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WITH THE ADVENT OF whole-genome sequencing projects, there is considerable use
for computer programs that scan genomic DNA sequences to find genes, particularly
those that encode proteins. Once a new genomic sequence has been obtained, the most
likely protein-encoding regions are identified and the predicted proteins are then
subjected to a database similarity search, as described in the previous chapter. The
genomic DNA sequence is then annotated with information on the exon—intron struc-
ture and location of each predicted gene along with any functional information based
on the database searches. This procedure is summarized in the gene prediction
flowchart (p. 346).

In this chapter, I first discuss methods of predicting the genes that encode proteins and
then the identification of sequences, such as promoters, that regulate the activity of pro-
tein-encoding genes. The prediction of genes that specify classes of RNA molecules is dis-
cussed in Chapter 5. The organization of genomes is discussed in Chapter 10. There are
many computer programs and Web sites for gene prediction, and representative examples
are shown in Table 8.1.

INTRODUCTION

The simplest method of finding DNA sequences that encode proteins is to search for open
reading frames, or ORFs. An ORF is a length of DNA sequence that contains a contiguous
set of codons, each of which specifies an amino acid. There are six possible reading frames
in every sequence, three starting at positions 1, 2, and 3 and going in the 5" to 3 direction
of a given sequence, and another three starting at positions 1, 2, and 3 and going in the 5'
to 3’ direction of the complementary sequence. In prokaryotic genomes, DNA sequences
that encode proteins are transcribed into mRNA, and the mRNA is usually translated
directly into proteins without significant modification. The longest ORFs running from
the first available Met codon on the mRNA to the next stop codon in the same reading
frame generally provide a good, but not assured, prediction of the protein-encoding
regions (see Table 8.1 for Web sites that provide a more detailed analysis). A reading frame
of a genomic sequence that does not encode a protein will have short ORFs due to the pres-
ence of many in-frame stop codons. An example of a search of the Escherichia coli lac oper-
on for ORFs is shown in Figure 8.1. These predictions have to take into account the obser-
vation in E. coli and its phages of the presence of multiple genes on mRNA and sometimes
of overlapping genes in which two different proteins may be encoded in different reading
frames of the same mRNA, either on the same or complementary DNA strands. In eukary-
otes, prediction of protein-encoding genes is a more difficult task.

In eukaryotic organisms, transcription of protein-encoding regions initiated at specific
promoter sequences is followed by removal of noncoding sequence (introns) from pre-
mRNA by a splicing mechanism, leaving the protein-encoding exons. Once the introns
have been removed and certain other modifications to the mature RNA have been made,
the resulting mature mRNA can be translated in the 5’ to 3" direction, usually from the first
start codon to the first stop codon. As a result of the presence of intron sequences in the
genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will be
interrupted by the presence of introns that usually generate stop codons.

Three types of posttranscriptional events influence the translation of mRNA into pro-
tein and the accuracy of gene prediction. First, the genetic code of a given genome may vary
from the universal code (see Table 8.1 for reference Web sites). For the most part, the uni-
versal genetic code, shown in Table 8.2, is used.
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Programs and Web pages for sequence translation and related information

Name of translation site

Web address

Reference

Arabidopis intron splice site table

Codon usage database

Ecoparse for finding E. coli
genes based on HMM model

EST-GENOME for alignment of
EST/cDNA and genomic
sequences

Exon recognizer, including
GeneScope

FGENES and related programs
that use linear discriminant
analysis or hidden Markov
models®

FINEX—exon intron boundary
analysis

GeneFinder
access site at Baylor College
of Medicine

Genehacker for microbial
genomes based on HMMs

GenelD-3 Web server using rule-
based models, and GeneID+"

GeneMark and GeneMark. hmm®
uses hidden Markov models

GeneMark home page
(see webgenemark)

GeneParser™ Web page, uses
combination of neural network
and dynamic programming
methods

Genescan using Fourier transform
of DNA sequences to find
characteristic patterns

GeneScope

Genetic code variations

Genie for finding human genes
in 10-kb DNAs and in
Drosophila by hidden Markov
models and neural networks

GenLang using linguistic methods

GenScan based on probabilistic
model of gene structure for
vertebrate, Drosophila, and
plant genes

Genseger for aligning genomic
and EST sequences

Glimmer uses interpolated

Markov models for
prokaryotic translation

http:// www.Arabidopsis.org/splice_site.html

http://www.kazusa.or.jp/codon/

mail server described at
http://www.cbs.dtu.dk/krogh/EcoParse.info

http://www.hgmp.mrc.ac.uk/Registered/Option/
est_genome.html

http://gf.genome.ad.jp/

http://genomic.sanger.ac.uk/gf/gf.shtml

http://www.icnet.uk/LRITu/projects/finex/

http://dot.imgen.bem.tmc.edu:9331/
gene-finder/gf.html

http://www-scc.jst.go.jp/sankichi/GeneHacker/

http://wwwl.imim.es/geneid.html
Mail server at geneid@darwin.bu.edu

http://genemark.biology.gatech.edu/GeneMark/;
http://www2.ebi.ac.uk/genemark/

http://genemark.biology.gatech.edu/GeneMark/

http://beagle.colorado.edu/~eesnyder/GeneParser.html

http://202.41.10.146/GS.html

http://gf.genome.ad.jp/genescope/; see Exon recognizer

http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/
wprintgc?mode=c

http://www.cse.ucsc.edu/~dkulp/cgi-bin/genie

http://www.fruitfly.org/seq_tools/genie.html
http://www.tigem.it/ TIGEM/HTML/Genie.html

http:/ fwww.cbil.upenn.edu/
http://genes.mit.edu/GENSCAN.html

http://gremlinl.zool.iastate.edu/cgi-bin/gs.cgi

http://www.tigr.org/softlab/ and http://www.cs.jhu.
edu/labs/compbio/glimmer.html

see Web site
see Web site
Krogh et al. (1994)

see Web site; also see
Florea et al. (1998)

see Web page

Solovyev et al. (1995);
see Web site

Brown et al. (1995)

collection of methods

Hirosawa et al. (1997)

Guigo6 et al. (1992); Guigé
(1998)

Lukashin and Borodovsky
(1998)

Borodovsky and McIninch

(1993)
Snyder and Stormo (1993, 1995)

Tiwari et al. (1997)

Murakami and Takagi (1998)

Kulp et al. (1996);

Reese et al. (1997, 2000)
Dong and Searls (1994)
Burge and Karlin (1998)

see Web site and Splicepredictor

Salzberg et al. (1998)

Continued.
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Table 8.1. Continued.

Name of translation site

Web address

Reference

Grailll*" prediction by neural
networks based on scores of
characteristic sequence
patterns and composition

Hexon for exon prediction by
linear discriminant analysis

Human splice sites with decision
tree analysis®

INFO for finding splice junctions
by database similarity search

INFOGENE: a database of known
gene structures and predicted
genes

Initiation codon analysis

Microbial genome coding region
identification based on
Markov chains of order 5

Morgan for finding vertebrate
genes by decision tree
classification?

MZEF uses quadratic
discriminant analysis for
human, mouse, Arabidopsis,
and S. pombe exons

NetGene uses neural networks
for analysis of splice sites in
human, C. elegans, and
Arabidopsis genes

NetPlantGene

NetStart uses neural networks
for gene prediction in
vertebrate and Arabidopsis
genes

Procrustes based on
comparison of related
genomic sequences

Push-button Gene Finder
for gene identification using
Markov and hidden
Markov models

Splice Predictor for plants
uses trained logitlinear models

Splicing Sites by neural network
at LBNL

Translate tool at ExPASy
Translation machine on
the Web at EBI

http://compbio.ornl.gov/

see GeneFinder access site

http://sol2.ebi.ac.uk/projects/Events/gene/

genepred-thanaraj.html
http://elcapitan.ucsd.edu/~info/

http://genomic.sanger.ac.uk/inf/infodb.shtml

http://www.ncbi.nlm.nih.gov/htbin-post/

Taxonomy/wprintgc?mode=c

http://igs-server.cnrs-mrs.fr/~audic/selfid.html

http://www.cs.jhu.edu/labs/compbio/morgan.htmi

http://argon.cshl.org/genefinder/

http://www.cbs.dtu.dk/services/NetGene2/

http://www.cbs.dtu.dk/services/NetPGene/
http://www.cbs.dtu.dk/services/NetStart/

http://www-hto.usc.edu/software/procrustes/

http://www.cse.ucsc.edu/research/compbio/pgt/

http://gremlinl.zool.iastate.edu/cgi-bin/sp.cgi

http://www.fruitfly.org/seq_tools/splice.html

http://www.expasy.ch/tools/dna.html

http://www2.ebi.ac.uk/translate/

Uberbacher and Mural (1991);
Uberbacher et al. (1996)

Solovyev et al. (1994)

Thanaraj (1999)

Laub and Smith (1998)

Solovyev and Salamov (1999)

see Web site

Audic and Claverie (1998)

see http://www.cs.jhu.edu/labs/
compbio/morgan.html#refs;

Salzberg (1998); Searls (1998)
Zhang (1997)

Brunak et al. (1991); Hebsgaard
et al. (1996) .

see NetGene
Pedersen and Nielsen (1997)

Gelfand et al. (1996)

see Web site

Brendel and Kleffe (1998);
Brendel et al. (1998)
see Genie

see Web site
see Web site
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Table 8.1. Continued.

Name of translation site Web address Reference
Translation of large genome http://alces.med.umn.edu/rawtrans.html see Web site

sequences on the Web
Veil (Viterbi exon-intron http://www.cs.jhu.edu/labs/compbio/veil.html Henderson et al. (1997)

locator) uses hidden Markov
models for vertebrate DNA
Webgene, a set of gene prediction  http://www.itba.mi.cnr.it/webgene/ see Web site
tools and concurrent database
similarity searches

Webgenemark and http://genemark.biology.gatech.edu/GeneMark/ see GeneMark;
Webgenemark.hmm® Lukashin and Borodovsky
(1998)
Yeast splice sites by http://www.cse.ucsc.edu/research/compbio/ Spingola et al. (1999)
M. Ares Jr. laboratory yeast_introns.html

Abbreviations: (LBNL) Lawrence Berkeley National Laboratory.

Lists of Web sites for gene recognition and splice site prediction with references and program availability are also available at
http://linkage.rockefeller.edu/wli/gene/programs.html, http://www.bork.embl-heidelberg.de/genepredict.html, http://www.hgc.ims.u-
tokyo.ac.jp/~katsu/genefinding/programs.html and http://www-hto.usc.edu/ software/procrustes/links.html. A more detailed list of
programs for gene recognition has been prepared (Burset and Guigé 1996).

Performance comparisons are given at http://igs-server.cnrs-mrs.fr/igs/banbury/, http://www.cs.jhu.edu/labs/ compbio/veil.htm-
I#perf, http://www]1.imim.es/courses/SeqAnalysis/Geneldentification/Evaluation.html, and are also described in many of the refer-
ences (see, e.g., Snyder and Stormo 1993; Zhang 1997).

* Programs that assemble exons into predicted genes.

® Prediction can be enhanced through database similarity searches. GeneParser 3 has this option.

¢ The GeneMark.hmm program is designed to use additional information at the 5’ end of bacterial sequences.

4 A decision tree analysis has features in common with the phlyogenetic analysis described in Chapter 5 and also with the discrimi-
nant analysis described in the text. Scorable features of sequences in coding versus noncoding regions are used as a basis for optimally
classifying the sequences into sets. Cutoff values for these features are then used as a basis for scoring unknown sequences as coding or
noncoding. These criteria are applied in a sequential order much like starting at the root of a tree and passing through a series of nodes.
At each node a further criterion is applied that is the basis for moving along one branch from that node and moving to the next node.
Eventually, a terminal branch is reached that is labeled with a decision. In this case, the label is a YES if the sequence is coding, a splice
site, or whatever test is being applied because it meets the criteria applied in passing through the decision nodes on the tree, or NO, the
sequence is not coding, etc., and because it does not meet the applied criteria.

1000 2000 3000 4000 5000 6000 7000
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Figure 8.1. ORF map of a portion of the E. coli lac operon using the DNA STRIDER program (Marck
1988). Shown are AUG and termination codons as one-half and full vertical bars, respectively, in all
six possible reading frames. The lacZ gene is visible as an ORF that runs from positions 1284 to 4355
in frame 3.
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It is important to be
aware of cellular
organelles and organ-
isms in which the
genetic code varies so
that the correct trans-
lation may be made.

Table 8.2. The universal or standard genetic code

UUU-Phe F UCU-Ser S UAU-Tyr Y UGU-Cys C

UUC-Phe F UCU-Ser S UAU-Tyr Y UGU-Cys C
UUA-Leu L UCA-Ser S UAA- TER UGA- TER
UUG-Leu L UCG-Ser S UAG- TER UGG--Trp W
CUU-Leu L CCU-Pro P CAU-His H CGU-Arg R
CUC-Lewm L CCU-Pro P CAU-His H CGC-Arg R
CUA-Leu L CCA-Pro P CAA-GIn Q CGA-Arg R
CUG-Leu L CCG-Pro P CAG-GIn Q CGG-Arg R
AUU-Ile I ACU-Thr T AAU-Asn N AGU-Ser S
AUC-Ile I ACC-Thr T AAC-Asn N AGC-Ser §
AUA-Ile I ACA-Thr T AAA-Lys K AGA-Arg R
AUG-MET M ACG-Thr T AAG-Lys K AGG-Arg R
GUU-val V GCU-Ala A GAU-Asp D GGU-Gly G
GUC-Val V GCC-Ala A GAC-Asp D GGC-Gly G
GUA-Val V GCA-Ala A GAA-Glu E GGAGly G
GUG-Val V GCG-Ala A GAG-Glu E GGG-Gly G

Shown are each codon and the three-letter and one-letter codes
for each encoded amino acid. ATG is the usual START codon and
the three TER codons cause translational termination.

Second, one tissue may splice a given mRNA differently from another, thus creating two
similar but also partially different mRNAs encoding two related but partially different pro-
teins (Lopez 1998). Understanding the molecular interactions between RNA and the RNA-
binding proteins that perform these modifications is an area of active investigation. Avail-
ability of this information will assist in the prediction of such variations. Third, mRNAs
may be edited, changing the sequence of the mRNA and, as a result, of the encoded pro-
tein (see, e.g., Gray and Covello 1993; Paul and Bass 1998; Morse and Bass 1999). Such
changes also depend on interaction of RNA with RNA-binding proteins.

DNA sequences that encode protein are not a random chain of available codons for an
amino acid, but rather an ordered list of specific codons that reflect the evolutionary ori-
gin of the gene and constraints associated with gene expression. This nonrandom proper-
ty of coding sequences can be used to advantage for finding regions in DNA sequences that
encode proteins (see Fickett and Tung 1992). Each species also has a characteristic pattern
of use of synonymous codons; i.e., codons that stand for the same amino acid (Table 8.3)
(Wada et al. 1992). There are also different patterns of use of codons in strongly versus
weakly expressed genes, as, for example, in E. coli. Also in E. coli, there is a strong prefer-
ence for certain codon pairs within a coding region and for certain codons to be next to the
termination codon. Some of this preference is due to constraints in amino acid sequences
in proteins and some to the influence of a given codon on the translation of neighboring
codons (Gutman and Hatfield 1989). There is also a strong preference for codon pairs in
eukaryotic exons that has been very useful for distinguishing exons and introns in eukary-
otic genomic DNAs, as described later in this chapter. Organisms with a high genome con-
tent of GC have a strong bias of G and C in the third codon position (for review, see Von
Heijne 1987; Rice et al. 1991).
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Codon usage table

UUU-Phe
UUC-Leu
UUA-Leu
UUG-Leu

CUU-Leu
CUC-Leu
CUA-Leu
CUG-Leu

AUU-Ile
AUC-Ile
AUA-Ile
AUG-MET

GUU-Val
GUC-Val
GUA-Val
GUG-Val

16.6 26.0 UCU-Ser 14.5 23.6 UAU-Tyr 12.1 18.8 UGU-Cys 9.7 8.0
20.7 18.2 UCC-Ser 17.7 14.2 UAC-Tyr 16.3 14.7 UGC-Cys 124 4.7
7.0 26.3 UCA-Ser 11.4 18.8 UAA-TER 0.7 1.0 UGA-TER 1.3 0.6
12.0 27.1 UCG-Ser 4.5 8.6 UAG-TER 0.5 0.5 UGG-Trp 13.0 10.3

124 122 CCU-Pro 17.2 13.6 CAU-His 10.1 13.7 CGU-Arg 4.7 6.5
193 54 CCC-Pro 203 6.8 CAC-His 149 7.8 CGC-Arg 11.0 2.6
6.8 134  CCA-Pro 16.5 18.2 CAA-Gln 11.8 27.5 CGA-Arg 62 3.0
40.0 104 CCG-Pro 7.1 53 CAG-Gln 34.4 122 CGG-Arg 11.6 1.7

15.7 30.2  ACU-Thr 12.7 20.2 AAU-Asn 16.8 36.0 AGU-Ser 11.7 14.2
22.3 17.1 ACC-Thr 19.9 12.6 AAC-Asn 20.2 24.9 AGC-Ser 193 9.7
7.0 17.8  ACA-Thr 14.7 17.7 AAA-Lys 23.6 42.1 AGA-Arg 11.2 21.3
222 209 ACG-Thr 6.4 8.0 AAG-Lys 33.2 30.8 AGG-Arg 11.1 9.3

10.7 22.0 GCU-Ala 184 21.1 GAU-Asp 22.2 37.8 GGU-Gly 10.9 23.9
14.8 11.6 GCC-Ala 286 12.6 GAC-Asp 26.5 20.4 GGC-Gly 23.1 9.7
6.8 11.7 GCA-Ala 156 16.2 GAA-Glu 28.6 45.9 GGA-Gly 16.4 10.9
29.3 10.7 GCG-Ala 7.7 6.1 GAG-Glu 40.6 19.1 GGG-Gly 16.5 6.0

Shown are frequency of each codon per 100,000 codons obtained from http://www.kazusa.or.jp/codon/
for Homo sapiens; columns 2, 5, 8, and 11, and for Saccharomyces cerevisiae, columns 3, 6, 9, and 12.

On the basis of these characteristics of protein-encoding sequences, three tests of ORFs
have been devised to verify that a predicted ORF is in fact likely to encode a protein (Staden
and McLachlan 1982; Staden 1990). The first test is based on an unusual type of sequence
variation that is found in ORFs; namely, that every third base tends to be the same one
much more often than by chance alone (Fickett 1982). This property is due to nonrandom
use of codons in ORFs and is true for any ORF, regardless of the species. No information
about nucleotide or codon preference is needed for this analysis. The program TEST-
CODE, which is available in the Genetics Computer Group suite of programs
(http://www.gcg.com), provides a plot of the nonrandomness of every third base in the
sequence. An example of TESTCODE output is shown in Figure 8.2. The second test is an
analysis to determine whether the codons in the ORF correspond to those used in other
genes of the same organism (Staden and McLachlan1982). For this test, information on
codon use for an organism is necessary, such as shown in Table 8.3 for human and yeast
genes, averaged over all genes. In addition, there may be variations in codon use by differ-
ent genes of an organism providing a type of gene regulation. An example of the analysis
of an E. coli gene for the presence of more and less frequently used E. coli codons is shown
in Figure 8.3. A parameter that reflects the frequency of codon use may also be calculated,
as in the Genetics Computer Group CODONFREQUENCY program. Third, the ORF may
be translated into an amino acid sequence and the resulting sequence then compared to the
databases of existing sequences. If one or more sequences of significant similarity are
found, there will be much more confidence in the predicted ORF (Gish and States 1993).

EUKARYOTIC GENES HAVE REPEATED SEQUENCE ELEMENTS THAT PROBABLY

N‘ MM@MEM&&;&MM«&!@a@mm&kﬁmjﬂm%9-i*%’%’f’)‘&%ﬁﬁ8’}'ﬂft!WEﬁ55252zE*W:5iii!:'1&ML5?mi!t1z‘15mw%{%ﬂ:"éﬁ%ﬂfm’smmwWﬂﬁki‘ﬂ

Eukaryotic DNA is wrapped around histone-protein complexes called nucleosomes. As a
result, some of the base pairs in the major or minor grooves of the DNA molecule face the
nucleosome surface and others face the outside of the structure. Binding sites for some
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TESTCODE of: lexa.gene ck: 3018, 1 to: 952
Windon:: 200 Bp Tovember 10, 1999 16:58
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Figure 8.2. TESTCODE analysis of the E. coli lexA gene, which is known to extend from positions
102 to 707 in the sequence shown. The TESTCODE statistic (Fickett 1982; for comparison, see Staden
1990) was plotted for each base position in a sliding window of 200 nucleotides. The TESTCODE
statistic is found in the following way: (1) The number of each base is counted at every third position
starting at positions 1, 2, and 3, and going to the end of the sequence window; (2) the asymmetry
statistic for each base is calculated as the ratio of the maximum count of the three possible reading
frames divided by the minimum count for the same base plus 1; (3) the frequency of each base in the
window is also calculated; (4) the resulting asymmetry and frequency scores are then converted to
probabilities of being found in a codon region (found from an analysis of known coding and non-
coding regions); and (5) the probabilities are multiplied by weighting factors that are summed.
Weighting factors are chosen so that the resulting sum best discriminates coding from noncoding
sequences. A value of >0.95 classifies the sequence as coding, and <0.74 classifies the sequence as
noncoding. These cutoff values are indicated by red horizontal lines. TESTCODE was run and dis-
played using TESTCODE in the Genetics Computer Group suite of programs. Above the plot, short
vertical lines indicate possible start codons, and diamonds indicate possible stop codons.

100 200 300 400 500 600 700 800 800 1000
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Figure 8.3. Analysis of E. coli lacZ gene for occurrence of frequent and infrequent codons using the
codon adaptation analysis feature of DNA STRIDER. The positions of common (O for optimum), less
common (S for suboptimal), rare (R), and unique (U, which includes the three stop codons, the AUG
Met codon and the UGG Trp codon) codons along the sequence are shown, starting at the first
nucleotide in the sequence and analyzing three at a time. These first three classes correspond, respec-
tively, to codon adaptation values (Sharp and Li 1987) of >0.9, 0.1-0.9, and <C0.1. The gene is obvi-
ously represented by commonly used codons.
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proteins that regulate transcription may therefore be hidden on the inside of the structure.
Nucleosomes located in the promoter region are remodeled in a manner that can influence
the availability of binding sites for regulatory proteins, making them more or less available
(Carey and Smale 2000).

The computational background of this model is that repeated patterns of sequence have
been found in the introns and exons and near the start site of transcription of eukaryotic
genes by hidden Markov model (HMM) analysis (Baldi et al. 1996; for a detailed analysis,
see Baldi and Brunak 1998; see also Chapter 4, p. 185) and other types of pattern-searching
methods (Ioshikhes et al. 1996). These sequences appear to be correlated with the position
of nucleosomes and are not found in prokaryotic DNA (Stein and Bina 1999). An example
of the HMM is shown in Figure 8.4. These patterns appear with a periodicity of 10; that is,

Figure 8.4. A hidden Markov model (HMM) of eukaryotic internal exons. This HMM is designed to
detect a statistically significant frequency of the same base at intervals of 10 bp in sequences. Imagine
feeding an exon sequence into the part of the sequence shown by the heaviest arrow at 11 o’clock on
the circle and then threading the sequence clockwise around the circle, noting the base at each subse-
quent position in the sequence, and recording that information in the corresponding box (the state
of the HMM). If there is a small repeated pattern of a few bases at every tenth position in the sequence
starting at the same position from the start of the exon sequence, the distribution of bases in some of
the boxes will begin to reflect that pattern. Hence, there is a repeated pattern of not-T (i.e., A, C, or
G), A or T, then a G. By a slightly more sophisticated analysis similar to that discussed in Chapter 4
(p. 187), the model can be used to show that the same pattern may start at other positions with respect
to the start of the sequence (other arrows feeding into the circle) and also that some sequence posi-
tions in the circle may be skipped (arrows going around some of the states) or extra sequence may be
found (loop arrow returning to same state). A similar pattern is found in introns and also around the
start site of transcription. This structure is modulated by histone-modifying systems as one means of
gene regulation in eukaryotes. (Redrawn, with permission, from Baldi et al. 1996 [copyright Academic
Press, London].)
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Figure 8.5. A proposed role for the repeated sequence patterns in eukaryotic genes. Shown is the por-
tion of a DNA molecule wrapped around a nucleosome. The actual length of DNA around the nucle-
osome will be approximately 145 bp. The repeated patterns found in eukaryotic genes (including not-
T, A or G, G) and AA/TT dinucleotides influence the bendability of the DNA strand in which they are
located, and hence will facilitate the folding of DNA around a nucleosome. (Redrawn, with permis-
sion, from Ioshikhes et al. 1996 {copyright Academic Press, London].)

the number of base pairs expected in a single turn of the DNA double-stranded helix around
a nucleosome. The patterns found in promoter sequences are those that bend more easily
when located in the major groove of DNA and are thought to be located on the inside of the
bent molecule (Ioshikhes et al. 1996; Pederson et al. 1998), as shown in Figure 8.5. Using
these observations, a model has been proposed that sequence patterns located downstream
from the transcription start site are suitable for positioning of nucleosomes, whereas
upstream regions do not show the necessary patterns (Pederson et al. 1998).

Loops of chromatin are attached to the nuclear matrix by relatively short (100-1000 bp
long) sequences called matrix attachment regions (MARS) or scaffold-associated regions
(SARS). These regions are considered to be an indicator of the presence of expressed genes.
Although the sequence of only a small number of such regions has been determined, sev-
eral characteristic sequence patterns have been identified. The program MARS-FINDER
(see Table 8.6 for Web site) searches for sequences that have a high representation of such
sites in genomic DNA (Singh et al. 1997).

METHODS
Obtain new 1. Translate in all six Use gene Analyze regulatory
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1. The purpose of gene prediction is to identify regions of genomic DNA that encode proteins, although

searches for RNA-encoding genes are also performed (see Chapter 5). The genomic DNA sequence
may be that of an insert of genomic DNA in a bacterial artificial chromosome (BAC) or similar vec-
tor or that of an assembled chromosome or chromosomal fragment. Genome sequencing centers
often search through newly acquired sequences with gene prediction programs and then annotate the
sequence database entry with this information. This annotation includes gene location, gene structure
(positions of predicted exons/introns and regulatory sites), and any matches of the translated exons
with the protein sequence databases. The amino acid sequence of the predicted gene may also be
entered in the protein sequence databases. Because the standards for identification are not uniform,
and because gene predictions can be incorrect, it is a good idea to reconfirm any gene prediction of
interest, perform alignments of the predicted sequence with matching database sequences to confirm
statistical and biological significance (as described in Chapters 3 and 7), and confirm the predicted
gene sequence by cDNA sequencing. If EST sequences are available in a sufficient coverage of the
genome, these are also useful for confirmation of predicted gene sequences. For an example of the
gene annotation procedure that was followed for the Drosophila melanogaster genome sequence, see
Adams et al. (2000). The final goal of the gene annotation procedure for an organism is to produce a
genome database that includes a rich supply of biological information on the function of each gene,
as discussed in Chapter 10. This information will come from laboratory experimentation and manu-
al entry of relevant published data into the genome database.

. Database similarity searches of this type are described in the flowchart of Chapter 7. For genes of

prokaryotic organisms, step 1 identifies open reading frames (ORFs, a series of amino acid-specifying
codons) that encode a protein similar to one found in another organism. ORFs without a similar gene
in another organism may also be found, as described in the text. Genes of eukaryotic organisms often
have intron and exon sequences in the genomic DNA sequence. Step 1 provides the approximate loca-
tions of exons that encode a protein similar to one in another organism. Eukaryotic genomes may also
have ORFs that do not match a database sequence, and these ORFs may or may not encode a protein.
In the Genome Annotation Assessment Project (GASP) of the Drosophila genome, one study showed
that combining gene prediction methods with homology searches generally provides a reliable anno-
tation method (Birney and Durbin 2000). Step 2 is an additional type of database similarity search that
identifies protein-encoding ORFs. Because cDNA sequences and partial cDNA sequences correspond
to exons, genomic ORFs that can be aligned to these expressed gene sequences include exon
sequences. This analysis can be enhanced by using databases of indexed genes in which overlapping
ESTs have been identified (see flowchart, Chapter 7). EST_GENOME is a program for aligning EST
and cDNA sequences to genome sequences (Table 8.1). Collections of EST sequences for an organism
are often only partial collections; thus, failure to find a matching EST is not a sufficient criterion for
rejecting an ORF by this test. Searching the EST collections of related organisms, e.g., another mam-
mal or plant, may be helpful in identifying such missing EST sequences. An additional type of gene
analysis is to use an already-identified ORF as a query sequence in a database search against the entire
proteome (all of the predicted proteins) of an organism to find families of paralogous genes, as
described in Chaper 10.

. There are a large number of gene prediction programs available (Table 8.1). They all have in common

to varying degrees the ability to differentiate between gene sequences characteristic of exons, introns,
splicing sites, and other regulatory sites in expressed genes from other non-gene sequences that lack
these patterns. Because these gene sequences as well as gene structure (the number and sizes of exons
and introns) vary from one organism to another (see Fig. 10.3), a program trained on one organism,
e.g., the bacterium E. coli or the worm Caenorhabditis elegans, is not generally useful for another
organism, e.g., another bacterial species or the fruit fly D. melanogaster. Reliability tests of gene pre-
diction programs have shown that the available methods for predicting known gene structure are, in
general, error-prone. Referring to Web sites with this information (Table 8.1) or performing one’s
own reliability check is recommended. Some “reliability checks” should be eyed with suspicion
because they are based on a comparison of new predictions with previous gene annotations. When
gene predictions are made using gene-sized rather than large-sized, multigene sequence genomic
DNA fragments, the predictions are generally more reliable (see text).

. In prokaryotes, the predicted genes may have conserved sequence patterns such as those for promot-

er recognition by RNA polymerases and transcription factors, for ribosomal binding to mRNA, or for
termination of transcription, as found in the model prokaryote E. coli. Similarly, in eukaryotes, the
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region at the 5’ end of the gene may also have characteristic sequence patterns such as a high density
and periodicity of putative transcription-factor-binding sites and sequence patterns characteristic of
RNA polymerase Il promoters. These types of analyses are enhanced by searching for similar sequence
patterns in genes that are regulated by the same set of environmental conditions or that are expressed
in the same tissue. Regulatory predictions are enhanced when information about conserved oligomers
found in the promoters of co-regulated genes is available, as described in the text.

HMMs are also used
for modeling a multi-
ple sequence align-
ment of many proteins
and for use in identifi-
cation of more mem-
bers of the same fami-
ly of proteins (see
Chapter 3 for details.)

Predicting protein-encoding genes is generally easier in prokaryotic than eukaryotic organ-
isms because prokaryotes generally lack introns and because several quite highly conserved
sequence patterns are found in the promoter region and around the start sites of tran-
scription and translation, at least in the E. coli model of prokaryotes. When a set of differ-
ent patterns characteristic of a gene are found in the same order and with the same spac-
ing in an unknown sequence, the prediction is more reliable than if only one pattern is
found, and this type of information can be obtained in E. coli.

An example of the regulatory sequences for an E. coli gene, the lexA gene, is shown in
Figure 8.6. Note the presence of the —10 and —35 regions (yellow) that mark the site of
interaction with RNA polymerase, and the ribosomal binding site on the mRNA product
(green) that is complementary to the ribosomal RNA. The ORF that encodes the LexA
product is also indicated (blue). Also shown are three potential binding sites for LexA
product to the promoter region, recognizable by searching for a consensus of known LexA-
binding sites. Note that these sites are inverted repeats; i.e., the sequence on the forward
and reverse sequence is approximately the same. This feature with minor variations is not
uncommon in the binding sites of proteins that regulate transcription and is a reflection of
the binding of a dimer of LexA protein to the two sites, which produces a stronger inter-
action than binding of a single monomer to a single site. The sites in the lexA promoter
region represent a form of self-regulation. The two downstream sites have been shown to
bind the protein and to act as a repressor that prevents further transcription. The binding
at two sites may be cooperative in that two dimer molecules are more effective at prevent-
ing transcription than one, possibly because the bound proteins interact, thus making the
overall binding to the promoter region stronger.

In the case of a number of other genes, binding of a regulatory protein such as LexA to
a recognizable target sequence activates transcription by stimulating the binding of RNA
polymerase. The consensus patterns for these various regulatory sites may be found by
sequence alignment and statistical and neural network methods. These methods are dis-
cussed in Chapters 3 and 4, and also later in this chapter. Ribosomal binding sites were the
first to be modeled by a neural network with no hidden layer (or perceptron), which is also
discussed below (Stormo et al. 1982; Bisant and Maizel 1995).

The highly conserved features of E. coli genes have made gene identification methods an
attractive possibility. One such method is that of HMMs. Here a model of an E. coli gene
is made and then expanded to include multiple genes and the sequences between the genes.
The model shown in Figure 8.7 is an example of a simple HMM of a bacterial genome as a
DNA molecule that is densely packed with genes with relatively short intergenic sequences
and no introns. This model will read through a sequence of unknown gene composition
and find the genes, i.e., a series of codons that specify amino acids flanked by start and stop
codons, that are most like a set of known gene sequences and flanking regions that have
been used to train or calibrate the model. Because codon usage and flanking sequence will
probably vary from one genome to the next, the model trained with E. coli genes may not
work for finding genes in other organisms. The reliability of the model depends on the
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DNA PATTERNS IN THE 2. coli IlexA GENE

GENE SEQUENCE PATTERN
1 GAATTCGATARATC TCTGGTTTATTGTGC AGTITATGGTT CTGHNNNNNMNNNNC &G
T TIGARCAR
41 CCAARATCGCCTTTTGCTG TATATAC TCACAGCATAR TG CTGNNNNNNNNRNC &G
CCRR 35 ~10 TATACT > TATRRT, > wmRNA starxrt
81 TATATACACCORAGEGGGCGGARTEGARAGCGTTAACGGCCA CTENNNNNNNNNNC AG
+10 GGGEGEG Ribosomal binding site GEAGG
121 GGCRACAAGAGGTGTTTGATCTCATCCATGATCACATCAG
161 CCAGACAGETATSCCACCGACGCGTGCEGGARRTCGCECAG ATG

201 CETTTGGEGTICCEGTTCCCCARRC GCGAGCTGAMGAMCATC

241 TGAAGGCGCTGAECACGCABAGECETTATTGAARTTGTTITC

281 CGGCGCATCACGCGGEATTCETCTGTIGCAGGAAGAGGRA

321 GAARGGGETTGCCACTGETAGGTCETEIGGC TGCCEETGRAC

361 CACTTCIGECGCAACAGCATATTGARGGTCATTATCAGGT OFEN READING FRAME
401 CGATCCTICCTTATTCAAGCCGRATGCTGATTTCCTGCTS

441 CGCGTCAGCGGEGATETCGATIARAGATATCGGCATTRATGG

481 ATGETGACTTGCTGGCAGTGCATAARACTCAGGATETACG

521 TAACGETCAGETCGTTETCGCACGTATTGATGAC GAAGTT

361 ACCGTTAAGCGCCTGAARAARCAGEGCAATRAARGTCGAAC

601 TGTTGCCAGAAAATAGCGAGTTITARACCAATIGTCATITGA

641 CCTTCETCAGCAGAGCTTCACCATTGAAGGGCTGGCGETT

681 GGGGTIATTCGCAACGECGACTGGCTETARCATATCTCTG TAK
721 AGACCGCGATGCCGCCTGGCATCGCGETTTGTTTTICATC

761 TCTCTICATCAGGC TTGTCTGCATGGCATTCCTCACTICA

801 TCTGATRRAGCACTCTGGCATCTCGCCTTACCCATGATTT

841 TCTCCAATATCACCGTITCCGOTIGC TGEGACTGGTCGATAC

881 GGCGGTAATIGETC ATCTTGATAGCCCEGTITATTIGGEC

921 GGCETGGCGETTGECGCAACGGCGGACCAGCT

Shown are matches to approximate consensus binding sites for LexA
repressoxr (CTGNNNNNNNNNNCAG), the -10 amd -35 prowoter regions
relative to the start of the mRNA (TTGACA and TATAAT), the ribosomal
binding site on the wRNA (GGAGG), and the open reading frame
(ATG...TAA). Only the second two of the predicted LexR binding sites
actually bind the repressor.

Figure 8.6. The promoter and open reading frame of the E. coli lexA gene.

accuracy of the gene start and stop information that is used for the training or calibration
step and on the number of such genes used for training. For E. coli, the positions of many
genes have been accurately determined. For other microbial genomes, this information is
not as available, and genes predicted by alignment of the predicted proteins with E. coli
proteins have to be used. Similar models of gene structure have been developed for other
microbial genomes.

The HMM model shown in Figure 8.7 assumes that there is no relationship between each
codon and later codons in the sequence; i.e., that the choice of each codon is independent
of the rest. This model of genes as a Markov chain may not be fully correct because there
may be long-distance correlations between some positions due to requirements for mRNA
structure or translation. However, using this simplifying assumption, useful gene models
can be produced. Analyses of sequential codons in genes have shown that some pairs are
found at a greater frequency and others at a lesser frequency than expected by chance alone
(Gutman and Hatfield 1989; Farber et al. 1992). Hence, a more appropriate choice is to
design a model that uses sequence information from the previous five instead of the previ-
ous two bases to make what is called a fifth-order Markov model. In such a model, the fre-
quency of hexamers is used to differentiate between coding and noncoding sequences. A
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version of GeneMark (Borodovsky and McIninch 1993) called GeneMark. HMM uses a
HMM of this type to search for E. coli genes (Lukashin and Borodovsky 1998).

From an information perspective, as the number of consecutive sequence positions
being compared in two sequences is increased, the chance of being able to find similarities
above background noise increases. For example, when using the dot matrix method for
comparing sequences, a sliding window in which words of length n are compared is used
to locate the most significant matches. In comparing codon and noncoding sequences, a
comparison of three consecutive positions at a time can be used to find ORFs as uninter-
rupted runs of amino-acid-specifying codons. Extending the number of positions to a
number greater than three, such as four to six, increases the chances of discovering high-
er-order sequence correlations in coding sequences that may be used to distinguish them
from noncoding sequences.

61 CODON MODELS

A=A=G
T: A: G SPACER
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For fifth-order Markov models to give accurate gene predictions, there must be many
representatives of each hexameric sequence in genes, and if there is not, the method will be
statistically limited. A new type of model, the interpolated Markov model (IMM; e.g.,
Glimmer; see Table 8.1), overcomes this difficulty of finding a sufficient number of pat-
terns by searching for the longest possible patterns that are represented in the known gene
sequences up to a length of eight bases. Thus, if there are not enough hexameric sequences,
then pentamers or smaller may be more highly represented, and in other cases many rep-
resentative patterns even longer than six bases may be found. In general, the longer the pat-
terns, the more accurate the prediction. The IMM combines probability estimates from the
different-sized patterns, giving emphasis to longer patterns and weighting more heavily the
patterns that are well represented in the training sequences (Salzberg et al. 1998).

Both GeneMark. HMM and IMM find genes in microbial genomes with an apparent
high degree of accuracy, assuming that gene predictions made by other methods such as
sequence similarity of the translated proteins to known E. coli proteins are accurate. There-
fore, these methods can be expected to produce reliable predictions of genes that do not
match previously identified protein sequences. A further improvement of the prediction of
the bacterial start codon position has been found (Hannenhalli et al. 1999). This method
sorts through a set of predictions for the start codon in a set of sequences, where the actu-
al signal is known. These predictions depend on weighting each of a set of input sequence
information. The weights are adjusted so that the predictions are made more accurate by
a method called mixed integer programming,

Compare this gene
model with the model
for protein sequence
alignments shown on
page 186, Figure 4.16.

Figure 8.7. HMM of an E. coli gene (Krogh et al. 1994). This model is designed to generate a sequence
of amino-acid-encoding codons of the approximate length of an E. coli gene starting with an ATG codon
and ending with a stop codon. A set of predicted genes are separated by intergenic spacer regions of the
range of lengths actually found between E. coli genes. Variations in this basic model are described in the
text. The model is first trained on a set of known E. coli gene sequences with flanking sequences. The
training step is performed in very much the same manner as that described in Chapter 4 for multiple
sequence alignment. The trained model may then be used to find the most probable set of genes in E. coli
genomic sequences of unknown gene composition. The model for each codon (lower part of diagram) is
represented by a set of round, diagonal, or square boxes representing match, insert, and delete states,
respectively. The model shown is that for the AAG codon. Each of the 61 codons has a similar structure,
If a sequence were extremely accurate, only match states would be needed in the model. The insert and
delete states allow an ORF with an extra or missing base to be recognized. Similarly, the inclusion of alter-
native bases in each match state allows for errors in base identification. Stop codons and initiation codons
are assumed to be correctly represented in each sequence and no allowance for errors is made. Hence,
errors in these codons would lead to an incorrect prediction. Each match and insert state has a certain
probability of producing an A, another probability for producing a G, and so on. The delete state does
not produce a letter but instead acts to skip a sequence position. Directional arrows (transitions) give the
probability of passing from one state to another in the model. Thus, if one state generates an A with prob-
ability of 1.0, the transition probability to the next state is 0.9, and the next state generates a G with prob-
ability 0.98, then the probability of AG is 1.0 X 0.9 X 0.98 = 0.88. The model is entered at any position
(upper part of diagram) and the arrows designate possible paths through the model between successive
states. The central state represented by a circle does not generate a sequence position but acts as a junc-
tion between adjacent codons. For the model to generate a sequence, the probability of a codon follow-
ing another codon must be quite high. Hence, the transition probability of going from the junction to a
codon is much higher than for going to a stop codon. Once a stop codon has been reached, a sequence
representing an intergenic spacer region is generated. Within this region is a model for sequences that are
found upstream from the ATG codon for the next gene, such as the Shine-Dalgarno ribosomal binding
site and other sequence information (see Hayes and Borodovsky 1998). The presence of this sequence
increases the probability for a downstream gene.
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A simple method for discovering protein-encoding genes within a eukaryotic genomic
sequence is to perform a sequence database search by translating the sequence in all possi-
ble reading frames and comparing the sequence to a protein sequence database using the
BLASTX or FASTX programs described in Chapter 7. Alternatively, if a genomic sequence
is to be scanned for a gene encoding a particular protein, the protein can be compared to
a nucleic acid sequence database that includes genomic sequences and is translated in all
six possible reading frames by the TBLASTN or TFASTX/TFASTY programs. For proteins
that are highly conserved, these methods can give a very good, albeit approximate, indica-
tion of the gene structure. If the proteins are not highly conserved, or if the exon structure
of a gene is unusual, these methods may not work.

Additional information as to the locations of genes in genomic DNA sequences may be
found by using cDNA sequences of expressed genes (see flowchart). An enhanced method
(Pachter et al. 1999) for finding eukaryotic genes rapidly is to prepare a dictionary of
sequence words (4-letter words in a protein sequence database, 11-letter words in an EST
database) and to use these dictionaries to compare a genomic DNA sequence to the
expressed gene and protein sequence databases.

The commonly used methods for eukaryotic gene prediction depend on training a
computer program to recognize sequences that are characteristic of known exons in
genomic DNA sequences. The program is then used to predict the positions of exons in
unknown genomic sequences and to join these exons into a predicted gene structure. Pre-
dictions depend on analysis of a variety of sequence patterns that are characteristic of
known genes in a particular organism. These include patterns characteristic of exons,
intron—exon boundaries, and upstream promoter sequences. As more sequences are col-
lected for specific organisms and the actual structures of additional genes become known,
these prediction methods should become more reliable. Patterns that specify RNA splice
sites are poorly conserved with only a few identical positions. Therefore, the positions of
intron—exon boundaries cannot be defined precisely by simple pattern-searching meth-
ods. Neural networks (described below and in Chapter 9) provide a method of sequence
analysis that has the capability of finding complex patterns and relationships among
sequence positions that may not be obvious. The available methods also depend on the
analysis of windows of sequence in genomic DNA to determine whether these regions are
likely to be coding or noncoding. Regions that encode proteins are found to have charac-
teristic patterns reflecting preferential codon usage and codon neighbors. These observa-
tions have led to the widely used analysis of 6-mers in DNA sequences as a basis for gene
prediction.

For RNA Polll genes, gene prediction programs give possible locations of exons that can
then be joined to predict the sequence of the mRNA of the gene. This sequence will include
an upstream 5’ region (5’ untranslated region, UTR) extending from the start site of tran-
scription to the initiation codon, the ORF for the protein ending in a translational termi-
nation codon, and the downstream region (3'UTR) extending to the termination of tran-
scription in the region where the signal for polyadenylation of the mRNA may be found.
The initiation site for translation in eukaryotic mRNAs is usually the AUG codon nearest
the 5’ end of the mRNA, but sometimes downstream AUG codons still close to the 5" end
of the mRNA may also be used (Kozak 1999).

As examples of the types of analyses that are available, two types of gene prediction
methods, neural networks and pattern discrimination methods, are described below.
Other methods and Web sites for finding genes in eukaryotic DNA are described in Table
8.1.
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Compare the use of
neural networks for
gene prediction with
that for protein sec-
ondary structure pre-
diction shown in Fig-
ure 9.29 (p. 453).
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Grail 11

Grail II provides analyses of protein-coding regions, poly(A) sites, and promoters; con-
structs gene models; predicts encoded protein sequences; and provides database searching
capabilities. A list of most likely exon candidates is first established, and these are evaluat-
ed further using the neural network described in Figure 8.8. The algorithm makes its final
prediction by picking the best candidates. A dynamic programming approach is then used
to define the most probable gene models (Uberbacher et al. 1996).

Input for Grail IT includes several indicators of sequence patterns. These inputs include
several from different types of analyses, including a Markov model for gene recognition
that, in principle, resembles the one shown in Figure 8.7, and inputs from two additional
neural networks that evaluate the region for potential splice sites. One important indicator
is the in-frame 6-mer preference score. Recall that the occurrence of codon pairs in coding
regions is not random, whereas in noncoding regions their occurrence is more random.

score of 6mets in candidate region
score of 6mers in flanking regions
Markov model! score

flanking region GC composition
candidate region GC composition
score for splicing acceptor site
score for splicing acceptor site Exon score
length of region

Input layer

Figure 8.8. The Grail II system for finding exons in eukaryotic genes (Uberbacher and Mural 1991;
Uberbacher et al. 1996). The method uses a neural network to identify patterns characteristic of cod-
ing sequences. The method has similarities to and differences from that used for predicting secondary
structure of proteins and described in Chapter 9. Similarities include the use of three layers, an input
layer for the data with the data coming from a candidate exon sequence, and a hidden layer for dis-
cerning relationships among the input data. An output layer comprising one neuron indicates
whether or not the region is likely to be an exon. Each neuron receives information from a set in the
layer above, some with a positive value and others with a negative value, sums these values; and then
converts them to an output of approximately 0 or 1. The system is trained using a set of known cod-
ing sequences, and as each sequence is utilized, the strengths and types of connections (positive or
negative) between the neurons are adjusted, decreasing or increasing the signal to the next neuron in
a manner that produces the correct output. The major difference between neural networks for exon
and secondary structure prediction is that the exon prediction uses sequence pattern information as
input whereas secondary structure prediction uses a window of amino acid sequence in the protein.
In Grail I, a candidate sequence is evaluated by calculating pattern frequencies in the sequence and
applying these values to the neural network. If the output is close to a value of 1, then the region is
predicted to be an exon.
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Consequently, higher frequencies of 6-mers in genomic DNA that are more commonly
found in coding regions can be an indicator of the presence of an exon. For various organ-
isms, tables have been constructed giving the frequency of each 6-mer (base 1 of first codon
to base 3 of second, base 2 of first codon to base 1 of the third codon, and so on) of known
cDNAs divided by the frequency of the 6-mer in noncoding DNA. The logarithm of this
ratio gives what is called an in-frame preference value for the 6-mer. These 6-mer prefer-
ence scores increase as GC composition rises, thus increasing the preference scores of a 6-
mer with GC richness. Grail II automatically corrects for this increase to put predictions
from GC-rich regions on an even footing with other regions.

The log ratios for a potential ORF starting at base 1 in the test sequence, another for an
OREF starting at base 2, and a third starting at base 3 are calculated by adding the logarithms
of these individual 6-mers. These sums provide a log likelihood score for an exon starting
at the first, second, or third positions in the given genomic sequence. These likelihoods are
further modified by including conditional information on the likelihood of the next 5
bases on coding and noncoding regions, given the current 6-mer. The probability of an
exon starting at base 1 is then given by a Bayesian formulation

where g, is the score for an exon starting at base 1; a is the sum of scores for base 1, base
2, and base 3; n; is the score for a noncoding region starting at base 1; and C is the ratio of
coding to noncoding bases in the organism. This value is used as the score of 6-mers in the
candidate region (Uberbacher et al. 1996). A similar score is calculated for the regions 60
bases on each side of the candidate region. If these regions also appear to be encoding
exons, the examined region will be enlarged and the prediction repeated. In this manner,
a given exon candidate sequence will be enlarged until the coding signals from flanking
sequences are no longer to be found.

GeneParser

This program predicts the most likely combination of exons and introns in a genomic
sequence by a dynamic programming approach. Dynamic programming was introduced
in Chapter 3 as a way for aligning sequences to obtain a most likely alignment for a given
scoring system with scores for matches, mismatches, and gaps. The alignment up to a given
set of sequence positions is stored in a scoring matrix, and the dynamic programming algo-
rithm provides a method for finding the best score at that position. GeneParser uses a like-
lihood score for each sequence position being in an intron or exon. The intron and exon
positions are then aligned with the constraint that they must alternate within a gene struc-
ture. In this manner, a combination of the most likely intron and exon regions that com-
prise a gene structure is found. GeneParser includes one other novel feature, a scheme for
adjusting the weights used for several types of sequence patterns that make up the intron
and exon scores.

A neural network is used to adjust the weights given to the sequence indicators of known
exon and intron regions, including codon usage, information content (see Chapter 4, p.
195), length distribution, hexamer frequencies, and scoring matrices (see Chapter 4, p.
192) for splicing signals. The integration of the dynamic programming and neural network
methods works as follows:

1. The characteristics described above of a set of intron sequences and a second set of exon
sequences are determined. For example, a table of hexamer frequencies is prepared.
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2. For a training gene sequence, a series of indicator matrices is prepared. The sequence is
listed both down the side of the matrix and across the top. Each position in one of the
matrices representing positions a and b in the sequence gives the likelihood for an exon
or intron that starts at position a and ends at position b. One such matrix would be the
likelihood of an exon based on hexamer frequency in the a—b interval. Another matrix
(or the other half of the same matrix, since only one half is needed for exon values) gives
the likelihood of an intron based on the same criterion. Other sets of matrices for the
sequence based on compositional complexity, length distribution or exons, or splice
signals on weight matrices are also prepared.

3. The a,b values in the above indicator matrices for exons are each transformed by a
weight and bias, and the sum of the weighted values is obtained. An initial arbitrary set
of weights is chosen for each type of sequence information. These weights are later
adjusted until they provide the correct gene structure of the training sequence. This sum
(s) is then further transformed to a number (L) that is either close to 0 or 1 by using the
neural network gating function L = 1/ [1 — e~*]. The transformed a,b values are then
placed in another matrix L that gives the weighted score for exons going from position
a to position b in the sequence. A similar set of transformed values for an intron at posi-
tion a,b, but not necessarily weighted the same way, is placed in another matrix L; at
position a,b (which can be the other half of Ly since only half of the Ly matrix is need-
ed). The reason for this transformation is to use the information at a later stage as input
to a neural network, in the same manner as used in neural networks for prediction of
protein secondary structure and discussed in Chapter 9.

4. Dynamic programming is used to predict by the most compatible number and lengths
of introns in the training gene up to any position j in the sequence.

5. Steps 2—4 are repeated for each training sequence.
6. The accuracy of the predictions is then determined.

7. If a certain required level of accuracy is not achieved, a neural network similar to that
described above for Grail II is used to adjust the weights used for the input exon and
intron features.

8. If the required level of accuracy is reached, the method is ready to be used for deter-
mining the structure of an unknown genomic DNA sequence.

Pattern Discrimination Methods

Discrimination methods applied to DNA sequences are statistical methods used for clas-
sifying the sequence based on one or more observed sequence patterns. For gene predic-
tion, features of patterns found in genomic sequences are examined statistically to deter-
mine wheéther they are like those found in coding sequences. One such feature that is
characteristic of coding sequences is the 6-mer exon preference score (EPS) described
above. Another is a score for a 3’-flanking splice site (3’SS) calculated in a similar man-
ner. In effect, the distribution of these two scores and a number of others is obtained for
a large set of known exons and also for a set of noncoding sequences. Using the EPS and
3'SS as examples, the pair of scores for each sequence is plotted on a graph and each point
is labeled as coding or noncoding, as illustrated in Figure 8.9. A line is then positioned
between the two groups of sequences. A sequence of unknown coding capability is simi-
larly analyzed to determine whether the features of the sequence place it on one. HEXON
and FGENEH (combines exon prediction into a gene structure) use linear discriminant
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Similar types of dis- Figure 8.9. Analysis of candidate sequences for exon status by a discriminant function. Up to nine
criminant a".al}’sé are different pattern features of sequences are analyzed in coding and noncoding sequence. Shown is a
used to classify micro- plot of two of these features for several exon (ex) and noncoding (nc) sequences. The object of the dis-
array data (Fig. 10.11, . lysis is to defi boundarv b h £ h that th
».522). criminant analysis is to define a boundary between these two groups of sequences such that they are

maximally separated, or that the sum of distances from a boundary line to each point is a minimum.
A linear discriminant analysis (Solovyev et al. 1994) assumes that the covariations among the data are
the same for the exon and noncoding sequences and provides a straight line boundary (dotted straight
line) between the two sets of data. Such a boundary may miss some of the data points. A quadratic dis-
criminant analysis (Zhang 1997) is more flexible, does not assume a similar covariation in the exon
and noncoding sequences, and provides a curved boundary formed by a quadratic equation that can,
in principle, provide a better separation of the groups (solid line). Once these boundary lines have
been calculated, the EPS and 3'SS values of a query sequence will indicate whether the sequence
belongs to the exon group or noncoding group of sequences. For an actual analysis, multiple analyses
are performed on a candidate sequence leading to a more complex, multidimensional type of analy-
sis.

analysis (Solovyev et al. 1994) and MZEF uses quadratic discriminant analysis (see Table
8.1) (Zhang 1997).

A comparison of the above methods for accuracy and reliability must take into account the
type of analysis, whether neural network, linear discriminant, or other; the number and
types of sequences used for training and evaluation; and the method used for evaluation.
In addition, choice of program variables by the user will affect the predictions that are
made. As more gene sequences become known, more are becoming available for training
and evaluation. The ideal method for evaluation uses a known set of gene structures for
training the method and a second set that is not used in the training or similar to those
used in the training for evaluation (Burset and Guigé 1996). The evaluation is usually more
stringent if the evaluation set includes a gene and neighboring sequence rather than just
the sequence between the first and last exons. A current evaluation of most methods is
available at the Web sites for these methods listed in the footnotes to Table 8.1. These eval-
uations are most useful when different prediction methods are used in combination.
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The method for evaluation is similar to that used for testing the reliability of protein sec-
ondary structure prediction as described in Chapter 9 (Mathews 1975; Burset and Guigé
1996). The program, which is trained on a set of sequences from a given organism, is used
to predict the exons, or set of exons, comprising a gene of a set of genomic evaluation
sequences from the same organism. An evaluation is then made of the number of true pos-
itives (TP) where the length and end sequence positions are correctly predicted, the number
of over-predicted positive predictions or false positives (FP), true negative (TN), and num-
ber of underpredicted residues as misses or false negative (FN) predictions. The following
calculations are made: (1) Number of actual positives is AP = TP + EN; (2) the number of
actual negatives is AN = FP + TN; (3) the predicted number of positives is PP = TP + FP;
and (4) the predicted number of negatives is PN = TN + FN. The sensitivity of a method
SN is given by SN true positives/actual positives = TP / (TP + EN), the specificity by SP =
true positives/predicted positives = TP / (TP + FP), and a correlation coefficient CC by

By this coefficient, a method given all correct gene predictions would score 1, and the worst
possible prediction would be —1. In tests of this kind on three sets of human sequences,
GeneParser, GenlD, and Grail gave (1) sensitivities of 0.68—0.75, 0.65-0.67, and 0.48-0.65;
(2) specificities of 0.68-0.78, 0.74-0.78, and 0.86—0.87; and (3) correlation coefficients of
0.66-0.69, 0.66-0.67, and 0.61-0.72, respectively, for the accuracy of finding the correct
nucleotide ends of exons. GeneParser was also shown to be more reliable for genes with
short exons and least reliable for genes with long exons (Snyder and Stormo 1993).

A detailed evaluation of the available gene prediction programs has been performed,
and the correlation coefficent was found to lie between 0.6 and 0.7, and the fraction of cor-
rectly found exons was generally less than 50%. The performance decreased when longer
test sequences were used and when a 1% level of artificial frameshift mutations was intro-
duced. Programs including protein sequence database searches (GeneID+ and GenePars-
er3) showed substantially greater accuracy (Burset and Guigé 1996). These studies there-
fore indicate that gene prediction programs reliably locate genomic regions that encode
genes, but they provide an only approximate indication of the gene structure. In a later
similar study using the same data set as the above study, and comparing Grail II, FGENEH,
and MZEF, these numbers were: (1) sensitivities 0.79, 0.93, 0.95; (2) specificities 0.92, 0.93,
0.95; and (3) 0.83, 0.85, 0.89, respectively (Zhang 1997).

To illustrate the results obtained by the gene prediction programs, an Arabidopsis
genomic sequence was submitted to several Web servers, as shown in Table 8.4. Because
the cDNA sequence was also available, the accuracy of the programs could be determined.
There is a computer program designed for aligning the ¢cDNA and genomic DNA
sequences of a gene (Florea et al. 1998; and see Table 8.1). As shown, the results of the anal-
yses vary considerably and the program variables must sometimes be optimized to find the
correct translation. In this case, GeneMark gave a fully accurate translation of the
sequence. Other programs, such as NetPlantGene, gave a large number of possible
exon—intron boundaries including some of the actual ones.

The method that has most often been used to analyze E. coli promoters is to align a set of
promoter sequences by the position that marks the known transcription start site (TSS)
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Table 8.4. Example of exons predicted in an Arabidopsis genomic sequence by gene prediction

programs

cDNA Netgene® GeneMark® FgeneP? GeneScan Mzeff*
345%-1210 x 1210 345-1210 345-1210 530-1210 276-1210
1290-1513 1290 1513 1290-1513 x 1513 1242-1513 1290-1513
1611-1696 1611* 1696 1611-1696 X X 1611-1696 1611-1696
18802029 1880* 2034 18802029 X X 1880-2029 1880-2029
2143-2880 2143 2880 2143-2880 x 2880 2143-2880 x 2880
3143-3253 x 3253 3143-3253 X X X X 3143-3253
3339-3599 3339* 3599 3339-3599 3339-3599 3339-3599 3339-3599
3698-3921 3698 3921 3698-3921 3698-3921 3698-3921 3698-3921
4010-4217 4010 x 4010-4220° X X 4010-4220" X X

This test is given as an example and should not be taken as a measure of the reliability of these programs.
The Web sites were provided with the genomic sequences of the Arabidopis UVHI gene with approximate-
ly 250 bp upstream from the first exon and 200 bp downstream beyond the last exon. As indicated in the
text, these programs are more reliable when they are presented with short genomic sequences, as was done
in this example. The consensus splice sites for Arabidopsis may be found at http://genome-
www.stanford.edu/Arabidopsis/splice_site.html. A more detailed assessment of the reliability of gene pre-
diction programs on Arabidopsis genomic sequences has been published (Pavy et al. 1999).

2 Predicted.

b NetPlantGene was used. This program predicts intron—exon and exon—intron junctions and not most
probable combinations of the two. In this case many false-positive intron-exon junctions were predicted
with low probability. The highest scoring junctions are marked by *. x are actual sites not predicted. The
intron—exon junctions are predicted much more reliably, and three false positives were reported.

< GeneMark shows a remarkably good frequency of prediction for these exons and usually joins the exons
in the correct reading frame, but not always. Therefore, some parts of the predicted protein sequence are not
correct.

d x are actual sites not predicted. Exon start sites of 1370-1513 and 27792880 were found illustrating a
difficulty with finding exon start sites.

¢ The prior probability was set at 0.6-0.8 to obtain these results. The higher this value, the lower the level
of discrimination used, the more sensitive the test, and the greater the number of exons that is predicted. x
was not predicted; instead a start site of 2709 was predicted. This program predicts internal exons only.

f The 4220 end includes the termination codon.

and then to search for conserved regions in the sequences. Following such an alignment,
E. coli promoters are found to contain three conserved sequence features: a region approx-
imately 6 bp long with consensus TATAAT at position —10 (the Pribnow box), a second
region approximately 6 bp long with consensus TTGACA at position —35, and a distance
between these regions of approximately 17 bp that is relatively constant (see Fig. 8.6 for an
example). A weaker region exists around +1, the designation given to the start of tran-
scription, and an AT-rich region is found before the —35 region (Hawley and
McClure1983; Mulligan and McClure 1986). The sequences changed to some extent as the
number of sequences and the types of promoters analyzed were varied. For example, pro-
moters that are activated by transcription factors have more variable sequences (Hertz and
Stormo 1996). The RegulonDB (http://www.cifn.unam. mx/Computational_Biology/reg-
ulondb/; Salgado et al. 1999), Dpinteract (http://arep.med.harvard.edu/dpinteract-
database; Robison et al. 1998), and regulatory site database (Thieffry et al. 1998;
http://www.cifn.unam.mx/Computational_Biology/E.coli-predictions) have been devel-
oped with information on the E. coli genome. With the availability of a large number of
prokaryotic genomes (see Chapter 10 and http://www.tigr.org/tdb/ mdb/mdb.html), a sim-
ilar analysis of the genes and regulatory sites in these other genomes has become possible.

The aligned promoter regions provide a consensus sequence that may be used to search
for matching regions as potential promoters in E. coli sequences. Each column in the align-
ment gives the variation found in that position of the promoter. Programs such as the
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Genetics Computer Group program FINDPATTERNS and PatScan (http://www-
unix.mcs.anl.gov/compbio/PatScan/HTML/patscan.html) may be used to search for
matches to the consensus sequence or the variation found in each column in a target DNA
sequence. The difficulty with using the consensus sequence to search for new promoters is
that most sequence positions in the aligned regions vary to some extent, and some regions
are much less variable than others; e.g., the first, second, and sixth positions in the —10
region.

An alternative is to use the search features of FINDPATTERNS and PatScan that allow
alternative symbols at one sequence position, repeats of a symbol, inverted repeats, gaps,
and so on. For example, providing the pattern GAT (TG, T, G) {1,4} to FINDPATTERNS
means to search for GAT followed by a TG, or a T, or a G repeated up to four times. These
types of pattern expressions are similar to regular expressions that are used to specify
PROSITE patterns in protein sequences and to inititate PHI-BLAST searches of protein
sequence databases (see Chapter 7, p. 331). Although these expressions are extremely use-
ful for locating complex regulatory patterns in DNA sequence, they do not take into

.+ account the frequency of each residue at each pattern position. What is needed is a more
quantitative way to use these known sequence variations to search a target sequence. The
scoring matrix method provides such an analysis.

The Scoring Matrix Method Used with Aligned Promoter Sequences

A more complex type of promoter analysis used for both prokaryotic and eukaryotic
sequences is a scoring or weight matrix. This kind of matrix was previously described in
Chapter 4 (p. 192) as a method for representing the variation in a set of sequence patterns
in a multiple sequence alignment, and in Chapter 7 (p. 320) as a tool for finding addition-
al sequences with the same pattern in a database search. The scoring matrix has also been
used to analyze promoters, ribosomal binding sites, and eukaryotic splice junctions
(Staden 1984).

An example using a scoring matrix for representing the —10 region of E. coli promoters
is illustrated in Table 8.5. In this example, N sequences have been aligned by their —10
regions and a count of each base in each column of the alignment has been made. These
counts are converted to frequencies. For example, if 79 of 100 sequences have a T in col-
umn 1, the frequency of T in column 1 of the matrix is 0.79. Similarly, a T occurs in col-
umn 2 with a frequency of 0.94. These frequencies are converted into log odds scores, as
described in Table 8.5. An example of using the scoring matrix in Table 8.5 to locate the
most likely —10 sites in a query sequence is shown in Figure 8.10. The matrix is moved
along the query sequence one position at a time. At each position, the base in the sequence
is noted and the corresponding score of that base in the matrix is then used. This proce-
dure is repeated for the remaining positions. The log odds scores are then added to obtain
a combined log odds score for the particular position in the sequence that is a —10 region
in a promoter. The sum of the log odds scores in bits may be converted to odds scores by
the formula odds score = 208 0dds score) o1 if the Jog odds score is in nats, by the formula
odds score = ¢ (98 °dds score) Thege numbers vary from small fractions to large numbers
reflecting variations in the likelihood of a —10 region at each sequence position.

The odds scores at every possible matching location along the sequence may be used to
find the probability of each sequence location. The odds scores are first summed to give
sum S. The odds score at a particular location of six bases in the sequence divided by S then
provides a probability that the location is a —10 region. To give a simple example, of the
three matches in Figure 8.10, the probability of the match at the third location shown is
391/[(1/786)+(1/630)+(391)] = 1.000.
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Table 8.5. A scoring matrix representing the frequency of DNA bases found in the —10 position
in E. coli promoters

A. Fraction of each base at each column of the aligned promoters in the —10 region

Position A C G T

1 0.02 0.09 0.10 0.79
2 0.94 0.02 0.01 0.03
3.6

B. Log odds score

Position A C G T

1 —3.80 —1.49 —1.34 1.67
2 1.92 —3.81 —4.81 —3.22
3 —0.06 -0.81 —0.66 0.81
4 1.24 —1.00 —-0.72 —0.89
5 1.02 —0.35 —1.00 —0.56
6 —4.81 —3.22 —4.81 1.95

(A) Frequency of each base found, showing two positions as examples. (B) Conversion of frequencies to
log odds scores. The first step is to convert the frequency of each base at each sequence position into an odds
score. The odds score is simply the frequency observed in the column divided by the frequency expected, or
the background frequency of the base, usually averaged over the genome. Thus, if the position frequency is
0.79 and the background 0.25, the odds score is 0.79/0.25 = 3.16. This number means that if a sequence is
being examined for the presence of a promoter, and a T is present in the sequence at predicted position 1,
the odds of the sequence representing a promoter (a win) to the sequence not representing a promoter (a
loss) is 3.16/1. Finally, the odds score is converted to a log odds score by taking the logarithm of the odds
score, usually to the base 2 (units of bits) and sometimes to the natural logarithm (units of nats). As
described in Chapter 4, bit units have a special meaning in information theory. They represent the number
of questions that must be asked to decide whether or not the base in the column of the scoring matrix is a
match to the aligned sequence position. This number is called the information content of the matrix posi-
tion. On the one hand, if all four bases are equally represented in the matrix position, the number of ques-
tions that must be asked is two. The first question might be is the sequence position one of A or T, or one
of G and C. The second question will then find the correct base. On the other hand, if only one base is found
in the matrix position, then no question need be asked of the sequence position. The fewer questions that
have to be asked, the more information in the matrix, and the more discriminatory it is for distinguishing
real matches from random matches (Schneider et al. 1986). A set of log odds scores for the major six posi-
tions in the —10 region of E. coli promoters is shown (Hertz and Stormo 1996). In the actual matrices that
are used, an additional 6-12 base positions that flank these major positions are also used. There is a zero
occurrence of one particular base in the matrix, thus creating a problem because the logarithm of zero is
infinity. In this case, a single count is substituted for the zeros and the resulting small fraction will calculate
to a large negative log odds score. Alternatively, a large negative log odds score may be used at such positions
in a scoring matrix.

Another formula for calculating the scoring matrix value of base i in column j, w,, is given by

w;; = log [(n;; +P)/{(N + DP}] =~ In (f;;/ P;)
where n;; is the count of base i in column j, P; is the background frequency of base i, N is the total number of
sequences, and f;; = n; /N (Hertz and Stormo 1999). Bucher (1990) uses the formula
' wy; = log [(ni;/P)) + (s/100)] + G
where s is a smoothing percentage for the column values and C; is a column-specific constant. Bucher some-
times also uses dinucleotide composition for calculating the background base frequency to accommodate local
sequence complexity (Bucher 1990). These formulas both accommodate zero occurrences of a base by adding

a small value in a scoring matrix to zero positions. Another method is to add pseudocounts to these positions,
as described in Chapter 4 (p. 193).
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Figure 8.10. Locating — 10 promoter sites in E. coli sequences using a — 10 scoring matrix. The matrix
is moved along a query sequence one position at a time, and at each location, the sequence window is
scored for a match to the matrix by summing the log odds scores. A cutoff score may be defined that
permits recognition of known promoter sequences while minimizing the prediction of false-positive
sites.

For scoring E. coli sequences for the presence of promoters, scoring matrices for a 35-bp
region encompassing the —35 region, a 19-bp region encompassing the —10 region, and a
12-bp region encompassing the + 1 region are each applied to both strands of a query DNA
sequence. Each matrix will provide a distribution of odds scores that predict possible loca-
tions for matches to itself in the query sequence. These matches are then examined for
spacings that are characteristic of the known promoter sequences. The region between the
—10 and —35 regions varies from 15 to 21 but is usually 17, and the region between —10
and +1 is 4-8 bp. When a suitably oriented combination of high-scoring matches is found,
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Reliability of the

the log odds scores of each sequence region are added. From this sum, a penalty may be
subtracted if the distance between the —10 and —35 regions is not an optimal 17 in length
or if the distance between the —10 and +1 regions is not optimal (Hertz and Stormo
1996). The resulting log odds score represents an overall likelihood that a test sequence
includes regions characteristic of E. coli promoters in the correct spacing. A similar appli-
cation of weight matrices for identifying the start of prokaryotic genes (program
ORPHEUS) has been described previously (Frishman et al. 1998).

Matrix Method

The reliability of a combination of scoring matrices for promoter prediction can be
assessed by comparing the range of scores found in a set of known promoters versus scores
in a set of random sequences. A threshold score that is achieved by most of the known pro-
moters, but only by a small number of false positives in random sequences, may then be
chosen (Bucher 1990; Hertz and Stormo 1996). For example, 0.048 or 0.27 of the positions
in random sequences may achieve such a score, when compared to promoters that are not
activated by additional transcription factors (are more alike) versus all promoters (are
more variable), respectively. When a lower threshold is chosen that gives a lower false pre-
diction rate of 0.0005, 0.26 of all promoters and 0.60 of activated promoters achieve such
a score. To try to improve the predictive values, the lengths of the scoring matrices and the
gap penalty values have been varied, but the predictive value of the matrices is not much
improved above these values.

There are several reasons that matrix methods do not achieve a better prediction of E.
coli promoters. The first is that the matrix method adds the scores for each sequence posi-
tion, whereas in reality, one position in the —10 region, for example, may play a role in one
stage of transcription such as promoter recognition by RNA polymerase, whereas another
may play a role in a subsequent stage of transcription, such as initiation of transcription or
elongation of the mRNA. Matching positions with these types of functional separations are
not expected to be additive, as assumed by the matrix method. A second difficulty that the
matrix method shares with most other methods of promoter prediction is that all pro-
moters are treated as being in the same class, whereas different forms of RNA polymerase
that are complexed with a set of transcriptional activators (¢ factors) may have preference
for different sequence positions in the promoter region. With the whole genome of E. coli
now available for analysis (see http://www.genetics.wisc.edu), such additional classification
may become a possibility (Hertz and Stormo 1996). A third difficulty is that the promoter
sequence is treated as a Markov chain, meaning that each sequence position acts indepen-
dently of the others so that a match at each position may be individually scored without
reference to the other positions. According to a statistical mechanical theory discussed
below, the most conserved positions are thought to act independently. However, as evi-
denced by the fact that some weight matrices are not efficient in locating matching sites,
there may be correlations between the sequence positions so that covariation of the bases
at these positions occurs at frequencies greater than expected by chance. Such correlations
are not easily found in a small number of training sequences. Methods include using deci-
sion trees and locating specific oligonucleotides, discussed later in the chapter. A number
of ways to improve matrix methods, including corrections for base composition, utilizing
a different number of matrix positions, have been tried, but none of these is significantly
better than the basic scoring matrix described above. In addition to the matrix methods, a
number of additional methods for predicting E. coli promoters and other regulatory sites
have been developed, but without much improvement over the scoring matrix method
(Hertz and Stormo 1996).
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A second method that has been used for promoter prediction is the use of neural net-
works, which are described in Chapter 9, page 450. In this case, a neural network is trained
to distinguish E. coli sequences from nonpromoter sequences (Horton and Kanehisa 1992;
Pedersen et al. 1996). The network is like that used for prediction of protein secondary
structure and is trained by similar methods. Horton and Kanehisa used a network lacking
a hidden layer, called a perceptron (see Fig. 8.11). This type of network scans the sequence
to be analyzed using a sliding window and at each location reads each of the sequence posi-
tions within the window. Some positions within the window may not be counted corre-
sponding to the spaces between the conserved regions. The sequence characters are given
a simple identification scheme to avoid any bias (e.g., A is 1000, G 0100, etc.) and the sum
of these sequence values after weighting is used as input for a single output neuron, which
produces a number close to 1 if the region is within a promoter or 0 if the region is not in

A. The perceptron

T [0100] W1 weights
A [1000] ~W2
w3 Output of approximately 1
T [0100] . indicates function;
w output of approximately 0
A [1000] w5 no function
A [1000] — o OUTPUT is sum of
weighted input
T [0100] values. The sum is
transformed by a
:EPngLQYER, gating function to
€ € alor0.
sequence

B. Scoring matrix equivalent

A|lC|G | T
T]1 0.19
Al2]0.22 SUM = 0.19+0.22..
T3 0.09 approx 1
Al 41014 indicates function
A|50.12
T|6 0.24

Figure 8.11. The model of a perceptron used for locating E. coli promoters. A portion of the sequence
in the —10 region that is to be scanned is shown for illustrative purposes. (A) A known promoter
sequence is encoded and used as input into a single output neuron. The input signals are weighted,
the weighted values summed, and the sum transformed into a number that is approximately 0 or 1.
The network is trained by starting with an initial set of weights, then adjusting each weight by a small
amount until the correct output is found for as many of the training sequences as possible. (B) The
trained perceptron used for scanning unknown sequences for promoter-like patterns is a special type
of scoring matrix. In this case, the matrix is aligned with the sequence, and the matrix values that
match the sequence are added. If the sum of numbers is approximately 1, then a promoter is predict-
ed, and if zero, then a promoter is not predicted. The difference between this matrix and the scoring
matrix described above is that in this matrix each position within the sequence window is given a dif-
ferent weight.
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a promoter. The network is trained on known promoter sequences by adjusting the
weights of the input sequence positions so that the output produces the correct response.
However, the perceptron method was not found to be any more effective than scoring
matrices for finding E. coli promoters.

Finding Less-conserved Binding Sites for Regulatory Proteins in
Sequences That Do Not Readily Align

In the above example of finding consensus binding sites for RNA polymerase in E. coli pro-
moters, the sequences could be quite readily aligned by the transcriptional start site and the
—10 and —35 regions. The binding sites for other regulatory proteins, such as the LexA
protein described above, are also quite readily found because the sequence of the binding
sites is conserved. However, in many other cases, particularly those for eukaryotic tran-
scription factor binding sites described later in this chapter, the sites vary considerably and
the surrounding regions are also variable so that it is impossible to find conserved positions
in the binding site by aligning the sequences. Thus, methods are needed to find a common
but degenerate pattern in sequence fragments that are expected to carry a binding site but
that cannot be aligned.

The problem is similar to that described in Chapter 4 for finding patterns that are com-
mon to a set of related protein sequences that cannot be readily aligned. However, there is
one important difference. In proteins, there are a possible 20 amino acids in each match-
ing position of the sequence pattern, but in DNA-binding sites there are only four possible
bases in the pattern—the alphabet is much smaller in DNA sequences. Hence, it is more
difficult to detect DNA sequence patterns above background noise. Some of the statistical
methods used for finding protein patterns, e.g., expectation maximization and hidden
Markov models, are also used for identifying DNA patterns in unaligned DNA sequences.

The expectation maximization method is described in Chapter 4. Briefly, an initial scor-
ing matrix of estimated length is made by a guessed alignment of the known promoter
sequences (the expectation step). The scoring matrix is then used to scan each sequence in
turn, and the probability of a match to each position in each sequence is calculated as dis-
cussed above. The scoring matrix is then updated by the sequence pattern found at each
scanned position times the probability of a match to that position (the maximization step).
The two steps are repeated until there is no improvement. The method has been adapted
to find multiple patterns separated by a variable spacer region, to take into account the
—10 and —35 regions of E. coli promoters (Cardon and Stormo 1992). These studies have
provided useful information as to which positions in the promoter sequences provide
information that enhances specificity. Hidden Markov models such as those described in
Chapter 4 (p. 185) and earlier in this chapter have also been used for prokaryotic promot-
er prediction (Pedersen et al. 1996). In principle, because HMM methods are based on the
expectation maximization method, they should be comparable in effectiveness to the EM
method.

Another statistical method of finding patterns in unaligned sequences has also been used
for DNA sequences. In one case, this method was used with a dinucleotide analysis to reduce
background noise (Ioshikhes et al. 1999). A Gibbs sampling method that takes into account
additional features of DNA sequences such as inverted repeats has been described (Zhang
1999b). Align Ace is a program designed for promoter analysis that uses a Gibbs sampling
strategy (see Table 10.1E). The inverted repeat feature is designed to identify binding sites
of regulatory proteins that are inverted repeats, like LexA-binding sites in Figure 8.6.

A different method has been developed for searching through a set of unaligned
sequences for a common but degenerate sequence pattern (Stormo and Hartzell 1989;
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Hertz et al. 1990). The program developed for this purpose, consensus, was used to pro-
duce a set of scoring matrices for eukaryotic transcription-factor-binding sites (Chen et al.
1995). Recently, a theory was developed that allows a statistical evaluation of the results
(Hertz and Stormo 1999). In its simplest form, illustrated in Figure 8.11, a sliding window
of sequence in each of the sequences is matched against similar windows in the remaining
sequences, searching for the best scoring matrix, as judged by the information content of
the matrix (p. 195). There is no allowance made for gaps, and the choice of a base at each
matrix position is assumed to be independent of the other positions, although the devel-
opment of methods for including such features has been described previously (Hertz and
Stormo 1995). In consensus, parameters such as window width, whether or not each
sequence can contribute at most one word, whether or not there are additional words after
an initial one, whether or not words overlap, whether or not the complementary sequence
is used, and the maximum number of alignments to be saved are set by the user. In a relat-
ed program, wconsensus, the optimum window size is not set by the user. Instead, biases
are used and subtracted from the information content of each column in the scoring
matrix to make the amount of information a smaller number, called the crude information
content. The object is to reduce the average alignment score to a negative value so that an
interesting alignment appears as a positive score, much like the procedure used in the
Smith-Waterman algorithm for sequence alignment by dynamic programming. wconsen-
sus finds the scoring matrix that maximizes this crude information content. At the same
time, weonsensus also saves the flanking sequence regions from each sequence included in
the matrix. As more sequences are added, these regions may also become incorporated into
the alignment and help to locate additional matching regions.

The time required for computing these patterns is extensive and increases as a linear
function of the number of sequences and as the square of the sequence lengths. The pro-
grams accept user input to reduce the computational time. These programs are not guar-
anteed to provide the best possible matrix, but by trying out several reasonable values for
user-provided variables, there is a strong possibility of finding the best matrix. Associated
with these programs is a statistical evaluation of each matrix. If I is the information con-
tent of the matrix calculated and N the number of sequences used to create the matrix, the
probability of obtaining a greater product I X N from random sequences of the same
length and base composition is determined. This procedure is similar in principle to the
methods used to evaluate scores found in sequence alignments and database searches,
except that the statistical models are quite complex (Hertz and Stormo 1999). Similar
numerical methods for calculating the significance of scoring matrices and matches to
scoring matrices have also been developed (Staden 1989). Thus, different matrices found
by using different matrix widths, base compositions, and other variables may be evaluated
for significance, and the best ones chosen. The consensus programs run under the UNIX
operating system and are available by anonymous FTP from beagle.colorado.edu in the
directory /pub/consensus.

Binding sites for repressors and activators of E. coli and other bacteria have been analyzed
for conserved patterns by the above methods. An example is the set of bacterial and bacterio-
phage genes that is repressed by the E. coli lexA gene product (Lewis et al. 1994). As illustrat-
ed in Figure 8.6, these genes carry the binding site for LexA repressor, which is located in the
vicinity of the promoter and transcription start site and has the consensus sequence
CTGTNNNNNNNNNCAG. The more conserved positions in the binding site contribute the
most to the binding of the LexA protein to these sites and, in general, the closer the binding
site to consensus, the more tightly bound the protein to that site. Similar observations of sev-
eral transcriptional regulators and promoters of E. coli have led to a statistical mechanical the-
ory that the most conserved positions each independently contribute the most binding ener-
gy to the interaction (Berg and von Hippel 1987; Fields et al. 1997; Stormo and Fields 1998).
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Transcriptional Regulation in Eukaryotes

The regulation of transcription of protein-encoding genes by RNA polymerase II (RNA
Polll) involves the interaction of a large number of protein complexes, called transcription
factors (TFs), with each other and with DNA-binding sites in the promoter region. The
regions upstream from the start point of transcription, but also just downstream, influence
the regulation and degree of expression of the gene. The region immediately upstream, the
core promoter, has DNA-binding sites to which a preinitiation complex comprising RNA
PollIl and TFIIA, B, D, E, F, and H binds (Tjian 1996).

The position of binding sites is given with reference to the start site of transcription
(TSS). A box defined as TATA is present in about 75% of vertebrate RNA Polll promot-
ers. A TATA box HMM trained on vertebrate promoter sequences has the consensus
sequence TATAWDR (W = A/T, D is not C, R is G or A) starting at approximately —17
bp from TSS (Bucher 1990; http://www.epd.isb-sib.ch/promoter_elements/). This
sequence is thought to position the initiation complex around TSS. A component of
TFIID, TATA-binding protein (TBP), recognizes and binds to this sequence. INR is a
loosely defined sequence around TSS that also influences the start position of transcription
and may be recognized by other protein subunits of TFIID (Chalkley and Verrijzer 1999).

Sequence 1 Sequence 2 Sequence 3
ACTGA TAGCG CTTGC
Step 1 ACTG Seqi
A{1000
cCl0o100
G{ 0001
TI0010
Step 2 ACTG Seqt ACTG Seqt ACTG Seqt ACTG Seqt

TAGC Seq2 AGCG Seq2 CTTG Seq3 TTGC Seq3
Al1100 Al2000 A|1000 A|l1000
Cl0101 cl|lo110 Ci|1100 C{0101
G|0oO0O11 G|0102 G{0012 G|0O0O11
T|I1010 T|0010 Ti0120 TI1110

I = 4 bits /=6bits\l=~6bits I = 4 bits

Step 3 ACTG Seq1 ACTG Seql
AGCG Seq2 AGCG Seq2
CTTG Seq3 TTGC Seq3
Al2000 Al2100
cCl1110 clo111
G|0103 Gl|0o112
TI0120 T{i1010
| = 4.6 bits /= 3.0 bits
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Another conserved sequence lying upstream of TATA and present in about one-half of ver-
tebrate promoters is the CCAAT box, which is thought to be the site of binding of addi-
tional proteins that influence preinitiation and later stages of transcription. Another con-
served regulatory site is the GC box. These boxes lie at variable distances from TSS and
function in either orientation. Weight matrices that describe them have been produced
(Bucher 1990).

The region upstream of the core promoter and other enhancer sites in the neighbor-
hood of a gene also influences gene expression. A variety of transcription factors, some
affected by environmental influences such as hormone levels, bind to DNA-binding sites
in these regions. These factors can also form large multiprotein complexes that interact
with a preinitiation complex to induce or repress transcription. These interactions can
cause remodeling of the local nucleosome structure by histone acetylation or deacetylation,
conformational changes in the transcription complex, and possibly phosphorylation of

Figure 8.12. The Hertz, Stormo, and Hartzell method for locating common DNA-binding sites for reg-
ulatory proteins in unaligned sequences (Hertz and Stormo 1999). This example illustrates how the algo-
rithm compares a fixed window of sequence (length 4 in this example) in a set of sequences assumed to
carry one site for a DNA-binding protein that cannot be readily found by aligning the sequences. The
object is to find the 4-mer in each sequence that constitutes as nearly identical a pattern as can be found
in all of the sequences. The user specifies the number of matrices that can be saved by the program for
further analysis. Redundant matrices are eliminated. Step 1. The sequence of the first four bases from
sequence 1 is first chosen. An analysis of only this one window is shown in this example. Normally the
program would start with all possible 4-long words in each of the sequences, thus producing a total num-
ber of 6 possible step 1 matrices in this example. Step 2. The sequence window chosen in step 1 is moved
across sequence 2, then sequence 3, and so on until all possible windows in all sequences have been select-
ed. If a sufficient number of saved matrices is specified, this procedure would be repeated for all of the
six saved matrices in step 1. Only one matrix is shown for illustration purposes. At each selected posi-
tion, the number of matches with sequence 1 is recorded in a scoring matrix. The amount of sequence
conservation in each column is calculated as the information content (I¢) of the column, and the I¢ val-
ues for each column are then added to give I of the matrix. The best-scoring matrix is chosen. Calcula-
tion of the information content of a scoring matrix is discussed in detail in Chapter 4 (p. 195). Given a
position in a test sequence that is being examined for a match to a matrix column, the maximum uncer-
tainty of a matrix column is the number of questions that must be asked to find a match to the position
in a test sequence. Uncertainty is zero if only one base is represented and 2 if all four bases are repre-
sented equally. Information content of a column is 2 minus the uncertainty of the column. For example,
as each column in the first matrix in step 2 requires a single question to identify a match to a sequence
(for column 1, one question must be asked: “Does the matching sequence position have an A or a T?”),
then I of the matrix is 1+1+1+1=4. The first column of the second matrix in step 2 has two As, and no
other base is represented. Because no question need be asked, I is 2. A general method for calculating the
amount of information in a column c is given by Ic = X, {f,. log (fi./p;)} where fic 1s the fraction of each
base in the column and p; is the background frequency of base i in the sequences. If logarithms to the
base 2 are used, then I units are in bits, and if natural logarithms are used, I units are in nats. Step 3. The
sequence windows found in the highest-scoring matrix in step 2 are now compared to all other possible
windows in the remaining sequences. In this case, only one sequence remains and the next high-scoring
matrix is identified. Only one matrix is shown as an example; the maximum number that can be used for
further analysis will be determined by the specified number of matrices that can be saved by the program.
Additional steps (not shown) are then used to compare this best matrix with any remaining sequences
until all have been included. The final matrices provide a consensus sequence by using the base in each
column that has the highest score. The algorithm is greedy because the development of the highest-scor-
ing matrix depends on matches found in ancestor matrices based on a smaller number of alignments. On
the basis of this limitation and constraints provided by the user such as window size or matrix bias (see
text), and on the number of matrices saved, the algorithm is not guaranteed to provide the optimal
matrix for a large number of sequences.
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RNA Polll. The independent binding of proteins to separate DNA sites in the initiation
and upstream control regions is cooperative in that the binding of one protein to one site
enhances the binding of another protein molecule to a second site. In this manner, a series
of weak interactions between individual components is amplified by protein—protein inter-
actions to give an overall strong binding of the complex to the promoter.

An example of a mammalian gene with multiple regulatory elements that have been
defined by experiment is shown in Figure 8.13. The gene is the rat pepCK gene, which
encodes phosphoenol pyruvate kinase, a major enzyme for metabolism of glucose in mam-
mals. This gene is regulated by four different hormones—glucocorticoids, glucagon,
retinoic acid, and insulin—through a system of binding sites for particular transcription
factors in the promoter region. The response of the cell to these agents involves binding of
the hormone to a specific receptor protein and the subsequent binding of the
hormone-receptor complex to specific sequences called response elements (REs) in the
promoter region of responsive genes. The pepCK gene also responds to the level of cyclic
AMP (cAMP) through a similar interaction. In addition, the gene has other characteristic
and essential sequence features for RNA Polll recognition, such as the TATA box, the ini-
tiation region (INR) that includes the transcription start site (TSS) at +1. The REs are
flanked by binding sites for other transcription factors that influence the effect of the
bound receptor through protein—protein interactions.

Thus, many different transcription factors may be involved in the regulation of a par-
ticular eukaryotic gene. The sequence of the DNA-binding site recognized by many of
these TFs is not known, or only a few sites are known, thus limiting the ability to predict
promoter-binding sites for these TFs. In some cases, enough DNA-binding sites are known
to produce a weight matrix, described earlier in this chapter (Table 8.5). However, such
scoring matrices tend to be much more variable than prokaryotic matrices, so that the
matrix is less useful for discriminating true binding sites from random sequence variation.

retinoic acid glucocorticoid
receptor receptor C/EBP

T~ )

AF1 AF2 GR1 GR2 AF3

NF1 CRE TATA INR
RARET RAREZ2 ,,
P e I44
—-445 -410--380 -360 -325, -114 -90 -27 +1
-~ S~NLO 0 e >

Figure 8.13. Regulatory elements in the promoter of the rat pepCK gene. This gene has been analyzed
experimentally for the presence of transcription-factor-binding sites. The relative positions of these
elements in a fusion of the pepCK promoter to a reporter gene are illustrated (Yamada et al. 1999).
The glucocorticoid response unit (GRU) includes three accessory factor binding sites (AF1, AF2, and
AF3), two glucocorticoid response elements (GR1 and GR2), and a cAMP response element (CRE).
A dimer of glucocorticoid receptor bound to each GR element is depicted. The retinoic response unit
(RAU) includes two retinoic acid response elements (RARE1 and RARE2) that coincide with the AF1
and AF3, respectively (Sugiyama et al. 1998). The sequences of the two GR sites and the binding of
the receptor to these sites are shown. These sites deviate from the consensus sites and depend on their
activity on accessory proteins bound to other sites in the GRU. This dependence on accessory pro-
teins is reduced if a more consensus-like (canonical) GR element comprising the sequence TGTTCT
is present. The CRE that binds factor C/EBP is also shown.
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Such a matrix can be used to predict putative binding sites for a TF in a particular pro-
moter. Because TF binding sites may be detectable on either forward and complementary
strands or present on both forward and complementary strands in a repeated configura-
tion, both strands of the test sequence are generally searched for binding sites. Interpolat-
ed HMMs described previously for identifying prokaryotic genes have also been used for
eukaryotic promoter identification (Ohler et al. 1999). This method identifies the most
informative lengths of sequence in promoters and uses them for promoter prediction in
test sequences.

As shown in Figure 8.13, binding sites for TFs cluster in the promoter region. This clus-
tering is the basis of one method for promoter prediction discussed below. A search for
binding sites in the EPD database (Table 8.6) and a human first exon database showed that
tandem binding sites for the same TF that are approximately 10 bp apart and expressing
with a periodicity of 145 bp can be detected. Such studies confirm that searching for mul-
tiple TF binding sites can provide a more reasonable prediction of promoter function
(TIoshikhes et al. 1999).

Complexes of TFs bound to DNA can either activate or repress transcription through
their interaction with RNA Polll. Some quite remarkable variations of this theme can
occur (Yamamoto et al. 1998). First, changes in the RE or in the binding of nearby acces-
sory proteins can determine whether the binding of glucocorticoid response elements (GR)
activates or represses transcription. Second, the GR can influence transcription simply by
forming a complex with other factors and without binding to DNA itself. Thus, predicting
the regulatory behavior solely on the basis of finding REs in a promoter region is probably
not feasible without additional consideration of interactions among the regulatory ele-
ments and proteins themselves (Bucher et al. 1996).

RNA Polll Promoter Classification

Eukaryotic promoter sequences show variation not only between species, but also among
genes within a species. A gene that is regulated by a certain set of signals during develop-
ment will have a significantly different promoter than a second gene that responds to a dif-
ferent set of signals. For this reason, a set of promoters in an organism that share a regula-
tory response have been analyzed, as these promoters are expected to share common
regulatory elements. Such an analysis has been performed on the genes expressed in skele-
tal muscle. Binding sites for TFs in skeletal muscle promoters are used to make scoring
matrices, which are then used to find other muscle-regulated genes in genomic sequences.
The ability of individual scoring matrices to locate signals in known muscle promoters,
while at the same time not finding signals in control promoters, is determined. The align-
ment scores for each matrix are then weighted in favor of the most informative matrices.
The sum of these weighted scores gives a value between 0 (no promoter) and 1 (has pro-
moter function), called the logit value of the promoter. Similar promoters from closely
related species are also used to enhance the ability of the method to discriminate muscle
promoters from other promoters in a method described as phylogenetic footprinting
(Wasserman and Fickett 1998).

Because the usefulness of different scoring matrices for TF binding sites is variable, other
methods have been devised for weighting the scores obtained for an individual weight
matrix on test sequences. An additional development includes a new algorithm for deter-
mining the cutoff value using the background rate estimated on non-promoters (see
TFBIND in Table 8.6). Scores of matches of weight matrices to test sequences follow the
extreme value distribution (p. 326), and have also been used to evaluate matches (Claver-
ie 1994; Claverie and Audic 1996). The application of neural networks for devising a
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Table 8.6. Promoter prediction programs, Web pages, and related information

Name

Web address

Reference

BDNA video analysis of
transcription factor binding
sites using conformational and
physicochemical DNA features
ConslInspector—see Transfac database®
Core-Promoter—for finding
RNAPII promoters of human
genes by quadratic discriminant
analysis
EPD Eukaryotic promoter database

EpoDB genes expressed during
vertebrate erythropoiesis

FastM for transcription factor
binding sites

GeneExpress analysis of
transcriptional regulations
with TRRD database

Genome inspector for combined
analysis of multiple signals in
genomes

Grailll” prediction of TSS by
neural networks based on scores
of characteristic sequence patterns
and composition

MAR-FINDER for finding matrix
attachment regions

Matlnd—see Transfac database

MatInspector®~see Transfac database

Nuclear (including glucocorticoid)
receptor resource*

Mirage (Molecular Informatics
Resource for the Analysis of
Gene Expression)?

NNPP Promoter Prediction by
Neural Network for prokaryotes
or eukaryotes

NSITE-search for TF binding sites
or other consensus regulatory
sequences

OOTFD Object-Oriented
Transcription Factor Database

PLACE plant cis-acting regulatory
elements

PlantCARE plants cis-acting
regulatory elements

Pol3scan for RNAP ITI/tRNA
promoter sequences using pattern
scoring matrices

Polyadq for locating polyadenylation
sites

see GeneExpress

http://www.gsf.de/biodv/consinspector.html
http://argon.cshl.org/genefinder/
CPROMOTER/index.htm

http://www.epd.isb-sib.ch/;
http://www.epd.isb-sib.ch/
promoter_elements/

http://www.cbil.upenn.edu/

http://genomatix.gsf.de/cgi-bin/fastm2/fastm.pl

http://wwwmgs.bionet.nsc.ru/ systerﬁs/
GeneExpress/

http://www.gsf.de/biodv/genomeinspector.html

http://compbio.ornl.gov/
see also book Web site

http://www.ncgr.org/MarFinder/

http://www.gsf.de/biodv/matinspector.html
(for downloading)
http://www.gsf.de/cgi-bin/matsearch.pl
(for interactive web page)
http://nrr.georgetown.edu/GRR/GRR.html

http://www.ifti.org/

Ponomarenko et al. (1999)

Zhang (1998a, b)

Bucher (1990); Périer et al. (1999, 2000)

Stoeckert et al. (1999)
Klingenhoff et al. (1999)

Kolchanov et al. (1999a, b)
Quandt et al. (1997)

Uberbacher and Mural (1991);
Uberbacher et al. (1996)

Kramer et al. (1997); Singh et al.
(1997)

Martinez et al. (1997)

see Web page

http://www.fruitfly.org/seq_tools/promoter.html Reese et al. (1996)

http://genomic.sanger.ac.uk/gf/gf.shtml

http://www.ifti.org/cgi-bin/ifti/ootfd.pl
http://www.dna.affrc.go.jp/htdocs/PLACE/
http://sphinx.rug.ac.be:8080/

PlantCARE/index.htm
http://irisbioc.bio.unipr.it/genomics.html

http://argon.cshl.org/tabaska/
polyadq_form.html

see Web site

Ghosh (1998)
Higo et al. (1999)
Rombauts et al. (1999)

Pavesi et al. (1994)

Tabaska and Zhang (1999)

Continued.
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Table 8.6. Continued.

Name Web address Reference
Promoter element weight matrices http://www.epd.isb-sib.ch/promoter_elements/ Bucher (1990)
and HMMs
Promoter II for recognition of http://www.cbs.dtu.dk/services/promoter/ Knudsen (1999)
Polll sequences by neural networks
PromoterScan® http://cbs.umn.edu/software/proscan/ Prestridge (1995) and see Web site
promoterscan.htm
RegScan for promoter classification http://wwwmgs.bionet.nsc.ru/mgs/programs/  Babenko et al. (1999)
classprom/
Sequence walkers for graphical http://www-lecb.ncifcrf.gov/~toms/walker/ Schneider (1997)
viewing of the interaction of narcoverlogowalker.html
regulatory protein with DNA
binding site
Signal scan for transcriptional elements  http://bimas.dcrt.nih.gov:80/molbio/signal/ Prestridge (1991, 1996)
TargetFinder for promoter searching  http://hercules.tigem.it/TargetFinder.html Lavorgna et al. (1999)
in selected annotated sequences
TESS for searching for transcription http://www.cbil.upenn.edu/tess/ Schug and Overton (1997a, b)
factor binding sites
Ttbind for transcription factor http://tfbind.ims.u-tokyo.ac.jp Tsunoda and Takagi (1999)
binding sites
Thyroid receptor resource® http://xanadu.mgh.harvard.edu/receptor/ see Web page
trrfront.html
Transfac programs providing search http://www.gsf.de/cgi-bin/matsearch.pl see http://www.gsf.de/
for TF binding sites. MatInd for biodv/staff_pub.html;
making scoring matrices and Kniippel et al. (1994);
MatlInspector for searching for Quandt et al. (1995);
matches to matrices Heinemeyer et al. (1999);
Klingenhoff et al. (1999)
TRRD transcriptional regulatory Kolchanov et al. (1999a)
region database; see
GeneExpress
TSSG, like TSSW but based on http://genomic.sanger.ac.uk/gf/gf.shtml; see Web site
sequences from a different http://dot.imgen.bem.tme.edu:9331/
promoter database seq-search/gene-search.html
TSSW; recognition of human http://genomic.sanger.ac.uk/gf/gf.shtml; see Web site
PollIl promoter region and http://dot.imgen.bcm.tmc.edu;:9331/
start of transcription by linear seq-search/gene-search.html
discriminant function analysis
Yeast cell cycle gene retrieval and http://www.ncbi.nlm.nih.gov/CBBresearch/ Wolfsberg et al. (1999)
promoter analysis Landsman/Cell_cycle_data/upstream_seq.html;

http://www.ncbi.nlm.nih.gov/CBBresearch/
Landsman/Cell_cycle_data/
Yeast cell cycle analysis project http://genome-www.stanford.edu/ Spellman et al. (1998)
cellcycle/info

Multiple methods of analysis are offered at sites http://dot.imgen.bcm.tmc.edu:9331/seq-search/gene-search.html and on
http://genomic.sanger.ac.uk/gf/gf.shtml. Lists of Web sites are given at: http://linkage.rockefeller.edu/wli/gene/programs.html. A com-
parison of many of the promoter prediction programs included in this table and several additional ones on a small number of pro-
moter-containing sequences not used in program training is available (Fickett and Hatzigeorgiou 1997).

* MatInspector DOS, Windows 95 and NT, and Mac versions and Conslnspector DOS and Mac versions available by FTP from ari-
ane.gsf.de/pub/.

® Grailll must be given both gene and promoter sequences.

¢ Includes links to other receptor databases.

4 The transcriptional informatics sitt MIRAGE includes links to regulatory data sites and programs.

¢ Accepts one person at a time; DOS version also available.
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weighting scheme as used in the gene prediction program GeneParser would be another
method for weighting a group of scoring matrices to give maximum discrimination
between promoter and non-promoter sequences.

Gene microarrays discussed in Chapter 10 (p. 519) can assist with discovering which
genes are regulated in the same manner and therefore should have binding sites for the same
TFs (Cho et al. 1998; Eisen et al. 1998; Claverie 1999; Golub et al. 1999; Zhang 1999a,b). The
promoter regions of these genes can be compared. The 5-mer content promoter sequences
of yeast genes that are co-regulated during the cell cycle have been analyzed by the program
weonsensus (described above, p. 365) and a Gibbs DNA sampler (similar to the Gibbs motif
sampler described in Chapter 4 but adapted for DNA sequences) (Spellman et al. 1998;
Zhang 1999b) and the results are available on a Web site (see Table 8.6).

In another study, pentamers and hexamers that are overrepresented among the
upstream regions of cell-cycle-regulated genes were identified using a simple statistical
sampling procedure. The sequences are divided into two sets; one set comprises cell cycle
genes and the second set is the rest of the genome. A hexamer is then counted in both sets.
The background number in the control set is used to identify overrepresented oligonu-
cleotides in the cell cycle set. The actual number counted in the cell cycle genes is then
compared to this expected value using a Chi-square test. For example, the hexamer
ACGCGT is found with a variable location and orientation in the promoters of many cell
cycle genes that are expressed during the late phase of the G, phase of the yeast cell cycle,
whereas the pentamer CCCTT is located at positions —104 to —202 in one orientation in
early G; (Wolfsberg et al. 1999). These types of analyses, which are available on Web sites
(Table 8.6), demonstrate that computational analysis of the promoters of co-related genes
reveals the presence of highly representative sequence patterns. Although some of these
patterns correspond to the binding sites of transcription factors, others play a role that has
yet to be determined. A similar method of oligomer counting has been used to identify
overrepresented oligonucleotides with intron-containing genes in yeast and also to identi-
fy signals for localization of RNAs to mitochondria (Jacobs Anderson and Parker 2000).
Hence, the oligonucleotide scoring method shows considerable promise for the identifica-
tion of regulatory sites in co-regulated genes.

Prediction Methods for RNA Polll Promoters

A number of methods for predicting the location of RNA Polll promoters in genomic
DNA have been derived. Several Web sites that offer an analysis are listed in Table 8.6. Also
shown in this table are a number of Web sites that provide databases and information on
TFs and their DNA-binding sites and other information related to transcriptional regula-
tion in eukaryotes. A test analysis of these and several additional programs not listed in the
table on a small number of new promoter sequences has been described previously (Fick-
ett and Hatzigeorgiou 1997). The programs predicted 13-54% of the TSSs correctly, but
each program also predicted a number of false-positive TSSs.

Samples of methods of analysis and programs included in Table 8.6 are listed below (for
additional information on program availability, see Fickett and Hatzigeorgiou 1997; Frech
et al 1997).

1. Use of a neural network trained on the TATA and Inr sites, allowing for a variable spac-
ing between the sites (NNPP) or a neural network—genetic algorithm approach to iden-
tify conserved patterns in RNA Polll promoters and conserved spacing among the pat-
terns (PROMOTER?2.0).

2. Recognition of a TATA box using a weight matrix and an analysis of the density of TF
sites. The density of TF sites at least 50 bp apart in known promoter sequences of the




GENE PREDICTION = 373

eukaryotic promoter database (EPD) and on a set of non-promoter primate sequences

from GenBank is compared and used to produce a promoter recognition profile (Pro-
moterScan).

3. Use of a linear discriminant function as described above for gene prediction, but in this
case, used for distinguishing features of promoter sequences from non-promoter
sequences. The function is based on a TATA box score, triplet base-pair preferences
around TSS, hexamer frequencies in consecutive 100-bp upstream regions, and TF
binding-site prediction (TSSD and TSSW).

4. A quadratic discriminant analysis similar to that described above for gene prediction,
but in this case, applied to variable lengths of sequence in the promoter region. The fre-
quency of pentamers in a contiguous set of thirteen 30-bp windows and also in a sec-
ond set of five 45-bp windows in the same 240-bp region was compared. This double-
overlapping window appeared to reduce the background noise and to enhance the
transcriptional signal from the promoter region (CorePromoter).

5. Searches of weight matrices for different organisms against a test sequence
(TFSearch/TESS). Use of user-provided limits on type of weight matrix, key set of
matches (core similarity) to individual matrices, and range of match scores (matrix sim-
ilarity), and also generation of new matrices (MatInspector and Conslnspector).

6. Evaluation of test sequences for the presence of clustered groups or modules of TF
binding sites that are characteristic of a given pattern of gene regulation (FastM).
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