped and ungapped
regions in multiple sequence alignments. These patterns are found by extracting them
from multiple sequence alignments, by pattern-finding algorithms that search unaligned
sequences for common patterns, and by several statistical methods that search through
unaligned sequences. The patterns vary in length, presence of gaps, and degree of substi-
tution. The algorithms that are used include pattern-finding methods, hidden Markov
models, the expectation maximization method, and the Gibbs sampling method. These
methods and the computer programs and Web sites that provide them are described in
Chapter 4. Listed in Table 9.5 are several databases that categorize proteins based on the
occurrence of common patterns. Also shown are databases of amino acid patterns that



PROTEIN CLASSIFICATION AND STRUCTURE PREDICTION = 429

determine cellular localization of proteins or sites of protein modification (signal or tran-
sit peptides). FSSP, a structural family database, is listed in this table because it includes
links to information on sequence families and superfamilies.

A given protein sequence may be classified by using one of the resources in Table 9.5 for
sequence patterns that are characteristic of a group or family of proteins. Because most of
these databases are derived by quite different methods of pattern analysis, statistics, and
database similarity searching, they can be expected to provide complementary informa-
tion. Thus, a given database may include a sequence pattern that is not identified in oth-
ers, and this pattern may provide an important link to structure or function for one group
of proteins. Another database may provide patterns more suitable for classifying a differ-
ent group of proteins. Therefore, a wise choice would be to use as many of these resources
as possible for classifying a new sequence. However, note the availability of Web sites that
have combined the resources of separate protein classification databases into a single data-
base (e.g., INTERPRO; Table 9.5). In one new field of endeavor, protein taxonomy,
genomic databases that list the entire set of proteins produced by a particular organism are
searched for matches. Such searches can provide a wealth of information on protein evo-
lution (Pellegrini et al. 1999).

Clusters

Another, more recently introduced, method for classifying proteins is to use clustering
methods. In these methods, every protein in a sequence database such as SwissProt is com-
pared to every other sequence using a database search method including the BLAST,
FASTA, and Smith-Waterman dynamic programming methods described in Chapter 7.
Thus, each protein in the database receives a sequence similarity score with every other
sequence. A similar method is used to identify families of paralogous proteins encoded by
a single genome (p. 501). Matching sequences are further aligned by a pair-wise alignment
program like LALIGN to recalculate the significance of the alignment score (see Chapter 3
flowchart, p. 58). In a cluster analysis, sequences are represented as vertices on a graph, and
those vertices representing each pair of related sequences are joined by an edge that is
weighted by the degree of similarity between the pair (see Fig. 10.4). In a first step, the clus-
tering algorithm detects the sets of proteins that are joined in the graph by strongly weight-
ed edges. In subsequent steps, relationships between the initial clusters found in the first
step are identified on the basis of weaker, but still significant, connections between them.
These related clusters are then merged in a manner that maximizes the strongest global
relationships (see Web sites for ProtoMap and SYSTERS; Table 9.5). Clustering has been
used to identify groups of proteins that lack a relative with a known structure and hence
are suitable for structural analysis (Portugaly and Linial 2000). Additional information on
clustering methods is provided in Chapter 10.

Proteins Comprise Motifs, Modules, and
Other Sequence Elements of Structural Significance

The above analysis describes the types and distribution of motifs in proteins from the same
or different organisms. A motif can represent an individual folded structure or active-site
residues. Several different motifs widely separated in the same protein sequence are often
found. These motifs represent conserved regions that lie in the core of the protein struc-
ture. Hence, their presence in two sequences predicts a common structural core (for
review, see Henikoff et al. 1997).
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Table 9.5.

Databases of patterns and sequences of protein families

Name

Web address

Description

Reference

3D-Ali

3D-PSSM

BLOCKS

COGS (Clusters
of Orthologous
Groups database
and search site)

DIP (Database of
Interacting Proteins)

eMOTIF

HOMSTRAD

HSSP

INTERPRO integrated
resource of protein
domains and

functional sites®
LPFC

NetOGly 2.0 prediction
server

NNPSL

Pfam

PIR

PRINTS

http://www.embl-heidelberg.de/
argos/ali/ali_info.html

http://www.bmm.icnet.uk/3dpssm

http://blocks.fherc.org/

http://www.ncbi.nlm.nih.
gov/COG

http://dip.doe-mbi.ucla.edu

http://dna.Stanford EDU/emotif/

http://www-cryst.bioc.cam.ac.uk/
~homstrad/

http://swift.embl-heidelberg.de/hssp/
http://www.sander.ebi.ac.uk/hssp/

http://www.ebi.ac.uk/interpro

http://www-camis.stanford.edu/
projects/helix/LPFC/

http://www.cbs.dtu.dk/services/
NetOGlyc/

http://predict.sanger.ac.uk/nnpsl/

http://www.sanger.ac.uk/Pfam

http://www-nbrf.georgetown.edu/

pirwww/pirhome.shtml

http://www.biochem.ucl.ac.uk/bsm/
dbbrowser/PRINTS/PRINTS.html

aligned protein structures and
related sequences using only

secondary structures assigned by

author of the structures
uses a library of scoring matrices
based on structural similarity

given in the SCOP classification

scheme (p. 402) for alignment

with matrices based on sequence

similarity
ungapped blocks in families
defined by the Prosite catalog

clusters of similar proteins in at
least three species collected
from available genomic
sequences

database of interacting proteins

common and rare amino acid
motifs in the BLOCKS and
HSSP databases
structure-based alignments
organized at the level of
homologous families®
sequences similar to proteins of
known structure
combination of Pfam, PRINTS,
Prosite, and current
SwissProt/TrEMBL sequence

a library of protein family cores
based on multiple sequence

alignment of protein cores using

amino acid substitution
matrices based on structure
(see Chapter 3)

predicts glycosylation sites in
mammalian proteins by neural
network analysis

predicts subcellular location of
proteins by neural network

profiles derived from alignment of

protein families, each one
composed of similar sequence

and analyzed by hidden Markov

models
family and superfamily

classification based on sequence

alignment

protein fingerprints or sets of
unweighted sequence motifs
from aligned sequence families

Pascarella and Argos (1992)

Kelley et al. (2000)

Henikoff and Henikoff
(1996); Henikoff et al.
(1998)

Tatusov et al. (1997)

Xenarios et al. (2000)

Nevill-Manning et al. (1998)

Mizuguchi et al. (1998a)

Dodge et al. (1998)

see Web site

see Web page

Hansen et al. (1997)

see Web site

Sonnhammer et al. (1998)

Barker et al. (1996)

Attwood et al. (1999)
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Table 9.5. Continued.

Name Web address Description Reference
PROCLASS http://www-nbrf.georgetown.edu/ database organized by Prosite Wu (1996); Wu et al. (1996)
gfserver/proclass.html patterns and PIR superfamilies;
neural network system for
protein classification into
superfamily :
PRODOM http://protein.toulouse.inra.fr/ groups of sequence segments or Corpet et al. (1998)
prodom.html domains from similar sequences
found in SwissProt database by
BLASTP algorithm; aligned by
multiple sequence alignment
Prosite http://www.expasy.ch/prosite groups of proteins of similar Bairoch (1991); Hofmann
biochemical function on basis Bairoch et al. (1999)
of amino acid patterns
ProtoMap http://protomap.cornell.edu classification of SwissProt and Yona et al. (1999)
TrEMBL proteins into clusters
PSORT http://psort.nibb.ac.jp predicts presence of protein see Web site
localization signals in proteins
SignalP Web server http://www.cbs.dtu.dk/services/ predicts presence and location of ~ Nielsen et al. (1997)
SignalP/ signal peptide cleavage sites in
proteins of different organisms
by neural network analysis
SMART http://smart.embl-heidelberg.de database of signaling domain Schultz et al. (1998)
sequences with accurate
alignments
SYSTERS http://www.dkfz-heidelberg.de/tbi/  classification of all sequences in the Krause et al. (2000)
services/cluster/systersform SwissProt database into clusters
based on sequence similarity
TargetDB http://molbio.nmsu.edu:81/ database of peptides that target see Web site

proteins to cellular locations

A list of Web sites with protein sequence/structure databases is maintained at http://www.imb-jena.de/ImgLibDoc/help/db/. Many
protein family databases are accessible through the European Bioinformatics Institute (http://srs.ebi.ac.uk/). Information on the avail-
able protein family databases is also found on the MetaFam site at http://metafam.ahc.umn.edu/.

* Sequence alignments of each family shown with residues labeled by solvent accessibility, secondary structure, H bonds to main-
chain amide or carbonyl group, disulfide bond, and positive ® angle.

® A combination of Pfam 5.0, PRINTS 25.0, Prosite 16, and current SwissProt and TrEMBL data. Additional merges with other pro-
tein pattern databases are planned.

A more detailed analysis of motifs has revealed that they are components of a more fun-
damental unit of structure and function, the protein module. Proteins may have several
modules corresponding to different units of function, and these modules may be present
in a different order (Henikoff et al. 1997). These diverse arrangements suggest that a bio-
logically important module has been repeatedly employed in protein evolution by gene
duplication and rearrangement mechanisms that are discussed in Chapter 6 and Chapter
10. The presence of modules also provides a further system of protein classification into
module-based families.

An example of an important motif is the C,H, (2 cysteines and 2 histidines) zinc finger
DNA-binding motif Xfin of Xenopus laevis illustrated in Figure 9.16. The zinc finger is one
of the most commonly identified motifs, in part due to the characteristic spacing of C and
H residues in the motif sequence. As indicated in Figure 9.17, the zinc atom forms bonds
with these residues to create the finger-like projection. When present in tandem copies, the
finger is thought to lie in an alternating pattern in the major groove of DNA. A simple plot
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Figure 9.17. Graph of the Xenopus laevis XFIN protein sequence which is in the Cys-Cys-His-His class of zinc finger DNA-
binding proteins (Branden and Tooze 1991). The graph was produced using the AA Window, Cys + His map option of DNA
STRIDER vers. 1.2 on a Macintosh computer. The bottom panel shows amino acids Y, C, F, L, and H, respectively, as bars of
increasing length. The top panel shows H and C as half- and full bars, respectively. The fingers appear in the top panel as dou-
ble half-bars (two Cys residues separated by 2 amino acids) followed by double full bars (two His residues separated by 2 amino
acids). This type of graphic representation is extremely useful for visualizing amino acid patterns in proteins.

of the positions of C and H residues on the protein sequence as shown in Figure 9.17 pro-
vides a very simple way to locate zinc fingers in a protein sequence.

Pfam is a Web site that provides a listing of proteins that carry the zinc finger sequence
motif. As shown in Figure 9.18, the zinc finger is one of the most commonly recognized
motifs, and proteins that carry the motif have been classified into a family. Two other fam-
ilies of zinc finger proteins with 4 cysteine or 3 cysteine and 1 histidine residues interact-
ing with the Zn atom, and additional variations in the basic structure of zinc fingers, have
also been identified. Descriptions and alignments of these proteins are provided at the
Pfam Web site, as illustrated in Figure 9.19. Other families in the Pfam classification are
given a description that best reflects the extent and complexity of the conserved sequence
patterns, be it a domain, module, repeat, or motif. In general, all of these patterns repre-
sent a conserved unit of structure or function.

Structural Features of Some Proteins Are
Readily Identified by Sequence Analysis

The above section indicates that a newly identified protein may be classified on the basis of
the presence of sequence motifs, modules, or other sequence elements that represent struc-
ture or function. The zinc finger motif is one structural motif that may be readily identified
on the basis of the order and spacing of a conserved pattern of cysteine and histidine residues
in the sequence. Other classes of proteins have characteristic amino acid composition and
patterns such that the structure can often be reliably predicted from the amino acid sequence.
Some other examples of structure recognition on the basis of sequence are given below.

Leucine zippers and coiled coils. The leucine zipper motif is typically made up of two
antiparallel o helices held together by interactions between hydrophobic leucine residues
located at every seventh position in each helix, as illustrated in Figure 9.20A. The zipper
holds protein subunits together. The leucines are located at approximately every two turns
of the a helix. It is this repeated occurrence of leucines that makes the motif readily iden-
tifiable. In the transcription factors Gen4, Fos, Myc, and Jun, the binding of the subunits
forms a scissor-like structure with ends that lie on the major groove of DNA, as shown in
Figure 9.20B. If the amino acids in each helical region are plotted as a spiral of 3.6 amino
acid residues per turn, representing a view looking down the helix from the end starting at
residue 1 on the inside of the spiral, then the result shown in Figure 9.20C is found. The
leucine residues are found on approximately the same side of the helix, slightly out of phase
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| Pfam
Browse Families

Browse available alignments and models

‘lmlwlwlwlmlwll

Pfam 3.4: available alignments and models
The families are grouped under the first letter of their name, regardless of case. All families starting with a number are foundin 'Number'

Available sections: Numbers ABCDEFGHIJKLMNOPORSTUY W XYZTop twenty families

Top twenty families
i ace | av. | avn. ' .
Name number #seed | #full len | %id | structure f Description
GPI20 | PFO0S16 |24 | 13408 | B3I 1s3% |1gel | Envelope glycoprotein GP120
£-C2H2 1 PFO0Q96 1200 4991 |23aa {35% | lzaa | Zinc finger, C2H2 type
ig PEQOO47 165 ' 3495 |65aa | 20% j 4 Immunoglobulin domain
' RuBisCO large | PEOOOIS | 17 3007 gl | 779 30l gl;giltnllose bisphosphate carboxylase, large
| pkipase PFOQ069 |67 | 2042 :;2 124% | | Eukaryotic protein kinase domain
eviochrome b N | PRO0033 |9 [ 2866 |12 o Cytochrome b(N-terminal)/b6/petB
| EGE PFO0008 |73 2388 |34aa {35% |lapo | EGF-like domain
Collagen IPFO1391 115 |2125 |59aa |42% | | Collagen triple helix repeat (20 copies)
1 fn3 | PFO0041 {109 |2103 |85aa |20% Fibronectin type I domain
| efhand | PEQ0O36 {86 (1773 |28aa [27% |losa | EFhand
1 LRR PFO0S6Q (300 | 1753 | 47aa | 23% 1 1boh Leucine Rich Repeat (2 copies)
MHC Ll bota |PEOOSGO (165 | 1688 |44an |66% |lsgp | Glass [N histocompatibilty anigen
Z£-CCHC PFOO098 [122 1678 |17aa |57% |lncp Zinc finger, CCHC class
ank |PEQO23 |95 | 1663 [33aa [27% Ank repeat
e |PEOOQ77 |34 [ 1508 |95aa |79% | lida Retroviral aspartyl proteases

Figure 9.18. The Pfam Web mirror site at Washington University (http://pfam.wustl.edu/browse.shtml). Shown are the 20
most common protein families classified according to the motifs that are present. Note the presence of the Pfam entry for zf-
C2H2, the name assigned to the C,H, (2 cysteines and 2 histidines) Zn finger DNA-binding motif, accession no. PF00096. Any
family may be examined by clicking the mouse on the first letter of the family name. Fig. 9.19 is an example of the entry for the

PF00096. Continues on next page
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WD40 PF00400 |37 1482 ] 39aa 5 24% { WD domain, G-beta repeat
‘| homeobox. Pro0o46 145 1431 {49aa | 41% labd Homeobox domain
Itm 1 PFOO001 | 64 1423 g'zo 19% - {7 transmembrane receptor (rhodopsin family)
gag pl7 PF0O0540 14 1319 ;a04 : 77% 2hmx gag gene protein p17 (matrix protein).
: 1220 : NADH-Ubiquinone/plastoquinone (complex
omidored gl [PEOU36L |33 11315 |22¥ 132% |lmin | p’Various chains
1407 families.

Figure 9.18. Continued.

Wéshmg_tgg

WASHINGTON - UNIVERSITY: IN-ST- LOUIS

with the rotational symmetry of the helix. The predicted structure is that of a coiled coil,
as shown in Figure 9.20D (Branden and Tooze 1991).

Coiled-coil structures typically comprise two to three o helices coiled around each other
in a left-handed supercoil in a manner that slightly distorts the helical repeat so that it is
3.5 residues per turn instead of the usual 3.6, or an integral number of 7 residues every sec-
ond turn (Lupas 1996). They occur in fibrous proteins such as keratin and fibrinogen, and
are also thought to occur in leucine zippers, as there is a repeat of leucine at every seventh
residue (Branden and Tooze 1991). If the spiral wheel in Figure 9.20C is plotted so that
there are 7 residues every second turn instead of 7.2, then the residues align more uni-
formly on one face of the helix. Consequently, the leucine zipper has been hypothesized to
adopt a coiled-coil structure.

Coiled-coil regions may be predicted by searching for the 7-residue (heptad) periodici-
ty observed in the sequence of these proteins. Naming these respective positions a, b, ¢, d,
e, f, and g, then a and d are usually hydrophobic amino acids and the remaining amino
acids are hydrophilic because coiled coils are generally fibrous, solvent-exposed structures.
As more and more of these sequential patterns are observed along a sequence, one can be
more convinced that the prediction is reliable. If there are at least 5-10 of these heptads
and the hydrophobicity pattern is strongly conserved, the prediction is a good one. Poor-
er quality patterns come into doubt.

A program COILS2 has been developed for predicting coiled-coil regions with greater
reliability than simple pattern searching for heptad repeats (Lupas et al. 1991; Lupas 1996;
program description at http://www.embl-heidelberg.de/predictprotein/). There are two
Web sites for predicting the occurrence of coiled-coil regions in protein sequences using
the COILS program—nhttp://www.isrec.isb-sib.ch/software/software.html and http://www.
embl-heidelberg.de/predictprotein/predictprotein.html. The program may also be
obtained from these sites for running on a local server. Central to the method is the gen-
eration of a profile scoring matrix, with each column showing the distribution of amino
acids in each of the seven positions, a—g, found in all of the known coiled-coil proteins.



PROTEIN CLASSIFICATION AND STRUCTURE PREDICTION m 435

Pfam 3.4 (St. Louis) : Home | Analyze a sequence | Browse alignments | Text search | Swisspfam_ | Help |

Pfam entry: zf-C2H2

Accession number: PFQ0@96
Definition: Zinc finger, (2HZ type
Author: Bateman A, Boehm S, Sonnhammer ELL

Source of seed members: Boehm S

Alignment method of seed: Manual

HMM build command line:  hmmbuild HMM SEED

HWM build command line: hmmcalibrate --seed @ HMM

Gathering method: hmmsearch -T 15 --domT 5

Trusted cutoffs: 15.00 5.00

Noise cutoffs: 14.80 17.50

Reference Number: [1]

Reference Medline:

Reference Title: Variations of the (2H2 zinc finger motif in the yeast genome
Reference Title: and classification of yeast zinc finger proteins.
Reference Author: Boehm S, Frishman D, Mewes HW;

Reference Location: Nucleic Acids Res 1997;25:2464-2469,

Database Reference: PROSITE; PDOCO0QR28;

Database Reference: PRINTS; PRQ20Q48;

Database Reference: SCOP; 1zaa; fa; [SCOP-USATICATH-

Comment : The C2HZ zinc finger is the classical zinc finger domain.
Comment : The two conserved cysteines and histidines co-ordinate a
Comment : zinc ion. The following pattern describes the zinc finger.
Comment : #-X-C-X(1-5)~C-X3-#-X5-#-X2-H-X(3-6)-[H/C]

Comment: Where X can be any amino acid, and numbers in brackets
Comment: indicate the number of residues. The positions marked # are
Comment : those that are important for the stable fold of the zinc
Comment: finger. The final position can be either his or cys.
Comment: The (2H2 zinc finger is composed of two short beta strands
Comment : followed by an alpha helix. The amino terminal part of the
Comment : helix binds the major groove in DNA binding zinc fingers.
Number of members: 4991

Retrieve a Pfam alignment for zf-C2H2

Which alignment:(_Full alignment ﬁ‘;)

What format: [ Plain text E]
[ Output straight text. (Default is HTML-ized text.)

(Retrieve alignment] ( Reset)

Pfam 3.4 (St. Louis) : Hmlmamm&mlwlmmlmmlml

Comments, questions, flames? Email <pfam@genetics. wustl.edu>.

Figure 9.19. The Pfam entry for family zf-C2H2 (accession no. PF00096). The mouse was clicked on the entry for zf-C2H2
shown in the above figure. The Pfam database is based on a statistical analysis of sequences with the same motif using hidden
Markov models. The result is a profile of the sequences with matches, mismatches, and gaps. The entry describes how this pro-
file was produced by the HMMER program, and also provides references and a link to a multiple sequence alignment of the
sequences. As discussed in Chapter 3, this hidden Markov model of the sequences can be used to produce the multiple sequence
alignment by choosing the most probable path through the model.
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globular residues in GenBank. These scores will vary with each window size and option
chosen, and the scores may be normalized to give a better impression of their range. A false
positive can occur with sequences that have a biased amino acid distribution; these false
positives can be identified by the program option of weighting the two hydrophobic posi-
tions a and d the same as the five hydrophilic positions b, ¢, e, f, and g. Normally, these
positions are weighted 2.5 times more heavily during the scoring procedure. False positives
will continue to have a high score whereas true positives will not.

For candidate protein sequences, Lupas recommends using both types of weighting and
both MTK and MTIDK matrices. The program reliably predicts known coiled-coil regions
(Lupas 1996). An example of the program output from the ISREC Web site is shown in
Figure 9.21, using as input the sequence of Gen4 (identified as GCN4_YEAST in the Swis-
sProt database), which has a leucine zipper region. The protein is scanned for the number
of occurrences of coiled coils in a sliding window of 7, 14, 21, or 28 residues.

Another method for predicting coiled coils is based on an analysis of correlations
between pairs of amino acids (Berger et al. 1995), and the program is accessible at
http://dot.imgen.bcm.tmc.edu:9331/seq-search/ struc-predict.html.

Transmembrane-spanning Proteins

The all-a superfamily of membrane proteins (see classification of membrane proteins at
the SCOP structural database at http://scop.mrc-lmb.cam.ac.uk/scop/) is composed of
proteins that traverse membranes back and forth through a series of « helices comprising
amino acids with hydrophobic side chains. The typical length, 20-30 residues, and strong
hydrophobicity of these helices provide a simple method for scanning a candidate
sequence for such features. An example of such a structure is illustrated in Figure 9.22.

Membrane-spanning hydrophobic o helices can be quite accurately located by scan-
ning for hydrophobic regions about 19 residues in length in the amino acid sequence
(Kyte and Doolittle 1982). The occurrence of such regions in a candidate protein of
unknown structure is a good indicator that the region spans a membrane, In Figure 9.23,
such an analysis is shown for subunit M of the above molecule. Membrane-spanning
helices are different from « helices that are located on the surface of a protein structure.
The surface helices tend to have hydrophobic residues located on the core-facing side
(inside) and the hydrophilic residues on the solvent-facing side (outside) of the helix.
These surface-exposed helices can be recognized by this separation of hydrophobic
residues through a helical moment analysis described below. Membrane « helices are
more like a helices that are buried in the structural core of a protein, which also have a
high proportion of amino acids with hydrophobic side groups located throughout their
lengths. In an effort to distinguish different classes of a helices, several methods for
improving the prediction of transmembrane regions have been devised and are available
on Web sites.

One such method is one of the program choices of the PHD (profile-fed neural network
system from Heidelberg) server for protein structure prediction at http://www.embl-hei-
delberg.de/predictprotein/predictprotein.html. The membrane-spanning helix predict
program is named PHDhtm (PHD for helical transmembrane proteins). Briefly, a machine
learning method called a neural network (see below) is trained to recognize the sequence
patterns and sequence variations of a set of a-helical transmembrane protejns of known
three-dimensional structure. A candidate sequence is then scanned for the presence of sim-
ilar sequence variations and a prediction is made as to the occurrence and location of a-
helical domains in the candidate protein. The specific steps were as follows. First, each of
the small number of structurally identified o-helical transmembrane proteins was used to
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Figure 9.21. Prediction of coiled-coil regions by the COILS2 program. The Gen4 protein was used as input to a Web page list-
ed in the text. (A) Plot of probability of residue in coiled-coil structure versus residue number obtained from the ISREC serv-
er. (B) Partial list of scores by residue number. Analysis obtained from the Predict Protein server. Note that highest probabili-
ties are obtained with a window of 28 amino acids. The expected order of amino acids in the coiled coil is a, b,c,d, e f, and g.
This order does not start until residue 244. Amino acids found at position 243 and at lower numbered positions are character-
istically found at other places in the coiled-coil heptad.
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search the SwissProt protein sequence database for additional sequences in this superfam-
ily using the BLAST or FASTA algorithms. Second, the sequences found were assembled
first into a multiple sequence alignment and then into a motif by the program MAXHOM.
Sequences less than 30% identical, and therefore least likely to be in the superfamily, were
not included. The most-alike sequences in the alignment were also removed to provide a
representative and statistically reasonable range of amino acid substitutions in each col-
umn of the motif. The neural network was then trained to differentiate between columns
in the motif representing the a-helical domains and the flanking nonhelical domains. The
training method is described in greater detail below. The orientation of the predicted a-
helical domains with respect to the inside (cytoplasmic) or outside of the membrane is also
predicted based on the observed preponderance of positively charged amino acids on the
cytoplasmic side of solved structures (Rost et al. 1995). An illustrative example of a PHD-
htm analysis on protein 1prc_M is shown in Figure 9.24. As shown, the program correct-
ly predicts five transmembrane helices, but positions of the ends of these helices are not
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B.

COILS version 2.1

using MTK matrix.

weights: a,d=2.5 and b,c,e,f,g=1.0

Input file is /home/phd/server/work/predict h24138-21300.fasta
>prot (#) ppOld, gcn4 /home/phd/server/work/predict h24138

Residue Window=14 Window=21 Window=28
Score Probability Score Probability Score Probability

239 A g 1.240 0.011 d 1.529 0.419 d 1.546 0.852
240 R a 1.240 0.011 e 1.581 0.585 e 1.546 0.852
241 R e 1.446 0.051 £ 1.581 0.585 £ 1.546 0.852
242 s f 1.446 0.051 g 1.581 0.585 g 1.546 0.852
243 R g 1.450 0.052 a 1.581 0.585 a 1.551 0.862
244 A b 1.529 0.093 b 1.607 0.664 b 1.643 0.968
245 R ¢ 1.592 0.145 c 1.607 0.664 c 1.643 0.968
246 K d 1.669 0.238 d 1.607 0.664 d 1.643 0.968
247 L e 2.433 0.994 e 1.843 0.978 e 1.984 1.000
248 Q £ 2.433 0.994 f 1.988 0.997 £ 2.041 1.000
249 R g 2.433 0.994 g 2.018 0.998 g 2.052 1.000
250 M a 2.433 0.994 a 2.054 0.999 a 2.052 1.000
251 K b 2.433 0.994 b 2.054 0.999 b 2.052 1.000
252 Q ¢ 2.433 0.994 c 2.054 0.999 c 2.052 1.000
253 L d 2.433 0.994 d 2.054 0.999 d 2.052 1.000
254 E e 2.433 0.994 e 2.054 0.999 e 2.052 1.000
255 D f 2.433 0.994 f 2.054 0.999 £ 2.052 1.000
256 K g 2.433 0.994 g 2.054 0.999 g 2.052 1.000
257 Vv a 2.433 0.994 a 2.054 0.999 a 2.052 1.000
258 E b 2.433 0.994 b 2.054 0.999 b 2.052 1.000
259 E c 2.433 0.994 ¢ 2.054 0.999 ¢ 2.052 1.000
260 L d 2.433 0.994 d 2.054 0.999 d 2.052 1.000
261 L e 2.433 0.994 e 2.054 0.999 e 2.052 1.000
262 8 £ 2.421 0.993 f 2.054 0.999 £ 2.052 1.000
263 K g 2.421 0.993 g 2.054 0.999 g 2.052 1.000
271 Vv a 2.026 0.848 a 2.004 0.998 a 2.052 1.000
272 A b 2.026 0.848 b 1.968 0.996 b 2.052 1.000
273 R c 2.026 0.848 ¢ 1.943 0.994 c 2.052 1.000
274 L d 2.026 0.848 d 1.943 0.994 d 2.052 1.000
275 K e 2.026 0.848 e 1.883 0.987 e 2.052 1.000
276 K £ 2.026 0.848 f 1.883 0.987 £ 2.052 1.000
277 L g 2.026 0.848 g 1.776 0.948 g 1.986 1.000
278 v a 2.026 0.848 a l.776 0.948 a 1.949 1.000
279 G b 2.026 0.848 b 1.631 0.732 b 1.868 0.999
280 E c 2.026 0.848 c 1.631 0.732 c 1.868 0.999
281 R a 1.378 0.030 d 1.090 0.003 d 1.381 0.263

Figure 9.21. Continued.

always correctly predicted, as revealed by a lack of correlation between the predicted
regions (H) and the known regions (*).

A second method for prediction of transmembrane « helices is by the TMpred server.
This method scans a candidate sequence for matches to a sequence scoring matrix obtained
by aligning the sequences of all of the transmembrane a-helical regions that are known from
structures. These sequences have been collected into a database (TMbase) of such
sequences. An example of a transmembrane analysis of 1prc_M by this method is shown in
Figure 9.25. As shown, the program correctly predicted five a-helical transmembrane seg-
ments. Two alternative models were predicted, the first more highly favored, but neither
one matched the known ends of these regions. These examples serve to illustrate that these
methods can be expected to identify membrane-spanning a-helical proteins quite reliably
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Figure 9.22. Three-dimensional structure of the photosynthetic center of Rhodopseudomonas viridis. The three subunits each
cross the membranes of hollow vesicles found in these bacteria at approximately right angles, two of them back and forth mul-
tiple times. The light-harvesting pigments chlorophyll and pheophytin are bound between these helices. These membrane-
spanning regions are 25-29 amino acids long and are composed of o helices. There is an abundance of hydrophobic amino
acids in these helices. Hence, a hydrophobicity plot of the protein chain will show peaks centered on the position of the helices,
as shown in Fig. 9.23. (Image from http://expasy.hcuge.ch/pub/Graphics/IMAGES/)

but not the ends of such regions. A simple hydrophobicity plot may also be used as shown
in Table 9.3. The number and extent of these regions can also be predicted from the peaks
in this plot. This method is unsuitable for scanning genomic sequences for possible mem-
brane-spanning proteins; the automatic methods are much more suitable for this purpose.

Prediction of Protein Secondary Structure from the Amino Acid Sequence

Accurate prediction as to where o helices, B strands, and other secondary structures will
form along the amino acid chain of proteins is one of the greatest challenges in sequence
analysis. At present, it is not possible to predict these events with very high reliability. As
methods have improved, prediction has reached an average accuracy of 64-75% with a
higher accuracy for o helices, depending on the method used. These predictive methods
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Figure 9.23. Hydrophobicity plot of subunit M of the photosynthetic center of Rhodopseudomonas
viridis illustrated in Fig. 9.22. The hydrophobicity plotting program of DNA Strider 1.2 on a Macin-
tosh computer was used with Kyte-Doolittle hydrophobicity values (Table 9.6) and a sliding window
of 19, chosen to detect the approximate length of membrane-spanning a helices of 20-30 residues.
The plot reliably predicts the five hydrophobic membrane-spanning helices of this protein, which are
located in the three-dimensional structure at amino acid positions 52-78, 110-139, 142-167,
197-225, and 259-285. The SwissProt entry for this protein is numbered P06010 and the protein ID
is RCEM_RHOVI. The program TGREASE, which is available in the FASTA suite of programs, will
provide a similar plot on Macintosh or PC computers.

can be made especially useful when combined with other types of analyses discussed in this
chapter. For example, a search of a sequence database or a protein motif database for
matches to a candidate sequence may discover a family or superfamily relationship with a
protein of known structure. If significant matches are found in regions of known sec-
ondary or three-dimensional structure, the candidate protein may share the three-dimen-
sional structural features of the matched protein. Several Web sites provide such an
enhanced analysis of secondary structure. These sites and others that provide secondary
structure analysis of a query protein are given in Table 9.7. The main methods of analyses
used at these sites are described below.

Methods of structure prediction from amino acid sequence begin with an analysis of a
database of known structures. These databases are examined for possible relationships
between sequence and structure. When secondary structure predictions were first being
made in the 1970s and 1980s, only a few dozen structures were available. This situation has
now changed with present databases including approximately 500 independent structural
folds. The combination of more structural and sequence information presents a new chal-
lenge to investigators who wish to develop more powerful predictive methods.

The ability to predict secondary structure also depends on identifying types of secondary
structural elements in known structures and determining the location and extent of these
elements. The main types of secondary structures that are examined for sequence variation
are a helices and B strands. Early efforts focused on more types of structures, including
other types of helices, turns, and coils. To simplify secondary structure prediction, these
additional structures that are not an « helix or B strand were subsequently classified as
coils. Assignment of secondary structure to particular amino acids is sometimes included
in the PDB file by the investigator who has solved the three-dimensional structure. In other
cases, secondary structure must be assigned to amino acids by examination of the struc-
tural coordinates of the atoms in the PDB file. Methods for comparing three-dimensional
structures, described above, frequently assign these features automatically, but not always
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Figure 9.24. Analysis of a known transmembrane protein by PHDhtm program at the predict pro-
tein server at Heidelberg. The same protein used for the above hydrophobicity analysis in Fig. 9.25
hydro and also the blue protein in Fig. 9.23 (structural name 1prc_M, SwissProt P06010) was sub-
mitted to the server at http://www.embl-heidelberg.de/predictprotein/ppDoPred.html, choosing the
transmembrane prediction option on the expert page and minimizing program output. Additional
program output, including probabilities, assignment of inside and outside domain (topology), and
neural network details are not shown. Note that the protein 1prc_M is listed on the server as one of
the proteins that was used to train the neural network. Hence, using this protein is a biased test of pro-
gram accuracy, which is claimed in more objective tests to identify residues in the transmembrane
helices with 95% reliability and helical transmembrane proteins at 86% accuracy (Rost et al. 1995,
1996; Rost 1996). The predicted helical regions are shown by an H and the known regions in the three-
dimensional structure, obtained from the SwissProt entry for the protein, are shown by an asterisk.

in the same manner. Hence, some variation is possible, and deciding which is the best
method can be difficult. The DSSP database of secondary structures and solvent accessi-
bilities is a useful and widely used resource for this purpose (Kabsch and Sander 1983;
http://www.sander.ebi.ac.uk/dssp/). This database, which is based on recognition of
hydrogen-bonding patterns in known structures, distinguishes eight secondary structural
classes that can be grouped into a helices, 8 strands, and coils (Rost and Sander 1993). A
more recently described automatic method makes predictions in accord with published
assignments (Frishman and Argos 1995).

The assumption on which all the secondary structure prediction methods are based is that
there should be a correlation between amino acid sequence and secondary structure. The usual
assumption is that a given short stretch of sequence may be more likely to form one kind of
secondary structure than another. Thus, many methods examine a sequence window of 13-17
residues and assume that the central amino acid in the window will adopt a conformation that
is determined by the side groups of all the amino acids in the window. This window size is
within the range of lengths of a helices (5-40 residues) and B strands (5-10 residues).

There is evidence that more distant interactions within the primary amino acid chain
may influence local secondary structure. The same amino acid sequence up to 5 (Kabsch
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2 possible models considered, only significant TM-segments used

STRONGLY preferred model: Amino-terminus inside
Five strong transmembrane helices
from to length actual
52 71 (20) 52- 78
110 132 (23) 110-139
146 166 (21) 142-167
199 219 (21) 197-225
268 289 (22) 259-~285

(SRS S )

alternative model
five strong transmembrane helices
from to length actual
53 71 (19) 52~ 78
113 129 (17) 110~139
144 161 (18) 142-167
201 225 (25) 197-225
268 289 (22) 259-285
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Figure 9.25. Analysis of known transmembrane protein by TMPRED. The same protein used above
for the PHDhtm analysis (structural name Iprc_M, SwissProt P06010) was submitted to the server at
http://www.ch.embnet.org /software/TMPRED_form.html. Shown are two predicted structural mod-
els; score and topology information are not included. Known locations of the o helices are shown in
last column for comparison.

Table 9.6. Hydrophobicity scales for the amino acids

Residue Value
Ala A 1.8
Arg R —-4.5
Asn N —-3.5
Asp D -3.5
Cys C 2.5
Gln Q —-3.5
Glu E —-3.5
Gly G —0.4
His H —3.2
Ile I 4.5
Leu L 3.8
Lys K -39
Met M 1.9
Phe F 2.8
Pro P —-1.6
Ser S —-0.8
Thr T -0.7
Trp w -0.9
Tyr Y -13
Val \% 4.2

These values are based on adjusted values derived from several sets of experimental measurements (Kyte
and Doolittle 1982). The most hydrophobic amino acids are printed in green, the least hydrophobic amino
acids in red. A number of additional scales are also available (von Heijne 1987).
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Table 9.7. Selected programs for performing protein secondary structure prediction

Program Web address

Method

Reference

Baylor College of http://dot.imgen.bcm.tmc.edu:9331/
Medicine (BCM) seq-search/struc-predict.html

DSC http://www.bmm.icnet.uk/dsc/

J-Pred structure http://jura.ebi.ac.uk:8888/
prediction server

NNPRED http://www.cmpharm.ucsf.edu/
~nomi/nnpredict.html
NPS@ server, MLR  http://pbil.ibcp.fr/NPSA/
combination for

secondary structure
prediction®
Protein Sequence http://bmerc-www.bu.edu/psa/
Analysis (PSA) index.html
System?

PREDATOR http://www.embl-heidelberg.de/
argos/predator/predator_info.
html

Predict Protein http://www.embl-heidelberg.de/

server predictprotein/predictprotein.
html; see also mirror sites

PSSP http://dot.imgen.bcm.tmc.edu:9331/
seq-search/struc-predict.html

Simpa96 http://pbil.ibcp.fr/NPSA/

SOPM, SOPMA http://pbil.ibcp.fr/NPSA/

SSP http://dot.imgen.bcm.tmc.edu:9331/
seq-search/struc-predict.html

UCLA-DOE http://www.doe-mbi.ucla.edu/

structure people/frsvr/frsvr.html

prediction server

collection of methods and linked
to other servers

linear discrimination

NNSSP, DSC, Predator,
Mulpred,b Zpred,* Jnet,’
and PHD

neural networks enhanced to
detect sequence periodicity

combination of prediction
methods using multivariate
linear regression to optimize
the predictions

discrete space models (hidden
Markov models) for patterns
of a helices, B strands, tight
turns, and loops in specific
structural classes

based on analysis of long- and
short-range amino acid
interactions and alignments
of sequence pairs

neural networks of multiple
sequence alignment

nearest neighbor enhanced by
non-intersecting local and
multiple sequence alignments
nearest-neighbor method
nearest-neighbor method
based on sequence alignments
linear discriminant analysis based
on amino acid composition of
local and adjacent regions
collection of methods and
linked to other servers

see Web site and text

King et al. (1997)
Cuff et al. (1998); and see text

Kneller et al. (1990)

Guermeur et al. (1999)

Stultz et al. (1993, 1997);
White et al. (1994)

Frishman and Argos
(1995, 1996, 1997)

Rost and Sander (1994);
Rost (1996)

Salamov and Solovyev
(1995, 1997)

Levin (1997)

Geourjon and Deleage
(1994, 1995)

see H option for this
program on Web page

Fischer and Eisenberg (1996)

?Consensus option provides a user-defined combination of methods.

bSee Cuff et al. (1998).

“Zpred server is also available at http://kestrel.ludwig.ucl.ac.uk/zpred.html. The program predicts secondary structure based on

physicochemical information and GOR prediction scores.
4 This server will also predict 3D structural class.

¢ Jnet uses multiple sequence alignments and a trained neural network to make secondary structure predictions (Cuff and Barton

2000).

and Sander 1984) and 8 (Sudarsanam 1998) residues in length can be found in different
secondary structures. An 11-residue-long amino acid “chameleon” sequence has been
found to form an «a helix when inserted into one part of a primary protein sequence and a
B sheet when inserted into another part of the sequence (Minor and Kim 1996). More dis-
tant interactions may account for the observation that 3 strands are predicted more poor-
ly by analysis of local regions (Garnier et al. 1996). However, the methods that have been
used to predict the secondary structure of an amino acid residue all perform less well when
amino acids more distant than in the small window of sequence are used.
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The number of possible amino acid combinations in a sequence window of 17 amino
acids is very large (17%° = 14 X 10°*). If many combinations influence one type of sec-
ondary structure, examination of a large number of protein structures is required to dis-
cover the significant patterns and correlations within this window. Earlier methods for
predicting secondary structure assumed that each amino acid within the sequence window
of 13-17 residues influences the local secondary structure independently of other nearby
amino acids; i.e., there is no interaction between amino acids in influencing local sec-
ondary structure. Later methods assumed that interactions between amino acids within the
window could play a role.

Neural network models described below have the ability to detect interactions
between amino acids in a sequence window, including conditional interactions. A hypo-
thetical example of the interactions that might be discovered illustrates the possibilities.
If the central amino acid in the sequence window is Leu and if the second upstream
amino acid toward the amino terminus is Asn, the Leu is in an « helix; however, if the
neighboring amino acid is not Asn, the Leu is in a B strand. In another method of sec-
ondary structure prediction, the nearest-neighbor method, sequence windows in known
structures that are most like the query sequence are identified. This method bypasses the
need to discover complex amino acid patterns associated with secondary structure. Pro-
tein secondary structure has also been modeled by hidden Markov models, also
described as discrete state-space models, which are described below (Stultz et al. 1993;
White et al. 1994). '

Accuracy of Secondary Structure Prediction

One method of assessing accuracy of secondary structure prediction is to give the percent-
age of correctly predicted residues in sequences of known structure, called Qs. This mea-
sure, however, is not very effective by itself, because even a random assignment of struc-
ture can achieve a high score by this test (Holley and Karplus 1991). Another measure is to
report the fraction of each type of predicted structure that is correct. A third method is to
calculate a correlation coefficent for each type of predicted secondary structure (Mathews
1975). The coefficient indicating success of predicting residues in the a-helical configura-
tion, C,, is given by

where p,, is the number of correct positive predictions, 7, is the number of correct nega-
tive predictions, o, is the number of overpredicted positive predictions (false positives),
and u,, is the number of underpredicted residues (misses). The closer this coefficient is to
a value of 1, the more successful the method for predicting a helical residue. An overall
level of prediction accuracy does not provide information on the accuracy of the number
of predicted secondary structures, and their lengths and location in the sequence. One sim-
ple index of success is to compare the average of the predicted lengths with the known
average (Rost and Sander 1993).

Another factor to consider in prediction accuracy is that some protein structures are
more readily predictable than others, such that the spectrum of test proteins chosen will
influence the frequency of success. A representative set of proteins that have limited simi-
larity will provide the most objective test. Rost and Sander (1993) have chosen a set of 126
globular and 4 membrane proteins that have less than 25% pair-wise similarity and have
used this set for training and testing neural network models. A newer set of 540 structurally



446 s CHAPTER 9

distinct fold types in the FSSP database provides an even larger set of training and test
structures of unique structure and sequence (Holm and Sander 1998). In the often-used
jackknife test, one protein in a set of known structure is left out of a calibration or training
step of the program being tested. The rest of the proteins are used to predict the structure
of the left-out one, and the procedure is cycled through all of the sequences. The overall
frequency of success of predicting the secondary structural features of the left-out sequence
is used as an indicator of success. An even more comprehensive approach to the problem
of accuracy is to examine the predictions for different structural classes of proteins.
Because some classes are much more difficult to predict, the overall success rate with
respect to protein class is an important index of success. Prediction accuracy is discussed
further below.

A valuable addition to secondary structure prediction is giving the degree of reliability
of the prediction at each position. Some prediction methods produce a score for each of
the three types of structures (helix, strand, coil or loop) at each residue position. If one of
these scores is much higher than the other two, the score is considered to be more reliable,
and a high reliability index may be assigned that reflects high confidence in the prediction.
If the scores are more similar, the index is lower. By examining predictions for known
structures, as in a jackknife experiment, the accuracy of these reliability indices may be
determined. What has been found is that a prediction with a high index score is much
more accurate (Yi and Lander 1993; and see PHD server below), thus increasing confi-
dence in the prediction of these residues.

Methods for Secondary Structure Prediction

Three widely used methods of protein secondary structure prediction, (1) the Chou-
Fasman and GOR methods, (2) neural network models, and (3) nearest-neighbor meth-
ods, are discussed below. An additional method that models structural families by hidden
Markov models is then described. These methods can be further enhanced by examining
the distribution of hydrophobic, charged, and polar amino acids in protein sequences.

Chou-Fasman/GOR Method

The Chou-Fasman method (Chou and Fasman 1978) was based on analyzing the frequen-
cy of each of the 20 amino acids in a helices, 8 sheets, and turns of the then-known rela-
tively small number of protein structures. It was found, for example, that amino acids Ala
(A), Glu (E), Leu (L), and Met (M) are strong predictors of a helices, but that Pro (P) and
Gly (G) are predictors of a break in a helix. A table of predictive values for each type of sec-
ondary structure was made for each of the o helices, 8 strands, and turns. To produce these
values, the frequency of amino acid i in structure s is divided by the frequency of all
residues in structure s. The resulting three structural parameters (Po, P@, and Pt) vary
roughly from 0.5 to 1.5 for the 20 amino acids. ‘

To predict a secondary structure, the following set of rules is used. The sequence is first
scanned to find a short sequence of amino acids that has a high probability for starting a
nucleation event that could form one type of structure. For a helices, a prediction is made
when four of six amino acids have a high probability >1.03 of being in an « helix. For
strands, the presence in a sequence of three of five amino acids with a probability of >1.00
of being in a B strand predicts a nucleation event for a  strand. These nucleated regions
are extended along the sequence in each direction until the prediction values for four
amino acids drops below 1. If both a-helical and B-strand regions are predicted, the high-
er probability prediction is used.
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Turns are predicted somewhat differently. Turns are modeled as a tetrapeptide, and two
probabilities are calculated. First, the average of the probabilities for each of the four amino
acids being in a turn is calculated as for « helix and B strand predictions. Second, the prob-
abilities of amino acid combinations being present at each position in the turn tetrapep-
tide (i.e., the probability that a particular amino acid such as Pro is at position 1, 2, 3, or 4
in the tetrapeptide) are determined. These probabilities for the four amino acids in the
candidate sequence are multiplied to calculate the probability that the particular tetrapep-
tide is a turn. A turn is predicted when the first probability value is greater than the prob-
abilities for an « helix and a B strand in the region and when the second probability value
is greater than 7.5 X 107>, In practice, the Chou-Fasman method is only about 50-60%
accurate in predicting secondary structural domains.

Garnier et al. (1978) developed a somewhat more involved method for protein sec-
ondary structure prediction that is based on a more sophisticated analysis. The method is
called the GOR (Garnier, Osguthorpe, and Robson) method. Whereas the Chou-Fasman
method is based on the assumption that each amino acid individually influences secondary
structure within a window of sequence, the GOR method is based on the assumption that
amino acids flanking the central amino acid residue influence the secondary structure that
the central residue is likely to adopt. In addition, the GOR method uses principles of infor-
mation theory to derive predictions (Garnier et al. 1996).

As in the Chou-Fasman method, known secondary structures are scanned for the
occurrence of amino acids in each type of structure. However, the frequency of each type
of amino acid at the next 8 amino-terminal and carboxy-terminal positions is also deter-
mined, making the total number of positions examined equal to 17, including the central
one. In the original GOR method, three scoring matrices, containing in each column the
probability of finding each amino acid at one of the 17 positions, are prepared. One matrix
corresponds to the central (eighth) amino acid being found in an « helix, the second for
the amino acid being in a B strand, the third a coil, and the fourth, a turn. Later versions
omitted the turn calculation because these were the most variable features and were con-
sequently the most difficult to predict. A candidate sequence is analyzed by each of the
three to four matrices by a sliding window of 17 residues. Each matrix is positioned along
a candidate sequence and the matrix giving the highest score predicts the structural state
of the central amino acid. At least 4 residues in a row have to be predicted as an « helix
and 2 in a row for a B strand for a prediction to be validated.

Matrix values are calculated in somewhat the same manner as amino acid substitution
matrices (described in Chapter 3), in that matrix values are calculated as log odds units
representing units of information. The information available as to the joint occurrence of
secondary structural conformation $ and amino acid a is given by (Garnier et al. 1996)

where P(S | a) is the conditional probability of conformation S given residue a, and P(S) is
the probability of conformation S. By Bayes’ rule (see Chapter 3, p. 120), the probability of
conformation S given amino acid a, P(S | a) is given by

where P(S, a) is the joint probability of S and a and P(a) is the probability of a. These prob-
abilities can be estimated from the frequency of each amino acid found in each structure
and the frequency of each amino acid in the structural database. Given these frequencies,
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where f,, is the frequency of amino acid a in conformation S and f; is the frequency of all
amino acid residues found to be in conformation S.

The GOR method maximizes the information available in the values of f, and avoids
data size and sampling variations by calculating the information difference between the
competing hypotheses that residue a is in structure S, I (S;a), or that a is in a different con-
formation (not S), I (not S;a). This difference I (AS;a) is calculated from Equation 5 with
simple substitutions by

which is derived from the observed amino acid data as

where the frequency of finding amino acid a not in conformation Sis 1 — fs, and of not
finding any amino acid in conformation S is 1 — fs. Equation 6 is used to calculate the
information difference for a series of x consecutive positions flanking sequence position m,

from which the following ratio of the joint probability of conformation S,,, given a;,..ax to
the joint probability of any other conformation may be calculated

Searching for all possible patterns in the structural database would require an enormous
number of proteins. Hence, three simplifying approaches have been taken. First, it was
assumed in earlier versions of GOR that there is no correlation between amino acids in any
of the 17 positions (both the flanking 8 positions and the central amino acid position), or
that each amino acid position had a separate and independent influence on the structural
conformation of the central amino acid. The steps are then: (1) Values for I (AS; a) in
Equation 7 are calculated for each of the 17 positions; (2) these values are summed to
approximate the value of I (AS,,; a;,..ax) in Equation 8; (3) the probability ratios in Equa-
tion 9 are calculated.

The second assumption used in later versions of GOR was that certain pair-wise com-
binations of an amino acid in the flanking region and central amino acid influence the
conformation of the central amino acid. This model requires a determination of the fre-
quency of amino acid pairs between each of the 16 flanking positions and the central
one, both for when the central residue is in conformation § and when the central residue
is not in conformation S. Finally, in the most recent version of GOR, the assumption is
made that certain pair-wise combinations of amino acids in the flanking region, or of a
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flanking amino acid and the central one, influence the conformation of the central one.
Thus, there are 17 X 16/2 = 136 possible pairs to use for frequency measurements and
to examine for correlation with the conformation of the central residue. With the
advent of a large number of protein structures, it has become possible to assess the fre-
quencies of amino acid combinations and to use this information for secondary struc-
tural predictions. The GOR method predicts 64% of the residue conformations in
known structures and quite drastically (36.5%) underpredicts the number of residues in
B strands.

Use of the Chou-Fasman and GOR methods for predicting the secondary structure of
the o subunit of Salmonella typhimurium tryptophan synthase is illustrated in Figure 9.26.
In this particular case, the positions of the secondary structures predicted by either of these
methods are very similar to those in the solved crystal structure (Branden and Tooze 1991).
However, tests of the accuracy of these methods using sequences of other proteins whose
structures are known have shown that the Chou-Fasman method is only about 50-60%
accurate in predicting the structural domains. The methods are most useful in the hands
of a knowledgeable structural biologist, and have been used most successfully in polypep-
tide design and in analysis of motifs for organelle transport (Branden and Tooze 1991). A
useful approach is to analyze each of a series of aligned amino acid sequences and then to
derive a consensus structural prediction.
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Figure 9.26. Example of the secondary structure predictions for the a subunit of S. typhimurium tryptophan synthase by the
Chou-Fasman and GOR methods included in the Genetics Computer Group suite of programs. The predictions are shown on
the lower panels, labeled as CF for the Chou-Fasman method (Chou and Fasman 1978) and GOR (referred to as GOR I) for the
Garnier, Osguthorpe, and Robson method (Garnier et al. 1978). This protein is in the a-B class with an «/B barrel type of struc-
ture comprising eight parallel 8 strands and eight o helices in an alternating pattern and three additional o helices, and is shown
in Fig. 9.6. The predicted structure is quite acccurate and represents the correct pattern of secondary structure.
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Patterns of Hydrophobic Amino Acids Can Aid Structure Prediction

Prediction of secondary structure can be aided by examining the periodicity of amino acids
with hydrophobic side chains in the protein chain. This type of analysis was discussed above
in the prediction of transmembrane a-helical domains in proteins. Hydrophobicity tables
that give hydrophobicity values for each amino acid are used to locate the most hydropho-
bic regions of the protein (Table 9.6) (see Liithy and Eisenberg 1991). As for secondary struc-
ture prediction, a sliding window is moved across the sequence and the average hydropho-
bicity value of amino acids within the window is plotted. A hydrophobicity plot of the «
subunit of S. typhimurium tryptophan synthase is included in the first panel of Figure 9.26.

Similar methods for predicting surface peptides including antigenic sites, chain flexibil-
ity, or glycosylation sites are also illustrated in Figure 9.26. These methods use the chemi-
cal properties of amino acid side chains to predict the location of these amino acids on the
surface or buried within the core structure.

The location of hydrophobic amino acids within a predicted secondary structure can also
be used to predict the location of the structure. One type of display of this distribution is the
helical wheel or spiral display of the amino acids in an a helix, as shown in Figure 9.27. This
use of this display was described above as a way to visualize the location of leucine residues on
one face of the helix in a leucine zipper structure. There is also a tendency of hydrophobic
residues located in « helices on the surface of protein structures to face the core of the protein
and for polar and charged amino acids to face the aqueous environment on the outside of the
« helix. This arrangement is also revealed by the helical wheel display shown in Figure 9.27.
Another type of display, the hydrophobic moment display, is shown in Figure 9.28. The con-
tours in this plot show positions in the amino acid sequence where hydrophobic amino acids
tend to segregate to opposite sides of a structure plotted against various angles of rotation from
one residue to the next along the protein chain. For « helices, the angle of rotation is 100
degrees and for B strands, 160 degrees. The analysis in the figure predicts, for example, an a
helix at approximate sequence position 165 that has segregated hydrophobic amino acids on
one helix face. Helix a5 runs from positions 160 to168 in the crystal structure of this protein.

Secondary Structure Prediction by Neural Network Models

The most sophisticated methods that have been devised to make secondary structural pre-
dictions for proteins use artificial intelligence, or so-called neural net algorithms. An ear-
lier method of this type examined patterns that represent secondary structural features like
the Chou-Fasman method. However, this method went farther and tried to locate these
patterns in a particular order that coincides with a known domain structure. Patterns typ-
ical of a/B proteins (Cohen et al. 1983), turns in globular proteins (Cohen et al. 1986), or
helices in helical proteins (Presnell et al. 1992) may be located and used to predict sec-
ondary structure with increased confidence. The program MACMATCH, which combines
these methods with a neural network approach to predict the secondary structure of glob-
ular proteins on a Macintosh computer, has been described (Presnell et al. 1993).

In the neural network approach, computer programs are trained to be able to recognize
amino acid patterns that are located in known secondary structures and to distinguish these
patterns from other patterns not located in these structures. There are many examples of the
use of this method to predict protein structures (see, e.g., Qian and Sejnowski 1988; Mug-
gleton et al. 1992; Stolorz et al.1992; Rost and Sander 1993), which have been reviewed
(Holley and Karplus 1991; Hirst and Sternberg 1992). The early methods are reported to be
up to 63-64% accurate. These methods have been improved to a level of over 70% for glob-
ular proteins by the use of information from multiple sequence alignments (Rost and
Sander 1993, 1994). Two Web sites that perform a neural network analysis for protein sec-
ondary structure prediction are PHD (Rost and Sander 1993; Rost 1996; http://www.embl-
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Figure 9.27. Helical wheel plot for the protein melittin. The plot shown was obtained using the
Genetics Computer Group HELICALWHEEL program. The diagram shows the relative positions of
amino acids in an end-on view of an a helix with the angle of rotation of 100° between adjacent amino
acids in o helices (the angle would be 160° for (3 strands). The hydrophobic amino acids Leu (L), Ile
(1), and Val (V) are primarily located on one side of the helix, thereby illustrating the amphiphobic
nature of the helix.

heidelberg.de/predictprotein/predictprotein.html) and NNPREDICT (Kneller et al. 1990;
http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html). These neural network models are
theoretically able to extract more information from sequences than the information theory
method described above (Qian and Sejnowski 1988). Neural networks have also been used
to model translational initiation sites and promoter sites in E. coli, splice junctions, and spe-
cific structural features in proteins, such as a-helical transmembrane domains. These appli-
cations are discussed elsewhere in this chapter and in Chapter 8.

Neural network models are meant to simulate the operation of the brain. The
complex patterns of synaptic connections among a large number of neurons are
presumed to underlie the functions of the brain. Some groups of neurons are involved in
collecting data as environmental signals, others in processing data, and yet others
in providing a response to the signals. Neural networks are an attempt to build a
similar kind of learning machine where the input is a 13—17-amino-acid length of sequence
and the output is the predicted secondary structure of the central amino acid residue. The
object is to train the neural network to respond correctly to a set of such flanking sequence
fragments when the secondary structural features of the centrally located amino acid are
known. The training is designed to achieve recognition of amino acid patterns associated
with secondary structure. If the neural network has sufficient capacity for learning, these
patterns may potentially include complex interactions among the flanking amino acids in
determining secondary structures. However, two studies with neural networks described
below have so far not found evidence for such interactions.
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Figure 9.28. Hydrophobic moment plot of the sequence of the a chain of E. coli tryptophan synthase using the Genetics Com-
puter Group MOMENT program. The moment uses the hydrophobicity values shown in Table 9.6 to measure the tendency of
hydrophobic residues to be located on one face of a secondary structural element (Liithy and Eisenberg 1991). The values are
normalized so that the mean value is 0 and the standard deviation is 1. The moment is calculated for a window of 10 residues,
5 on each side of every amino acid position and for every possible rotational angle between adjacent residues. The angle is 100°
for « helices and 160° for B strands. When one contour is shown, the moment values are 0.35; when two contours are shown,
values are 0.35 (outer) and 0.45 (inner).
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A typical neural network model used for protein secondary structure prediction is illus-
trated in Figure 9.29. A sliding window of 13—17 amino acid residues is moved along a
sequence. The sequence within each window is read and used as input to a neural network
model previously trained to recognize the secondary structure most likely to be associated
with that pattern. The model then predicts the secondary structural configuration of the
central amino acid as « helix, 3 strand, or other. Rules or another trained network are then
applied that make the prediction of a series of residues reasonable. For example, at least 4
amino acids in a row should be predicted as being in an « helix if the prediction is to make
structural sense.

The model comprises three layers of processing units—the input layer, the output layer,
and the so-called hidden layer between these layers. Signals are sent from the input layer to
the hidden layer and from the hidden layer to the output layer through junctions between
the units. This configuration is referred to as a feed-forward multilayer network. The input
layer of units reads the sequence, one unit per amino acid residue, and transmits informa-
tion on the amino acid at that location. A small window of sequence is read at a time and
information is sent as signals through junctions to a number of sequential units in the hid-
den layer by all of the input units within the window, as shown by the lines joining units
in Figure 9.29. These signals are each individually modified by a weighting factor and then
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Figure 9.29. A typical neural network model for protein secondary structure prediction (after Rost
and Sander 1993). Functions of the input (red boxes), hidden (blue boxes), and output (green boxes)
layers are described in the text. There is one input unit for each amino acid in the sequence window
of 13 (first column). Each input amino acid unit is made up of 21 input positions, one for each amino
acid and one for a padding space when the window overlaps the end of the sequence. Other positions
may be added to provide additional information. The positions each send information to the hidden
unit layer. In a simple input coding system, only one of the 20 components in a given input unit has
a value of 1. Shown is an example where the component for Y is turned on while the rest of the com-
ponents are 0 (second column). When padding for the end of sequence is required, only the padding
space is set to 1. When a sequence profile is used as input (not shown), each position is filled with the
frequency of the amino acid in the corresponding column of the sequence profile or with a coded form
of this frequency, and the numbers of insertions and deletions are added in two extra positions.
Another position is used to indicate the amount of information due to the presence of conserved
amino acids in the column. Signals from each position in each input unit are weighted as they pro-
ceed to units of the hidden layer. A signal from a component of one input unit will receive a different
weight for each connection to a hidden unit. Each hidden unit sums the signals (s;,) received from the
input layer and then transforms the sum using the trigger function s,,,=1/(1 + ¢~*™) to produce an
output signal that is between and close to either 0 and 1, simulating the firing of a neuron. Strong sig-
nals are transformed by this function to a number approximately equal to 1 and weak or negative val-
ues to 0. As the constant k increases, discrimination between strong and weak signals is increased. The
hidden layer output signals are weighted and sent to three output units, representing prediction of an
a helix, B strand, or coil (loop) for the secondary structural configuration of the central amino acid
in the window. The sum of these signals is transformed to values between 0 and 1. An output signal
close to 1 is a prediction for the amino acid to have the corresponding structural configuration; a weak
signal close to zero is no prediction. The example shown predicts an a-helical configuration for Y.
Predictions for a series of adjacent windows are sorted out by applying rules or by additional neural
networks. The insert illustrates the operation of the back-propagation algorithm that is used to train
the network and is described by an example in the text (p. 455).
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Use of a perceptron
for analyzing regula-
tory DNA sequences is
illustrated in Figure
8.11 (p. 363).

added together to give a total input signal into each hidden unit. Sometimes a bias is added
to this sum to influence the response of the unit. The resulting signal is then transformed
by the hidden unit into a number that is very close either to a 1 or to a zero (or sometimes
toa —1). A mathematical function known as a sigmoid trigger function, simulating the fir-
ing or nonfiring states of a neuron, is used for this transformation. Signals from the hid-
den units are then sent to three individual output units, each output unit representing one
type of secondary structure (helix, strand, or other). Each signal is again weighted, the
input signals are summed, and each of the three output units then converts the combined
signal into a number that is approximately a 1 or a 0. An output signal that is close to 1
represents a prediction of the secondary structural feature represented by that output unit
and a signal near to the value 0 means that the structure is not predicted.

When hidden layers are included, a neural network model is capable of detecting higher
levels of interaction among amino acids that influence secondary structure. For example,
particular combinations of amino acids may produce a particular type of secondary struc-
ture. To resolve these patterns, a sufficient number of hidden units is needed (Holley and
Karplus 1991); the number varies from 2 to a range of 10-40. An interesting side effect of
adding more hidden units is that the neural network memorizes the training set but at the
same time is less accurate with test sequences. This effect is revealed by using the trained net-
work to predict the same structures used for training. The number correct increases by over
20% as the number of hidden units increases from 0 to 10. In contrast, accuracy of predic-
tion of test sequences not used for training decreased 3% (Holley and Karplus 1991).

Without hidden layers, the neural network model is known as a perceptron, and has a
more limited capacity to detect such combinations. In two studies, networks with no hid-
den units were as successful in predicting secondary structure as those with hidden units. In
addition, the number of hidden units was increased to as many as 60 in one study (Qian and
Sejnowski 1988) and 20 in another (Holley and Karplus 1991) without significantly chang-
ing the level of success. These observations imply that the influence of local sequence on sec-
ondary structure is the additive influence of individual residues and that there is no higher
level of interaction among these residues. To detect such interactions, however, requires a
large enough training set to provide a significant number of examples, and these conditions
may not have been met. These same studies examined the effect of input window size and
found that a maximum information for secondary structure prediction seems to be located
within a window of 13—17 amino acids, as larger windows do not increase accuracy. How-
ever, small windows were less effective, suggesting that they have insufficient information,
and below a window size of 5, success at predicting [3 strands was decreased.

Training the neural network model is the process of adjusting the values of the weights
used to modify the signals from the input layer to the hidden layer and from the hidden layer
to the output layer. The object is to have these weights balance the input signals so that the
model output correctly identifies the known secondary structure of the central amino acid in
a sequence window of a protein of known structure. Because there may be thousands of con-
nections between the various units in the network, a systematic method is needed to adjust
these values. Initially, the weights are assigned a constant or random value (typical range
—0.1 to +0.1). The sliding window is then positioned along one of the training sequences.
The predicted output for a given sequence window is then compared to the known structure
of the central amino acid residue. The model is adjusted to increase the chance of predicting
the correct residue. The adjustment involves changing the weighting of propagated signals by
a method called the back-propagation algorithm. This procedure is repeated for all windows
in all of the training sequences. The better the model, the more predicted structures that will
be correct. Conversely, the worse the model, the more predictions that will be incorrect. The
object then becomes to minimize this incorrect number. The error E is expressed as the
square of the total number of incorrect predictions by the output units.
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When the back-propagation algorithm is applied, the weights are adjusted by a small
amount to decrease errors. A window of a training sequence is used as input to the net-
work, and the predicted and expected (known) structures of the central residue are com-
pared. A set of small corrections is then made to the weights to improve an incorrect pre-
diction, or the weights are left relatively unchanged for a correct prediction. This
procedure is repeated using another training sequence until the number of errors cannot
be reduced further. A large number of training cycles representing a slow training rate is
an important factor for training the network to produce the smallest number of incorrect
predictions. Not all of the training sequences may be used—a random input of training
patterns may be used and sometimes these may be chosen from subsets of sequences that
represent one type of secondary structure to balance the training for each type of structure.
The back-propagation algorithm examines the contribution of each connection in the
network on the subsequent levels and adjusts the weight of this connection, if needed to
improve the predictions. The following example illustrates the operation of the algorithm.
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The PHDsec program in the PHD system described above in the section on prediction
of transmembrane-spanning proteins (p. 437) is an example of a neural network program
for protein secondary structure prediction (Rost and Sander 1993; Rost 1996). The Web
address of this resource is http://www.emblheidelberg.de/predictprotein/predictprotein.
html. PhDsec uses a procedure similar to that used by PHDhtm. A BLAST search of the
input sequence is conducted to identify similar but not closely identical sequences, and a
multiple alignment of the sequences is transformed into a sequence profile. This profile is
then used as input to a neural network trained to recognize correlations between a window
of 13 amino acids and the secondary structure of the central amino acid in the window.
The neural network model is as the one shown in Figure 9.29. Program output includes a
reliability index of each estimate on a scale of 1 (low reliability) to 9 (high reliability). These
reliabilities (not shown) are obtained as normalized scores derived from the output values
of the three units in the output layer of the network. The highest output value is compared
to the next lowest value and the difference is normalized to give the reliability index. These
indices are a useful way to examine the predictions in closer detail.
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Nearest-neighbor Methods of Secondary Structure Prediction

Like neural networks, nearest-neighbor methods are also a type of machine learning
method. They predict the secondary structural conformation of an amino acid in the
query sequence by identifying sequences of known structures that are similar to the
query sequence (Levin et al. 1986; Salzberg and Cost 1992; Zhang et al. 1992; Yi and
Lander 1993; Salamov and Solovyev 1995, 1997; Frishman and Argos 1996). A large
list of short sequence fragments is made by sliding a window of length 1 (e.g., n =16)
along a set of approximately 100-400 training sequences of known structure but
minimal sequence similarity to each other, and the secondary structure of the central
amino acid in each window is recorded. A window of the same size is then selected from
the query sequence and compared to each of the above sequence fragments, and the
50 best-matching fragments are identified. The frequencies of the known secondary
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structure of the middle amino acid in each of these matching fragments (f,, f3, and
feoits) are then used to predict the secondary structure of the middle amino acid in the
query window. As with other secondary structure prediction programs, the predicted
secondary structure of a series of residues in the query sequence is subjected to a set of
rules or used as input to a neural network to make a final prediction for each amino
acid position.

Although not implemented in the most available programs, a true estimate of
probability of the above set of frequencies may be obtained by identifying sets of
training sequences that give the same value of (f, + fg + fioits)!’>. The frequencies of
the secondary structures predicted by this group then give true estimates for p,, pg,
and pe,iis for the targeted amino acid in the query sequence (Yi and Lander 1993). Pre-
dictions based on the highest probabilities have been shown to be the most accurate,
with the top 28% of the predictions being 86% accurate and the top 43% being 81%
accurate. In addition, this method of calculating probability possesses more informa-
tion than single-state predictions. Using this method, therefore, a substantial propor-
tion of protein secondary structures can be predicted with high accuracy (Yi and Lan-
der 1993, 1996).

The several nearest-neighbor programs that have been developed for secondary
structure prediction (see Table 9.7) differ largely in the method used to identify re-
lated sequences in the training set. Originally, an amino acid scoring matrix such
as a BLOSUM scoring matrix was used (Zhang et al. 1992). Distances between
sequences based on a statistical analysis of the training sequences have also been pro-
posed (Salzberg and Cost 1992). Use of a scoring matrix (Bowie et al. 1991, 1996) based
on a categorization of amino acids into local structural environments, discussed below,
in conjunction with a standard amino acid scoring matrix increased the success of
the predictions (Yi and Lander 1993; Salamov and Solovyev 1995, 1997). Yet fur-
ther increases in success have been achieved by aligning the query sequence with the
training sequences to obtain a set of nonintersecting alignments with windows of the
query sequence (as described in Chapter 3, p. 75), and of using a multiple sequence
alignment as input with amino-terminal and carboxy-terminal positions of o helices
and {3 strands and B turns treated as distinctive types of secondary structure (Salamov
and Solovyev 1997).

The program PREDATOR (Table 9.7) is based on an analysis of amino acid patterns in
structures that form H-bond interactions between adjacent B strands (B bridges) and
between amino acid n and n + 4 on « helices (Frishman and Argos 1995, 1996). The H-
bond pattern between parallel and antiparallel B strands is different (Fig. 9.3) and two
types of antiparallel patterns have been recognized. By utilizing such information com-
bined with substitutions found in sequence alignments, the prediction success of PREDA-
TOR has been increased to 75% (Frishman and Argos 1997). Examples of the NNSSP
(Salamov and Solovyev 1997) and PREDATOR (Frishman and Argos 1997) program out-
puts are given on page 459.
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Hidden Markov Model (Discrete-Space Model)

HMMs have been used to model alignments of three-dimensional structure in proteins
(Stultz et al. 1993; Hubbard and Park 1995; Di Francesco et al. 1997, 1999; FORREST Web
server at http://absalpha.dcrt.nih.gov:8008/). In one example of this approach, the models
are trained on patterns of a helices, B strands, tight turns, and loops in specific structural
classes (Stultz et al. 1993, 1997; White et al. 1994), which then may be used to provide the
most probable secondary structure and structural class of a protein. The manner by which
protein three-dimensional domains can be modeled is illustrated in Figure 9.30. An exam-
ple of the class prediction by the Protein Sequence Analysis (PSA) server at Boston Uni-
versity is shown in Figure 9.31.

Prediction of Three-dimensional Protein Structure

Because the number of ways that proteins can fold appears to be limited, there is consid-
erable optimism that ways will be found to predict the fold of any protein, just given its
amino acid sequence. Structural alignment studies have revealed that there are more than
500 common structural folds found in the domains of the more than 12,500 three-dimen-
sional structures that are in the Brookhaven Protein Data Bank. These studies have also
revealed that many different sequences will adopt the same fold. Thus, there are many
combinations of amino acids that can fit together into the same three-dimensional con-
formation, filling the available space and making suitable contacts with neighboring amino
acids to adopt a common three-dimensional structure. There is also a reasonable proba-
bility that a new sequence will possess an already identified fold. The object of fold recog-
nition is to discover which fold is best matched. Considerable headway toward this goal has
been made.

Sequence alignment can be used to identify a family of homologous proteins that have
the same sequence, and presumably a similar three-dimensional structure. As discussed
above, there are many databases that link sequence families to the known three-dimen-
sional structure of a family member. The structure of even a remote family or superfami-
ly member can be predicted through such sequence alignment methods. When the
sequence of a protein of unknown structure has no detectable similarity to other proteins,
other methods of three-dimensional structure prediction may be employed. One such
method is sequence threading.

In threading, the amino acid sequence of a query protein is examined for compatibility
with the structural core of a known protein structure. Recall that the protein core is made
up of « helices, B strands, and other structural elements folded into a compact structure.
The environment of the core is strongly hydrophobic with little room for water molecules,
extra amino acids, or amino acid side chains that are not able to fit into the available space.
Side chains must also make contact with neighboring amino acid side chains in the struc-
ture, and these contacts are needed for folding and stability. Threading methods examine
the sequence of a protein for compatibility of the side groups with a known protein core.
The sequence is “threaded” into a database of protein cores to look for matches. If a rea-
sonable degree of compatibility is found with a given structural core, the protein is pre-
dicted to fold into a similar three-dimensional configuration. Threading methods are
undergoing a considerable degree of evolution at the present time. An excellent description
of algorithms for threading is found in Lathrop et al. (1998). Presently available methods
require considerable expertise with protein structure and with programming. However,
there are some sites where the analysis may be performed on a Web server, as shown in
Table 9.8.



462 s CHAPTER 9

A. Superclass Probabilities for test withts a using vpp&m, 22-Mar-39(0:14:11)
T 1 T )
] P ........... : TR IEEITIEERTETRS .
(1] AR R LT ER R :. ...................... ':-...................: .................. -
= : :
%U.ﬁ" .................. FRERTRE PR ............................-...: .................. ot
=] » .
[ : 1
t0'4_""""""""”f"""'"“ e ILELRETEIREPIPY -
02_.............‘....E:........... ...........E...................E .................. -
. : : ;
alpha beta irregular
Macroclass Probabilities for test withts a using vppém, 22-Mar-99(0:14:11}
I N A B B NS S B M S B N AL St S A A L L L A
P SR SR SR S U Ceeikemeens O RO R SRS S SR SPE NP ST
agh- bbb
z IR S A :
= 1) :] T (O P FAR S U S AP N A :
B - : : A :
2 : ! : : L : :
a 0gdfp--r- LR R . . - g . g . , : ] .
PP IS S
ploi i i i T R N T T R T O O
2288822232253 5g8ggE~FF3
RES=S=e > §588gg”
N o = G0 WD

Figure 9.31. Prediction of structural class by the Protein Sequence Analysis (PSA) System at
http://bmerc-www.bu.edu/psa/index.html. The analysis is based on the training of hidden Markov
models for each structure by the sequences that specify those structures as described in Fig. 9.30 and
in the text. The input sequence was the a subunit of S. fyphimurium tryptophan synthase (SwissProt
ID TRPA_SALTY, accession P00929), which was correctly identified as an - class protein. Proteins
that are homologous to the input sequence were excluded from the analysis. Hence, although the
structure was available, it was not used to produce the correct model. (A) The posterior probability of
the protein being in a particular structural class as defined by the server is given, class a-B and macro-
class ab8. (B) Probability plot of sequence being in a helix, strand, or turn. (C) Contour probability
plot of secondary structural features combined with information about amphipathicity (the segrega-
tion of hydrophobic and nonhydrophobic residues to opposite faces of secondary structures). Areas
of high probability appear as dark regions with closely spaced contour lines at probability increments
of 0.1. Identification of structural class greatly facilitates the identification of secondary structural fea-
tures. These figures were returned from the server by E-mail as postscript (ps) files.

Continues on next page

There are two methods in common use for deciding whether or not a given protein
sequence is compatible with a known structural core, the environmental template (or
structural profile) method and the contact potential method. In the environmental tem-
plate method (Bowie et al. 1991, 1996; see also QOuzounis et al. 1993; Johnson et al. 1996),
the environment of each amino acid in each known structural core is determined, includ-
ing the secondary structure, the area of the side chain that is buried by closeness to other
atoms, types of nearby side chains, and other factors. On the basis of these descriptions at
each site, the position is classified into one of 18 types, 6 representing increasing levels of
residue burial and fraction of surface covered by polar atoms combined with three classes
of secondary structure. Each amino acid is then assessed for its ability to fit into that type
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Figure 9.31. Continued.

of site in the structure. For example, if the side group is buried, another amino acid with a
hydrophobic side chain may fit best into the structure at that position. The sequence of the
protein is then aligned with a series of such environmentally defined positions in the struc-
ture to see whether a series of amino acids in the sequence can be aligned with the assigned
structural environments of a given protein core. The procedure is then repeated for each
core in the structural database, and the best matches of the query sequence to the core are
identified. In the residue-residue contact potential method, the number and closeness of
contacts between amino acids in the core are analyzed (Sippl 1990; Jones et al. 1992; Sippl
and Weitckus 1992; Bryant and Lawrence 1993). The query sequence is evaluated for



464 m CHAPTER 9

buwied
STRAND
exposed

TURN

buied
HEUX

exposed

LOOP

Secondary-structure probabiliti es for test with tsa [vsp7m)

@ 8o @@ @@ -

Figure 9.31. Continued.

100 120 160 180
Residue

amino acid interactions that will correspond to those in the core and that will contribute
to the stability of the protein. The most energetically stable conformations of the query
sequence thereby provide predictions of the most likely three-dimensional structure.

Structural Profile Method

In the structural profile method, predictions as to which amino acids might be able to fit
into a given structural position are in the form of a sequence profile. This method assumes
that if the query protein folds the same way as a target structure, the environments of the
amino acids will be in the same linear order as they are in the target. In the normal scor-
ing matrix, it is assumed that a given amino acid substitution always has the same likeli-
hood of every occurrence of the substitution. However, in protein three-dimensional
structures, a given substitution may have quite different effects depending on where in the
structure and in which structure the substitution occurs. In a loop, where there are not
many chemical and physical constraints, the substitution may usually not have any delete-
rious effects on the overall structure of the protein. In contrast, the same substitution in
protein cores, where there are many restraints, may sometimes be possible without delete-
rious effects, but in other cases may be extremely deleterious. Thus, a sequence profile giv-
ing values for substitutions at each amino acid position is made for each core in the PDB.
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Threading servers and program sources

Program

Web address

Method

Reference

123D

3D-PSSM

Honig lab

Libral

NCBI structure site

Profit

Threader 2

TOPITS

UCLA-DOE

structure
prediction server

http://www-lmmb.nciferf.gov/
~nicka/123D.html

http://www.bmm.icnet.uk/
~3dpssm

http://honiglab.cpme.columbia.edu/

http://www.ddbj.nig.ac.jp/htmls/
E-mail/libra/LIBRA_I.html

http://www.ncbi.nlm.nih.gov/
Structure/RESEARCH/threading.
html

http://lore.came.sbg.ac.at/
home.html

http://insulin.brunel.ac.uk/
threader/threader.html

http://www.embl-heidelberg.de/
predictprotein/doc/help05.html
#P5 adv prd topits

contact potentials between
amino acid side groups

sequence-structure using
position-specific scoring
matrices

threading methods using
biophysical properties

target sequence and 3D profile
are aligned by dynamic
programming

Gibbs sampling algorithm
used to align sequence
and structure®

fold recognition by the
contact potential method

prediction by recognition of
the correct fold from a
library of alternatives

detects similar motifs of
secondary structure and
accessibility between a

Alexandrov et al. (1996)

Russell et al. (1997)

see Web site

Ota and Nishikawa (1997)

Bryant (1996)

M. Sippl (see Web site)

Jones et al. (1995)

Rost (1995a,b)

http://www.doe-mbi.ucla.edu/

sequence of unknown
structure and a known fold
fold-recognition using 3D
profiles and secondary
structure prediction methods

Fischer and Eisenberg (1996)
people/frsvr/frsvr.html

Information on the research groups that work on structure prediction may be found at the CASP2 Web sites accessible at http://pre-

dictioncenter.llnl.gov/.

*Program has to be set up on a UNIX server.

These profiles, one for each core in the database, are then used to score the query sequence
to be modeled for compatibility with that core.

The structural three-dimensional profile is a table of scores with one row for each amino
acid position in the core and a column for each possible amino acid substitution at that
position plus two columns for deletion penalties at that site, as shown in Figure 9.32. Each
position in the core is assigned to one of 18 classes of structural environment. The scores
in each row reflect the suitability of a given amino acid for that particular environment.
The penalty at each core position reflects the acceptability of an insertion or deletion of one
or more amino acids at that position in the structure. If the position is within the core,
these penalties are generally high to reflect incompatibility with the structure, but lower for
positions on the surface of the core and within loop regions. The dynamic programming
algorithm is used to identify an optimal, best-scoring alignment, much as in aligning
sequences by dynamic programming (discussed in Chapter 3). If a target structure is found
to have a significantly high score, the new sequence is predicted to have a fold similar to
that of the target core.

An entire database of sequences may be matched to a given structural profile to find the
most compatible, a procedure called inverse folding. The alignment score for each protein
is determined and then converted to a Z score, the number of standard deviations from the
mean score for all of the sequences. The highest scoring sequences are the most compati-
ble with a given structure (Bowie et al. 1996).
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The above three-dimensional profile provides a discrete list of scores for matching
one-dimensional sequence to a three-dimensional structure. This profile undergoes
sharp transitions in values as the structural environment changes. Improved perfor-
mance has been achieved by smoothing the values in these transitional regions to give a
more gradual change using a Fourier analysis. Another improvement in the profile rep-
resentation of protein three-dimensional structures, known as the residue pair preference
profile (R3P) method, has been introduced (Wilmanns and Eisenberg 1993, 1995; Bowie
et al. 1996). »

R3P takes into account the amino acid neighbors, main-chain conformations, and sec-
ondary structure of each residue in the structure. Recall that to make amino acid scoring
matrices for sequence—sequence comparisons, the frequency of amino acid substitutions in
alignments is counted in sequence alignments. These frequencies are then divided by the
expected frequency of finding the amino acids together in an alignment by chance. The
ratio of the observed to expected counts is an odds score, and this score is usually convert-
ed to a log odds score for convenience in combining likelihood scores by adding their log-
arithms. Similarly, in the R3P method of making a three-dimensional scoring profile, the
frequency of finding a particular pair of interacting amino acids, each with a particular
structural feature, is calculated from the number of occurrences in known structures. For
example, how often does amino acid a in an « helix interact with amino acid b in a
strand? This observed frequency of interaction in a specific structural configuration is then
divided by the frequency of finding a and b interacting in any configuration, and the result
is converted to a log odds score.

The pair preference log odds score S (aa;,s;,aa;,s;) for the amino acids aa; and aa; having
properties ¢; and c;, respectively, is given by

where P (aa;,c;,aa),¢;) is the frequency of amino acids aa; and aa; having properties ¢; and ¢,
respectively, and P (aa;aa;) is the frequency of finding an amino acid pair aa; and aa;. The
score for position aa; is then given by a weighted sum of all scores for the interacting pairs
with aa;.

where w; is a weight representing the compatibility of the environment residue with its own
local environment.

Amino acid interactions of a given amino acid residue in a particular core are then
analyzed. To determine the neighbors of a given amino acid in the structure, a sphere of
radius 12 A is drawn centered on the Cg atom (see Fig. 9.2). If the Cg atom of another
residue in the structure falls within this sphere, they may be interacting. A cylinder of
radius 1.6 A is then drawn between the Cg atoms and, if no H bonds or any other

-
3

Figure 9.32. The structural three-dimensional profile. (A) Generation of a three-dimensional profile of
a structural core. (B) Screening sequences for compatibility with 3D profile. The methods of analysis are
described in the text. (A and B: Redrawn, with permission, from Bowie et al. 1996 [copyright Academic
Press].)
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residue falls within this cylinder, the amino acid pair is considered to be interacting.
This procedure is repeated for each amino acid that falls within the sphere, resulting in
a defined list of approximately 8 amino acid pairs that are close enough without barri-
ers to prevent interaction with the given residue. The amino acid type and one of sever-
al structural properties for the residue in question and for each interacting residue are
then obtained. For example, the secondary structure of the two residues (a helix, B
strand, or other) may be taken into account, giving 20 X 3 possible combinations of
amino acid and secondary structure. Structural properties of the interacting residue
may instead include the backbone dihedral angles ® and ¥ (see Fig. 9.2) and the num-
ber of neighboring residues.

The structural configurations of the given residue and each interacting neighbor
are determined. From this information, a score for this interaction can be found from
the above analysis. Scores for all of the remaining interacting residues in their par-
ticular configurations can be found and then added to give a log odds score for the
given amino acid site in the core. This score represents the likelihood of finding such
a set of amino acid neighbors in their respective configurations in known protein
structures. A value is then determined for various amino acid substitutions or for
placing an insertion or deletion at that site. A similar set of scores is then obtained
for each position in the protein core to generate a three-dimensional profile matrix
based on the neighboring interactions. Three such profiles have been generated, one
for each type of structural property in the amino acid pairs—backbone angles, sec-
ondary structure, and the number of neighboring residues for the interacting amino
acid. A combined three-dimensional profile using elements of these residue pair pref-
erence profiles and those of the neighborhood three-dimensional profiles has also
been used.

Sequence-structure alignments produced by the R3P method can be improved by an
iterative procedure. In the initial alignment between a sequence and the three-dimen-
sional profile of a core, predictions are made as to which residues will interact in the
modeled three-dimensional structure. This feature provides information for improving
the alignment. Likelihood scores for the predicted interactions can be calculated in the
same way as described above for the amino acid interactions in the core. The scores for
these interactions may then be summed, as before. In this case, these scores are weight-
ed before summing to reduce the influence of those neighboring amino acids that are
not in a compatible environment (Bowie et al. 1996). In evaluations of the R3P method
with known three-dimensional structures, alignments are 50% or more correct on aver-
age for sequences whose three-dimensional structure pairs superimpose with a root
mean square (rms) deviation of 1.97 A or less (Wilmanns and Eisenberg 1995).
Sequence-structure alignments may be further improved by including in the analysis
the predicted secondary structure of the input sequence, with further improvements in
fold assignment of 25% (Fischer and Eisenberg 1996).

One disadvantage of the structural profile method and the use of environmental vari-
ables is that these properties are statistically associated with the original sequence.
Hence, the method retains a preference for matching the original sequence of the core
protein. On the other hand, the success of present methods of three-dimensional struc-
ture prediction depends on a certain minimal level of similarity. The sequence of envi-
ronmental patterns in the query sequence and the structure must also be in the same
order throughout the sequence for the method to work. However, as discussed above
for the SSAP alignment program, this problem may be circumvented by using local
alignments.



PROTEIN CLASSIFICATION AND STRUCTURE PREDICTION m 469

Contact Potential Method

In this method, each structural core is represented as a two-dimensional contact matrix.
The method is very similar to that used by the distance matrix method of the program
DALI and illustrated in Figure 9.15. A simple matrix is produced with the amino acids in
the structure listed across the rows and down the columns. In each matrix position, the dis-
tance between the corresponding pair of amino acids in the structure is placed. The amino
acids in closest contact are immediately recognizable, and a group produces recognizable
patterns. The object is to superimpose sets of amino acid pairs in the query sequence on to
the distance matrix of the core. As shown in Figure 9.15, part B, sequences that fold into a
similar structure should show similar contacts, although the amino acids that make up
each structural feature do not have to be in the same linear order in both sequences. How-
ever, a large number of contacts must be analyzed to find the correct alignment.

To find the best combinations, the approximate conformational energies of each pre-
dicted pair are summed to predict the conformational stability of the predicted structure.
Contacts have been extensively analyzed, and lookup tables with energies associated with
these contacts have been produced. Hence, the energetic contributions of many possible
combinations of pairs can be tested in a relatively short period of time. Computer exper-
iments have revealed that contact energies can be used to choose the correct core in a
structural database. Supporters of this method claim that the method can detect struc-
tural similarity in proteins that do not share any detectable sequence similarity. Howev-
er, as shown in the next section, in truly blind experiments, the reliability of predictions
drops when there is less than 25% sequence identity. A possible limitation to this analy-
sis is that the energy associated with an isolated amino acid pair is assumed to be similar
to that found in known protein structures. Recent experiments have suggested that the
conformational energy of groups of amino acids larger than two may provide a more reli-
able prediction.
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As the above methods were developed, they were tested for ability to predict a structure
that was already known. The structure to be predicted may be left out of the learning step
so that the method has not been trained in any recognizable way to identify the correct
structure. However, when the result is already known, there is always a possibility that the
method was helped in some unintended way to identify the correct structure. A totally
blind test of prediction accuracy provides a more objective test. A series of contests called
CASP (critical assessment of structure prediction) was conceived in which structural biol-
ogists who were about to publish a structure were asked to submit the corresponding
sequence for structure prediction by the contestants. The predictions were then compared
with the newly determined structures. The newest CASP3 competition is given on a Web
site (http://predictioncenter.llnl.gov/casp3/results/access.cgi). The results of earlier proj-
ects are given at http://predictioncenter.llnl.gov/caspl/ and http://predictioncenter.
linl.gov/casp2/. The contest involved a large number of research groups using a variety of
methods including threading techniques. In one report of CASP3, the authors suggest that
although there was overall progress from CASP1 to CASP2, there was little additional
progress from CASP2 to CASP3. However, some improvement can be argued in CASP3
since the targets were more difficult (Sippl et al. 1999).

In the CASP2 conference, 32 groups made a total of 369 predictions on 15 different tar-
gets. There were two goals for each group: (1) to predict the correct three-dimensional fold
of the target protein as the most similar known structures and (2) to predict the alignment
of the sequence to the fold accurately. Once the structures of the prediction targets became
available, the structure was aligned by DALIL, SSAP, and VAST with all entries in the struc-
tural database to determine the closest matching structures that should have been found
and also the sequence—structure alignment. The predictions were then compared to these
alignments and evaluated for accuracy by specific criteria (Levitt 1997; Marchler-Bauer et
al. 1997). This task was a most difficult one because different groups of investigators made
predictions for different groups of proteins, some proteins much more difficult to predict
than others. The range of sequence identity of target sequences to a known structure var-
ied from 20% to 85%. The most difficult to predict and also the least successfully predict-
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ed were those that have less than 25% identity to any other protein of known structure. The
easiest and most successfully predicted were those with sequence similarity above 25%
(Martin et al. 1997).

The results of the CASP2 contest have been published by the participants in a special
issue of PROTEINS: Structure, Function and Genetics, Suppl. 1, 1997, which provides
details of the threading methods used. A similar volume discusses progress of CASP3
(PROTEINS, Suppl. 3, 1999). Threading methods improved considerably in performance
in the 2-year period between the CASP1 and CASP2 meetings. A large number of groups
using threading methods recognized the easier targets and performed much better than
using simple sequence alignments (Levitt 1997). The advantages of using distant sequence
homology and human knowledge of protein structure to predict three-dimensional struc-
ture was demonstrated by Murzin and Bateman (1997), who made the largest number of
correct predictions. Their method uses the SCOP database, which organizes all known pro-
tein folds according to their structural and evolutionary relationships, for manual predic-
tions. Their approach correctly assigned into an existing SCOP superfamily all six targets
that were attempted, and found a homologous protein with a very similar structure. Local
alignments between the target sequence and the corresponding protein superfamily were
also among the most accurate. Several threading groups that were among the best per-
formers are given in Table 9.8. At the present time, these methods are most suitable for
modeling sequences that are recognizably similar to a known structure. These results con-
firm an earlier analysis that threading algorithms are quite disappointing in performance
(Lemer et al. 1995). Improvements have been achieved by using a set of multiply aligned
sequences instead of a single sequence (Defay and Cohen 1996; Ortiz et al. 1998).

In the above section, detecting sequence similarity between a query sequence and a
sequence of known structure plays an important role in successful structure prediction.
Database searches as described in Chapter 6 provide alignments of a query sequence with
a database of sequences, and can be used to search a database of protein sequences restrict-
ed to those of known structure. Hence, any alignment provides an indication as to which
amino acids in the query may occupy a particular position in a structure. A search of this
kind may be enhanced by superimposing the query sequence onto the molecular backbone
of the matched sequence to produce a PDB file suitable for analysis by a three-dimension-
al viewer. An example of this type of analysis is provided by the Swiss-model Web site
(Table 9.9). Molecular distances, angle, and energies of the superimposed sequence may
then be analyzed and manipulated by the SPDBV viewer (Table 9.4). Additional Web sites
for molecular modeling are listed in Table 9.9.

Table 9.9. Web sites for predicting structural features of a query sequence

Site Web address Description Reference
Modeller http://guitar.rockefeller.edu/ dynamic programming alignment Sali et al. (1995)
modeller/modeller.html of sequences and structures and
molecular dynamics methods
Swiss-model http://www.expasy.ch/swissmod/ sequence alignment of query with Peitsch (1996)
SWISS-MODEL.html sequences of known structure
Whatif http://www.cmbi.kun.nl/whatif/ flexible molecular graphics Rodriguez et al. (1998)

rendering of models
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This chapter has described a number of methods for predicting protein structure from
amino acid sequence. The best approach is to locate a link by sequence analysis between a
new protein and a protein of known structure. Even a marginal sequence alignment with
a protein of known structure can provide a feasible structural model. Databases that orga-
nize proteins into clusters and families with links to known protein structure are also a
valuable resource for structure prediction. Proteins that represent new structural folds and
domains can be readily identified in these databases, and these proteins can then be tar-
geted for structural analysis by laboratory methods. Meanwhile, the methods for secondary
structure and threading analysis (fitting a sequence to a structure) can provide useful pre-
dictions, although with variable levels of reliability. Increased confidence should come
when several methods give a similar prediction.

The analysis of genomes described in Chapter 10 offers an additional opportunity for
protein analysis. Functions of proteins can be discovered through conserved patterns of
gene regulation and organization on the chromosomes of related organisms. The function
and structure of a protein in one organism can then be predicted based on the function and
structure of a functionally similar protein in a second organism.
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