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INTRODUCTION

DATABASE SIMILARITY SEARCHES have become a mainstay of bioinformatics. Large sequenc-
ing projects in which all the genomic DNA sequence of an organism is obtained have
become quite commonplace. The genomes of a number of model organisms have been
sequenced, including the budding yeast Saccharomyces cerevisiae, the bacterium Escherichia
coli, the worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the human
species Homo sapiens. These species have also been subjected to intense biological analysis
to discover the functions of the genes and encoded proteins. Thus, there is a good deal of
information available as to the biological function of particular sequences in model organ-
isms that may be exploited to predict the function of similar genes in other organisms. In
addition to genomic DNA sequences, complete cDNA copies of messenger RNAs that
carry all the sequence information for the protein products have also been obtained for
some of the expressed genes of various organisms. Translation of these cDNA copies pro-
vides a close-to-correct prediction of the sequence of the encoded proteins. Because
obtaining intact cDNA sequences is laborious and time-consuming, a common practice is
to make a library of partial cDNA sequences from the expressed genes, and then to perform
high-throughput, low-accuracy sequencing of a large number of these partial sequences,
known as expressed sequence tags (ESTs). The objective of an EST project is to find enough
sequence of each cDNA and to have enough accuracy in the sequence that the amino acid
sequence of a significant length of the encoded protein can be predicted. Overlapping ESTs
can then be combined, and interesting ones can be found by database similarity searches.
The full cDNA sequence of these genes of interest may then be obtained. Once all the
sequence information is collected and placed in the sequence databases, the big task at
hand is to search through the databases to locate similar sequences that are predicted to
have a similar biological function through a close evolutionary relationship.

Sequence database searches can also be remarkably useful for finding the function of
genes whose sequences have been determined in the laboratory. The sequence of the gene
of interest is compared to every sequence in a sequence database, and the similar ones are
identified. Alignments with the best-matching sequences are shown and scored. If a query
sequence can be readily aligned to a database sequence of known function, structure, or
biochemical activity, the query sequence is predicted to have the same function, structure,
or biochemical activity. The strength of these predictions depends on the quality of the
alignment between the sequences. As a rough rule, if more than one-half of the amino acid
sequence of query and database proteins is identical in the sequence alignments, the pre-
diction is very strong, As the degree of similarity decreases, confidence in the prediction
also decreases. The programs used for these database searches provide statistical evalua-
tions that serve as a guide for evaluation of the alignment scores.

Previous chapters have described methods for aligning sequences or for finding com-
mon patterns within sequences. The purpose of making alignments is to discover whether
or not sequences are homologous or derived from a common ancestor gene. If a homolo-
gy relationship can be established, the sequences are likely to have maintained the same
function as they diverged from each other during evolution. If an alignment can be found
that would rarely be observed between random sequences, the sequences are predicted to
be related with a high degree of confidence. The presence of one or more conserved pat-
terns in a group of sequence is also useful for establishing evolutionary and structure—func-
tion relationships among sequences.

The above methods of establishing sequence relationships have been utilized in database
searches that are summarized in Table 7.1. In addition to standard searches of a sequence
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database with a query sequence (Table 7.1A), a matrix representation of a family of relat-
ed protein sequences may be used to search a sequence database for additional proteins
that are in the same family (Table 7.1B,C,D,), or a query protein sequence may be searched
for the presence of sequence patterns that represent a protein family to determine whether
the sequence belongs to that particular family (Table 7.1E). Genomic DNA sequences may
also be searched for consensus regulatory patterns such as those representing transcription
factor-binding sites, promoter recognition signals, or mRNA splicing sites; these types of
searches are discussed in Chapter 8. 4

Searching a sequence database for sequences that are similar to a query sequence is the
most common type of database similarity search. The search provides a list of database
sequences with which the query sequence can be aligned. Once a list is available, addition-
al searches may be performed using one of the initially found sequences as a query
sequence. In this manner, the search may be expanded to find more distant relatives of the
initial query sequence. Once a family of related sequences is found, the entire sequence
may be aligned in a multiple sequence alignment, or the sequences may be analyzed for the
occurrence of short regions of similarity, as described later in the chapter. Chapter 10
describes the use of those repetitive searches to identify families of paralogous proteins.
Web sites and computational resources that support this type of database similarity
searching are described in Table 7.2.

A common reason for performing a database search with a query sequence is to find a
related gene in another organism. For a query sequence of unknown function, a matched
gene may provide a clue as to function. Alternatively, a query sequence of known function
(e.g., a yeast gene) may be used to search through sequences of a particular organism (e.g,
a plant) to identify a gene that may have the same function. Sequences of an organism that
are collected for such purposes include genomic sequences (sequences of BAC clones or
the assembled sequence of an entire chromosome), EST sequences, and cDNA/protein
sequences for particular genes. Database similarity searches may use one type of sequence
(e.g., an EST sequence) to find matching EST sequences, genomic DNA sequences, or
cDNA/protein sequences in the same organism. The Institute for Genomic Research
(TIGR) has indexed a large number of EST sequences of model organisms in this manner
(Table 7.2). These indexed databases may also be searched with a query sequence to iden-
tify related sequences.

When database searches were first attempted, machine size and speed were limiting factors
that prevented use of a full alignment program, such as the dynamic programming algo-
rithm, for each search. Although these considerations no longer apply due to the avail-
ability of more powerful machines, the sheer number of such searches that are presently
performed on whole genomes creates a need for faster procedures. Hence, two methods
that are at least 50 times faster than dynamic programming were developed. These meth-
ods follow a heuristic (tried-and-true) method that almost always works to find related
sequences in a database search but does not have the underlying guarantee of an optimal
solution like the dynamic programming algorithm. The first rapid search method was
FASTA, which found short common patterns in the query and database sequences and
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Table 7.2. Web resources for performing database searches with a simple query sequence

Server/program Web address or FIP site Reference
BLAST-—Basic Local Alignment http://www.ncbinlm.nih.gov/BLAST Altschul et al. (1990, 1997);
Search Tool* FTP to ncbi.nlm.nih.gov/blast/executables Altschul and Gish (1996)
WU-BLAST® sites that run WU-BLAST 2.0 are listed at Altschul et al. (1990, 1997);
http://blast.wustl.edu Altschul and Gish (1996)

programs obtainable at http://blast.wustl.edu/
blast/executables with licensing agreement

FASTA® http://fasta.bioch.virginia.edu/fasta
FTP to ftp.virginia.edu/pub/fasta Pearson {1995, 1996, 1998, 2000)
BCM Search Launcher http://dot.imgen.bem.tmc.edu:9331/ see Web site
{Baylor College of Medicine)
TIGR gene indices search http://www.tigr.org see Web site

Additional resources for performing a database sequence search using a dynamic programming method are described in Table 7.7.
There are also many other BLAST and FASTA servers on the Web, including ones for searches in specific organisms (see Chapter 10).
The TIGR site is given as an example of such a site.

a A stand-alone BLAST server may also be established on a local machine running Windows, UNIX, or MacOS.

b Executable programs for UNIX platforms are available from the FTP site. Note the advice given to increase search speed in pro-
tein searches by an order of magnitude (http://blast.wustl.edu/blast/TO-FLY.html

< Executable programs that run on PC, Macintosh, or UNIX platforms are available from the FTP site. The FASTA package also
includes programs for performing pair-wise sequence alignments and for a statistical analysis of alignment scores (see Chapter 3). A
number of Web sites offer FASTA database search, including the FASTA server and the BCM Search Launcher.

joined these into an alignment. BLAST, the next method, was similar to FASTA but gained
a further increase in speed by searching only for rarer, more significant patterns in nucle-
ic acid and protein sequences. BLAST is very popular due to availability of the program on
the World Wide Web through a large server at the National Center for Biotechnology
Information (NCBI) (http://ncbi.nlm.nih.gov) and at many other sites. The NCBI BLAST
server site receives tens of thousands of requests a day. Both FASTA and BLAST have
undergone evolution to recent versions that provide very powerful search tools for the
molecular biologist and are freely available to run on many computer platforms. They are
discussed further below.

With the more recent increased speed and size of computers and algorithmic improve-
ments in the Smith-Waterman dynamic programming algorithm (described in Chapter 3),
database similarity searches may also be performed by a search based on a full sequence
alignment. The searches are 50-fold or more slower than FASTA and BLAST, but control
experiments have revealed that more distantly related sequences will usually be found in a
database search, provided that the appropriate statistical methods are used. A popular ver-
sion of the Smith-Waterman program is SSEARCH (FTP to fitp.virginia.edu/pub/fasta),
which is also available on Web sites but usually should be established on a local computer
due to the length of time required for a search. Another recently introduced method for
sequence alignment that has been used in database searches is the Bayes block aligner,
described in Chapter 3 (p. 126). This program found more remotely similar sequences in
protein families based on three-dimensional structure than did SSEARCH but is a much
slower method (Zhu et al. 1998).

One very important principle for database searches is to translate DNA sequences that
encode proteins into protein sequences before performing a database search. DNA
sequences comprise only four nucleotides, whereas protein sequences comprise 20 amino
acids. Due to the fivefold larger variety of sequence characters in proteins, it is much easi-
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er to detect patterns of sequence similarity between protein sequences than between DNA
sequences. Pearson (1995, 1996, 2000) has proven that searches with a DNA sequence
encoding a protein against a DNA sequence database yield far fewer significant matches
than searches using the corresponding protein sequence. To assist with an analysis based
on translation of DNA sequences, both BLAST and FASTA provide programs that trans-
late the query DNA sequence, the database DNA sequence, or both sequences in all six
reading frames before making comparisons. An example of an exception to this rule would
be a comparison of nucleic acid sequences in the same organism to locate other database
entries of the same sequence. In such cases, a nucleic acid search would be needed.

When comparing methods of searching protein sequence databases, the sensitivity and
selectivity of the methods should be considered. Sensitivity refers to the ability of the
method to find most of the members of the protein family represented by the query
sequence. Selectivity refers to the ability of the method not to find known members of
other families as false positives. Ideally, both sensitivity and selectivity should be as high in
quality as possible. A suitable method for describing both features is to describe the degree
of coverage of families at a given level of false positives. Although similarity among many
family members based on sequence similarity is readily identifiable, for some family mem-
bers the similarity is weak and difficult to identify.

Identification of protein families is easier when the families are based on sequence sim-
ilarity rather than on structural similarity, as discussed in detail in Chapter 9. Proteins that
have the same structural features may have little, if any, sequence similarity. To facilitate a
match of the query protein to a protein of known three-dimensional structure, protein
sequences are grouped into families based on sequence similarity. All members of this fam-
ily have sequence similarity with at least one of the remaining members, but not necessar-
ily with all of the members, as illustrated in Figure 7.1. Families that include a protein of
known three-dimensional structure are then identified. If a similarity search identifies a
match of a query sequence with a member of such a protein family, the query sequence
may be predicted to have a similar structure.

Query
matches

sequence B @

Figure 7.1. Structural prediction in database similarity searches. Sequences A—F refer to six members
of a protein family defined by sequence similarity between some or all of the members. The sequences
are represented as nodes on a graph, and similarity between sequences is represented by joining the
nodes with a line (or edge). Note that not all nodes are joined. Thus, sequence A has detectable simi-
larity to sequence B and to sequence C, but the relationship between sequence B and sequence C is
not easily detectable. Suppose that sequence C can be aligned with sequence F, a protein of known
three-dimensional structure. Hence, all members of this family may be predicted to have the same
structure provided that the pair-wise alignments are significant and convincing. To gain further sup-
port for this prediction, improved alignments and identification of more family members to help
bridge the similarity gaps are needed.
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For protein sequence searches, two recent developments have greatly assisted with the
finding of more distantly related sequences. First, combinations of amino acid substitution
matrices and gap penalty scores that are most suitable for searches have been identified.
Second, improved methods for establishing the statistical significance of a sequence align-
ment have been developed. Thus, whether a weak alignment between a query sequence and
a database sequence is significant can be quite readily and confidently assessed. These top-
ics are extensively discussed in Chapter 3 and on the book Web site and are reviewed
below. Use of these new tools has also greatly improved the ability to balance sensitivity of
a database search with selectivity.

There are a number of choices of amino acid substitution matrices for use in similarity
searches of protein sequence databases (Henikoff and Henikoff 2000). The best perform-
ing matrices are now widely used, and they often are the default choice of the database
search program. The most important consideration to be made is that the scoring matrix
be in the log odds form so that statistical significance of the search results can be properly
evaluated. In the log odds matrix, each matrix entry is the observed frequency of substitu-
tion of amino acids A and B for each other in proteins known to be related divided by the
expected frequency of a chance substitution based on the frequency of A and B in proteins;
the resulting ratio is then converted to a logarithm. The score is simply the logarithm of
the odds that a pair of aligned amino acids is found because the sequences are related to a
chance alignment of the pair in an alignment between unrelated sequences. The log odds
form is useful because the probabilities that successive pairs in an alignment are related is
the product of the odds of each pair. When log odds values are used, the probabilities may
be found by addition in a much simpler calculation. Choice of the best scoring matrix for
sequence alignments is discussed in detail in Chapter 3 and on the book Web site and is
reviewed below.

PAM250 Scoring Matrix

For a long time, the Dayhoff PAM250 matrix was used for database searches. This scoring
matrix is based on an evolutionary model that predicts the types of amino acid changes
over long periods of time. The matrix is based on tallying the observed amino acid changes
in a closely related group of proteins that were 85% identical. The proteins were organized
into an evolutionary tree, and the predicted amino acid changes in the tree were used to
estimate the frequency of substitution of each amino acid for another. These frequencies
were then normalized to those expected if 1% of the sequence were to change, giving the
PAMI1 matrix. This level of change roughly corresponds to those amino acid changes
expected over a period of 50 million years of evolutionary history. The substitution fre-
quencies in the PAM1 matrix were then extrapolated to predict the changes occurring over
longer periods of evolutionary time. For example, if D substitutes for E in the first PAM
period, then in the second period, there is an additional chance that D might substitute for
E. However, it is also possible that in a second PAM period the initial D substitution might
revert to E or change to any other amino acid. As more time passes, the type and frequen-
cy of each substitution between the beginning and end of the time period will change.
PAM250 represents a period of time at which only 20% of the amino acids will remain
unchanged, but the expected frequencies are extrapolated many times from those observed
in proteins that are 85% similar. Additional information concerning more recent substitu-
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tion matrices that are based on an evolutionary model is discussed in Chapter 3 and on the
book Web site. For many types of database searches, the PAM250 scoring matrix has been
replaced by the BLOSUM matrices.

BLOSUMG62 Scoring Matrix

The amino acid substitution matrix used by the BLAST programs is the BLOSUM®62 scor-
ing matrix. This matrix represents frequencies of amino acid substitutions observed in a
large number of related proteins, including some quite similar and some quite different
protein sequences. The observed substitutions are all lumped together to provide average
frequencies of substitutions without regard to the degree of divergence between sequences.
This approach appears to be more suitable for similarity searches in databases than using
the Dayhoff PAM250 matrix, probably because sequences separated by any evolutionary
distance may be more readily recognized. The Dayhoff matrices are also based on a much
smaller data set than the BLOSUM62 matrix. The BLOSUM scoring matrices were gener-
ated by S. Henikoff and J.G. Henikoff (1992), who searched for common sequence patterns
(blocks) of the same length among all of the related proteins in the Prosite catalog (see p.
428). They then added some additional related sequences in the current databases at the
time and scored the columns in a multiple sequence alignment of these patterns for amino
acid substitutions. In scoring the columns, some amino acid substitutions were much
more common than others because many of the sequences had the same amino acid. The
resulting BLOSUM matrices have a number to designate how much these repeated occur-
rences were weighted. The BLOSUM62 matrix uses only 62% of the repeats in one column
and thereby reduces the relative weight given to those substitutions in the matrix. Anoth-
er scoring matrix, BLOSUM50, which weights the repeated substitutions somewhat less,
has been found to be more suitable for database searches by the FASTA and SSEARCH
programs, which use different algorithms from BLAST. BLOSUM matrices give the best
results when the appropriate gap opening and gap extension are used, as discussed in
Chapter 3.

Other Scoring Matrices

In addition to the BLOSUM amino acid substitution matrices, a number of other scoring
matrices have been devised. The usefulness of various combinations of search programs
and substitution matrices for identifying that largest possible number of related sequences
in a database search, including remotely related sequences, has been studied in consider-
able detail. These studies are extensively reviewed and referenced in Chapter 3 and on the
book Web site.

Database similarity search programs tend to produce large volumes of output. It can
become difficult to screen this volume of material and to assess whether or not the more
remotely related sequences are really related to the query sequence. Thus, it is important
to limit the sequence output; there are some relatively simple procedures that may be fol-
lowed for each program, as described below. For searches of protein databases, avoid repet-
itive alignments with the same sequence by limiting searches to the protein sequence
databases that are well curated, such as SwissProt and PIR, as opposed to translated Gen-
Bank sequences (the Genpept database).
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1.

METHODS
Yes
Choose a Perform search Repeat
sequence. | of protein database
sequence search using
database or a initially
translated DNA matched
sequence database
database.2 7 sequences as
queries.*
Perform search !
of DNA ' Make
sequence Search sequences multiple
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Translation of protein-encoding DNA sequences into protein sequences before performing sequence
comparisons has been shown to be a more effective way to identify related genes than direct compar-
isons of untranslated DNA sequences. This method also corrects for different codon usage, base com-
position, and other DNA sequence variations by different organisms. However, to search for a match-
ing DNA sequence in the same organism (e.g., a section of genomic DNA that is thought to encode a
protein is used as a query against an EST database for the organism), a nucleic acid search is more
appropriate. If the entire sequence does not encode a protein (e.g., the sequence is a genomic sequence
that includes introns), the sequence can be translated in all six reading frames to locate open reading
frames that may specify the amino acid sequence of a protein. The predicted translation product may
then be compared to a protein sequence database or a DNA sequence database that is translated in all
six reading frames. Alternatively, a gene annotation of the genomic DNA sequence—a predicted
amino acid sequence for the protein encoded by the gene that has been entered into the protein
sequence database—may be used, as described in Chapter 8. Masking low-complexity regions and
sequence repeats in the query sequence is also necessary in many cases because such regions tend to
give high-scoring alignments.

. The carefully annotated protein sequence database (e.g., PIR, SwissProt) will provide a more manage-

able output list of matched sequences. However, investigators may also wish to expand the search to
include predicted genes from gene annotations of genomic sequences (see note 1 and Chapter 8) that
are frequently entered into the DNA sequence translation databases (e.g., DNA sequences in the Gen-
Bank DNA sequence databases automatically translated into protein sequences and placed in the Gen-
pept protein sequence database). To compare a protein or predicted protein sequence to EST
sequences of an organism, the ESTs should be translated into all six possible reading frames (Pearson
2000):

A matched database sequence that is listed should have a small E score and a reasonable alignment
with the query sequence (or translations of protein-encoding DNA sequences should have these same
features). The E (expect value) of the alignment score between the sequences gives the statistical
chance that an unrelated sequence in the database or a random sequence could have achieved such a
score with the query sequence, given as many sequences as there are in the database. The smaller the
E score, the more significant the alignment. A cutoff value in the range of 0.01-0.05 is used (Pearson
1996). However, the alignment should also be examined for absence of repeats of the same residue
or residue pattern because these patterns tend to give false high alignment scores. Filtering of low-
complexity regions from the query sequence in a database search helps to reduce the number of false
positives. The alignment should also be examined for reasonable amino acid substitutions and for the
appearance of a believable alignment (see Chapter 3 flowchart for a summary). One of the sequences
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may be shuffled many times, and each random sequence may be realigned with the other sequence
to obtain a score distribution for a set of unrelated sequences. This distribution may then be used to
evaluate the significance of the true alignment score (Chapter 3).

4. Including these extra steps may find additional members of a protein family that has too low a
sequence similarity to the original query sequence to be detected in the first search.

5. These types of searches are discussed later in the chapter.

6. Methods and considerations that need to be made for producing a multiple sequence alignment are
discussed in Chapter 4. Additional relationships among the matched sequences may be found by per-
forming a phylogenetic analysis based on the multiple sequence alignments as described in Chapter 6.
Such a phylogenetic analysis can reveal which sequence of several found in an organism is most close-
ly related to a query sequence and therefore is the most likely of the group to have the same function
as the query sequence.

7. For performing a large number of searches, there is a definite advantage to setting up the search pro-
grams on a local machine, especially since versions of the programs that run on most computer plat-
forms are available. One can then set up batch commands or scripts (shell or Perl scripts) for pro-
cessing the sequences and managing the returned data. The NCBI staff provides assistance in the form
of SEALS (a system for analysis of lots of sequences) at http://ncbi.nlm.nih.gov/Walker/
SEALS/index.html (Walker and Koonin 1997).

FASTA is a program for rapid alignment of pairs of protein and DNA sequences. Rather
than comparing individual residues in the two sequences, FASTA instead searches for
matching sequence patterns or words, called k-tuples (Wilbur and Lipman 1983; Lipman
and Pearson 1985; Pearson and Lipman 1988). These patterns comprise k consecutive
matches in both sequences. The program then attempts to build a local alignment based
on these word matches. Due to the ability of the algorithm to find matching sequences in
a sequence database with high speed, FASTA is useful for routine searches of this type.
Comparable methods are the BLAST algorithm, which is faster, and of comparable sensi-
tivity for protein queries, and a Smith-Waterman dynamic programming algorithm, which
is much slower but more sensitive when full-length protein sequences are used as queries.
Detailed performance studies of these methods have been made, one showing that the
Smith-Waterman dynamic programming algorithm and FASTA outperformed BLAST
(Pearson 1995). The FASTA programs have all undergone recent enhancements that have
improved detection of more remotely related sequences. For sequence fragments, FASTA
is as good as Smith-Waterman methods. For DNA searches, FASTA is theoretically better
able than BLAST to find matches because a k-tuple smaller than the minimum obligatory
one of 7 (default size 11) for BLASTN (3 for TBLASTN, BLASTX, TBLASTX) may be used.
For reviews on using FASTA, see Pearson (1995, 1996, 1998). The following information
is largely based on these reviews and on information provided in the FASTA distribution
package.
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FASTA compares an input DNA or protein sequence to all of the sequences in a target
sequence database and then reports the best-matched sequences and local alignments of
these matched sequences with the input sequence. The input sequence is usually in the
standard FASTA format, but it is also very easy to change sequence formats, as described
in Chapter 2. FASTA finds sequence similarities between the query sequence and each
database sequence in four steps illustrated in Figure 7.2.

In the initial stage of a search for regions of similarity, FASTA uses an algorithmic
method known as hashing, illustrated in Table 7.3. In this method, a lookup table showing
the positions of each word of length k, or k-tuple, is constructed for each sequence. The rel-
ative positions of each word in the two sequences are then calculated by subtracting the
position in the first sequence from that in the second. Words that have the same offset
position are in phase and reveal a region of alignment between the two sequences. Using
hashing, the number of comparisons increases linearly in proportion to average sequence
length. In contrast, the number of comparisons in dot matrix and dynamic programming
methods increases between the square and the cube of the average sequence length. In
FASTA, the k-tuple length is user-defined and is usually 1 or 2 for protein sequences (i.e.
cither the positions of each of the individual 20 amino acids or the positions of each of the
400 possible dipeptides are located). For nucleic acid sequences, the k-tuple is 4-6, and is
much longer than for protein sequences because short k-tuples are much more common
due to the four-letter alphabet of nucleic acids. The larger the k-tuple chosen, the more
rapid, but less thorough, a database search.

Significance of FASTA Matches

The methods used by FASTA to report the significance of a database search were revised in
later versions, and use of the latest version FASTA3 is strongly recommended. Similar
methods are used by the database search program SSEARCH, which is based on a slower
Smith-Waterman type of alignment. The statistical scores provide a reliable indication as
to whether or not the alignment scores for sequences found in a database search are sig-
nificant. This analysis provides the probability that scores between unrelated sequences
could reach as high a value as those found for the higher-scoring alignments (Pearson
1998). The statistical distribution of scores found in a database search follows the extreme
value distribution, described in detail in Chapter 3 (p. 96).

Recall that the parameters of the extreme value distribution, u and X, vary with the
length and composition of the sequences being compared, and also with the particular
scoring system. In database searches, the expected score between the query sequence and
an unrelated database sequence increases in proportion to the logarithm of the length of
the database sequence. The parameters change when a different scoring system, e.g., a dif-
ferent scoring matrix or gap penalty, is used. FASTA calculates these parameters from the
scores found with unrelated sequences during the database search. Some of the sequence
scores in the database search arise from matches with related sequences and must be
removed before the statistical calculations are performed. FASTA performs these tasks in
the following manner:

1. The average score for database sequences in the same length range is determined.

2. The average score is plotted against the logarithm of average sequence length in each
length range.

3. The points are then fitted to a straight line by linear regression.

4. A z score, the number of standard deviations from the fitted line, is calculated for each
score.
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Figure 7.2. Methods used by FASTA to locate sequence similarities. (A) The 10 best-matching
regions in each sequence pair are located by a rapid screen. First, all sets of k consecutive matches are
found by a rapid method described below. For DNA sequences, k is usually 4-6 and for protein
sequences, 1-2. Second, those matches within a certain distance of each other (for proteins, 32 for
k=1 and 16 for k=2) are joined along with the region between them into a longer matching region
without gaps. The regions with the highest density of matches are identified. The calculation is very
much like a dot matrix analysis described in Chapter 3, but is calculated in fewer steps. The diago-
nals shown in A represent the locations of these common patterns initially found in the two
sequences. (B) The highest-density regions of protein sequences identified in A are evaluated using
an amino acid substitution matrix such as a PAM or BLOSUM scoring matrix. A corresponding
matrix may also be used for DNA sequences. The highest-scoring regions, called the best initial
regions (INIT1), are identified and used to rank the matches for further analysis. The best-scoring
INIT1 region is shown marked by an asterisk. (C) Longer regions of identity of score INITN are gen-
erated by joining initial regions with scores greater than a certain threshold. The INITN score is the
sum of the scores of the aligned individual regions less a constant gap penalty score for each gap
introduced between the regions. Later versions of FASTA include an optimization step. When the
INITN score reaches a certain threshold value, the score of the region is recalculated to produce an
OPT score by performing a full local alignment of the region using the Smith-Waterman dynamic
programming algorithm. By improving the score, this step increases the sensitivity but decreases the
selectivity of a search (Pearson 1990). INITN and OPT scores are used to rank database matches.
Finally, not shown, an optimal local alignment between the input query sequence and the best-scor-
ing database sequences is performed based on the Smith-Waterman dynamic programming algo-
rithm. (Reprinted, with permission, from Pearson and Lipman 1988.)

5. High-scoring, presumably related sequences, and also very low
scoring alignments that do not fit the straight line are removed
from consideration.

6. Steps 1-5 are repeated one or more times.

7. The known statistical distribution of alignment scores is used to
calculate the probability that a Z score between unrelated or ran-
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Table 7.3. Lookup method for finding an alignment

position 12 3 4 5 6 7 8 9 10 11
sequence 1 n ¢ s p t a - - - - -

position 1 2 3 45 6 7 8 9 10 11
a c s p

sequence 2 rok
position in offset

amino acid protein A protein B pos A - pos B
a 6 6 0

c 2 7 -5
k 11

n 1 -

p 4 9 -5
r 10

S 3 8 -5
t 5 -

Note the common offset for the 3 amino acids c, s, and p.
A possible alignment is thus quickly found

protein lncspta

protein2acsprk

Shown are fragments of two sequences that share a pattern c-s-p. All of the positions at which a given char-
acter is found are listed in a table. The positions of a given character in one of the sequences are then sub-
tracted from the positions of the same character in the second sequence, giving an offset in location. When the
offsets for more than one character are the same, a common word is present that includes those characters.
Common words, or k-tuples, in two sequences are found by this method in a number of steps proportional to
the sequence lengths.

dom sequences of the same lengths as the query and database sequence could be greater
than z,

The derivation of this equation is given in Chapter 3, page 108.

The expectation E of observing, in a database of D sequences, no alignments
with scores higher than z is given by e”P” and that of observing at least one score z is E
= 1 — ¢~ PP, For P<0.1, this relationship is approximated by E=DP as indicated below.

®

Normalized similarity scores are calculated for each score by the formula z’ = 50 + 10z.
Thus, an alignment score with a standard deviation of 5 has a normalized score of 100.
These normalized scores are reported in the program output.

9. The significance of an alignment score between a given sequence and a database
sequence may be further analyzed by aligning a sequence with a shuffled library or a
shuffled sequence with an unshuffled library (Pearson 1996) as described in Chapter 3,
page 116.

An example of a database search with FASTA, vers. 3 is shown in Figure 7.3.

iv'
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Versions of FASTA

There are several implementations of the FASTA algorithm (W. Pearson, release notes for
FASTA vers. 3 and earlier releases; Pearson et al. 1997; Pearson 1998) using newly devel-
oped algorithms (Zhang et al. 1997):

1. FASTA compares a query protein sequence to a protein sequence library to find similar
sequences. FASTA also compares a DNA sequence to a DNA sequence library.

2. TFASTA compares a query protein sequence to a DNA sequence library, after translat-
ing the DNA sequence library in all six reading frames.

3. FASTF/TFASTF and FASTS/TFASTS compare a set of short peptide fragments, as
obtained from analysis of a protein, against a protein sequence database
(FASTF/FASTS) or a DNA sequence database translated in all six reading frames
(TFASTF/TFASTS). The FASTF programs analyze a set of fragments following cleavage
and sequencing of protein bands resolved by electrophoreseis and the FASTS programs
data from a mass spectrometry analysis of a protein. Note that a different sequence for-
mat is required to specify the separate peptides (see http://fasta.bioch.virginia.
edu/fasta/).

Additional programs have been developed that are designed to align a DNA sequence
with a protein sequence, allowing gaps and frameshifts. If a DNA sequence has a high pos-
sibility of errors, such as EST sequences, the translated sequence may be inaccurate due to
amino acid changes or frameshifts. These programs are designed to go around such errors
by allowing gaps and frameshifts in the alignments. FASTX and TFASTX allow only
frameshifts between codons, whereas FASTY and TFASTY allow substitutions and
frameshifts within a codon. These programs have been shown to be very useful for gene
panning, the search for related sequences in EST databases (Retief et al. 1999).

1. FASTX and FASTY translate a query DNA sequence in all three reading forward frames
and compare all three frames to a protein sequence database.

2. TFASTX and TFASTY compare a query protein sequence to a DNA sequence database,
translating each DNA sequence in all six possible reading frames.

The above FASTA suite of programs is available as executable binary files for most com-
puter systems including Windows, Macintosh, and UNIX platforms (ftp.virginia.
edu/pub/FASTA).

The FASTA algorithm has also been adapted for searching through a pattern database
instead of a sequence database (Ladunga et al. 1996). FASTA-pat and FASTA-swap are
accessible at the Baylor College of Medicine Web site (http://dot.imgen.bcm.tmc.
edu:9331/seq-search/Options/fastapat.html). Instead of comparing a query sequence to a
sequence database, these programs compare the query sequence to a pattern database that
contains patterns representative of specific protein families (see below, p. 326). A match
between the. query sequence and specific database patterns is an indication of a familial
relationship between that sequence and the sequences from which those database patterns
were generated.

Matching Regions of Low Sequence Complexity

FASTA and SSEARCH (described below) do not provide a method for avoiding low-com-
plexity sequences or sequence repeats (Pearson 1998). Such regions can lead to higher
scores between the query and database sequences than for other sequence pairs, thus giv-
ing the appearance that the sequences are related when they are actually not related. An
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B. Fit of data to extreme value distribution.

26840295 residues in 74019 sequences

statistics extrapolated from 50000 to 73831 sequences

Expectation_n fit: rho(ln(x))= 5.9599+/-0.000515; mu= 7.4670+/- 0.029;
mean_var=81.3676+/-15.767, Z-trim: 42 B-trim: 68 in 1/63
Kolmogorov-Smirnov statistic: 0.0106 (N=29) at 42

Figure 7.3. Figure continues on next page.
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C. Identification of database sequences which give high scoring alignment with probe sequence.

FASTA (3.14 April, 1998) function (optimized, BL50 matrix) ktup: 2
join: 39, opt: 27, gap-pen: -12/ -2, width: 16 reg.-scaled

The best scores are: initn initl opt Z-SC E()
XPF_HUMAN 11/97 ( 905) 5893 5893 5893 6529.7
RA16_SCHPO 11/97 ( 892) 1569 519 749 827.2 2.le-39
RAD1_YEAST 11/97 (1100) 975 362 619 681.7 2.7e-31
YIS2_YEAST 11/95 ( 993) 37 37 161 174.6 0.0047
YAXB_SCHPO 10/96 ( 578) 91 91 133 147.1 0.16

Figure 7.3. Continued. Example of a FASTA, Vers. 3 search. The SwissProt protein database was searched with the human XPF
DNA repair protein on a local UNIX server with a locally written Web page interface. The recommended (default) BLOSUM50
amino acid scoring matrix and gap penalties of —12/—2 were used. Actual z scores are normalized to a mean of 50 and a stan-
dard deviation of 10 (normalized scores are indicated in this version of the program output in A as z', in B as z, and in C as Z).
These values may be converted back to actual z scores for statistical calculations by subtracting 50 and dividing by 10. (A) His-
togram of the normalized similarity scores and the expected score distribution. The first column gives the lower score in each
range of scores, the second labeled “opt” is the number of optimized scores in that range, and the third labeled “E()” is the
number of alignment scores expected to be in that range for unrelated sequences based on the extreme value distribution and
the calculated values of u and \. The “=" signs outline an approximate curve for the actual score distribution and the “*” gives
the same information for the expected score distribution. Note the excellent agreement between the observed and expected
numbers until a normalized score >120 is reached, at which point some high-scoring alignments are revealed. (B) An evalua-
tion of the fit of the data to the expected curve is given by the Kolmogorov-Smirnov statistic, which compares the maximum
deviation between the observed and expected values. In his FASTA distribution notes, W. Pearson indicates that statistic val-
ues <0.10 (for N=30) reveal excellent agreement. If this statistic is >0.2, he suggests repeating the analysis with higher gap
penalties, e.g., —16, —4 rather than —12, —2. (C) Database sequences that have high normalized alignment scores are listed
along with the raw initl, initn, opt, z’ score, and E() for a z’ score of that value. E() gives the probability that alignment of the
query sequence with D database sequences unrelated to the query sequence could generate at least one such z' score. Note that
the first row of scores is that for aligning the query sequence with a database copy of itself, followed by very high-scoring align-
ments to two yeast DNA repair genes on the next rows. (D) Smith-Waterman local alignments are shown along with additional
information about the percent identity. A “:” in the alignment is an identity and “.” is a conservative substitution. Included is
a sketch indicating the extent to which the sequences can be locally aligned.

Figure continues on next page.

update of this feature can be anticipated in the near future. The BLAST2 programs
described below filter regions of low complexity in both DNA and protein query
sequences. Programs and Web sites for this purpose are described below in the description
of BLAST. The program PRSS in the FASTA distribution package provides a straightfor-
ward way of establishing whether or not low complexity plays a role in the alignment score
between two sequences. These programs shuffle the matching library sequences many
times and realign each of the shuffled sequences with the query sequence. Two levels of
shuffling are possible, one at the level of individual amino acids and a second at the level
of sequence segments of a chosen length. The first method explores the possibility that
restricted amino acid composition plays a role in the alignment, and the second that par-
ticular regions in the query sequence, such as sequence repeats, influence the score. If low
complexity at either level is a problem, high scores will be produced when shuffled
sequences are aligned with the query sequence. The distribution of scores from alignment
between shuffled and query sequences is used to compute the statistical significance of the
actual alignment score between the sequences. An example of using PRSS is presented in
Chapter 3 (p. 116).
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D. Local alignments of probe sequence and high-scoring database sequences.

>>XPF_HUMAN 11/97 ASCII Len Q92889 homo sapi (905 aa)
initn: 5893 initl: 5893 opt: 5893 Z-score: 6529.7 expect() 0
Smith-Waterman score: 5893; 100.000% identity in 905 aa overlap

>XPF_HU 1o 9052 mm e e g
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XPF_HU MAPLLEYERQLVLELLDTDGLVVCARGLGADRLLYHFLQLHCHPACLVLV
10 20 30 40 50

ces e

>>RAl6_SCHPO 11/97 ASCII 1Len P36617 schizosa (892 aa)
initns 1569 initl: 519 opt: 749 Z-score: 827.2 expect() 2.le-39
Smith-Waterman score: 1691; 34.056% identity in 922 aa overlap

/

>RAl6_S 5m 8968 mmmmm o e e g
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T 2.0, 230 2332 3 3 33 . « 2. S
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Figure 7.3. Continued.
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110 120 130 140 150

>>RAD1_YEAST 11/97 ASCII Len P06777 saccharo (1100 aa)
initn: 975 initl: 362 opt: 619 Z-score: 681.7 expect() 2.7e-31
Smith-Waterman score: 1366; 30.258% identity in 1008 aa overlap
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Figure 7.3. Continued.
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The BLAST algorithm was developed as a new way to perform a sequence similarity search
by an algorithm that is faster than FASTA while being as sensitive. A powerful computer
system dedicated to running BLAST has been established at NCBI, National Library of
Medicine. Access to this BLAST system is possible through the Internet (http://www.ncbi.
nlm.nih.gov/) as a Web site and through a BLAST E-mail server. There are also numerous
other Web sites that provide a BLAST database search. In addition to the BLAST programs
developed at the NCBI, an independent set of BLAST programs has been developed at
Washington University (see Table 7.2). These programs perform similarity searches using
the same methods as NCBI-BLAST and produce gapped local alignments. The statistical
methods used to evaluate sequence similarity scores are different, and thus WU-BLAST
and NCBI-BLAST can produce different results (see box below, point 11).

The BLAST Web server at http://www.ncbi.nlm.nih.gov/ is the most widely used one for
sequence database searches and is backed up by a powerful computer system so that there
is usually very little wait. Like FASTA, the BLAST algorithm increases the speed of
sequence alignment by searching first for common words or k-tuples in the query sequence
and each database sequence. Whereas FASTA searches for all possible words of the same
length, BLAST confines the search to the words that are the most significant. For proteins,
significance is determined by evaluating these word matches using log odds scores in the
BLOSUMBS62 amino acid substitution matrix. For the BLAST algorithm, the word length is
fixed at 3 (formerly 4) for proteins and 11 for nucleic acids (3 if the sequences are trans-
lated in all six reading frames). This length is the minimum needed to achieve a word score
that is high enough to be significant but not so long as to miss short but significant pat-
terns. FASTA theoretically provides a more sensitive search of DNA sequence databases
because a shorter word length may be used. Like FASTA, the BLAST algorithm has gone
through several developmental stages. The most recent gapped BLAST, or BLAST2, is rec-
ommended, as older versions of BLAST are reported to overestimate the significance of
database matches (Brenner et al. 1998). The most important recent change is that BLAST
reports the significance of a gapped alignment of the query and database sequences. For-
mer versions reported several ungapped alignments, and it was more difficult to evaluate
their overall significance. The statistical analysis of sequence alignments that made this
change possible is discussed in detail in Chapter 3, page 97.
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A.

BLASTP 2.0.5 [May-5-1998]
Query= human XP-F repair gene (905 letters)

Database: Non-redundant SwissProt sequences 74,596 sequences; 26,848,718 total letters

B.

Color Key for Alignnent Scores

—_— . T TR D———————

R O e e
0 25

1 250 375 500 625 750 875

Distribution of 11 BLAST Hits on the Query Sequence

Score E
Sequences producing significant alignments: (bits) Vvalue

sp| 092889 | XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1659 0.0

sp|P36617 |RA16_SCHPO DNA REPAIR PROTEIN RAD16 485 e-136
sp|P06777 |RAD1_YEAST DNA REPAIR PROTEIN RAD1 231 4e-60
Sp|P40562|YIS2_YEAST PUTATIVE ATP-DEPENDENT RNA HELICASE YIR002C 37 0.17

$p|Q10202 |YAXB SCHPO PUTATIVE ATP-DEPENDENT RNA HELICASE C13F4.11C 36 0.38

Figure continues on next page.

Figure 7.5. Example of BLASTP output. The BLAST server at http://www.ncbi.nlm.nih.gov/BLAST/, advanced version
BLAST?2 was given the human XP-F DNA repair sequence in FASTA format (providing the sequence accession number is
another option). Program option BLASTP, database option SwissProt, and default program settings (gapped alignment, expec-
tation value = 10, and low-complexity filtering), and 10 descriptions and alignments were chosen. Expectation value is the
number of matches expected by chance between the query sequence and random or unrelated database sequences from a
database of the size used. If the program is allowed to report all of the matches that it finds, the number found will include at
least this many matches with unrelated sequences in the database, The BLAST Web site has excellent help pages that should be
consulted, especially when new updates of BLAST have revised Web pages. For example, one revised page did not provide an
option for changing the amino acid substitution matrix from the default BLOSUM62 scoring matrix. The comments given
below summarize the results of the above BLAST2 search. (A) BLAST version number, query sequence, and sequence database
are identified. (B) First, a graphical representation of the extent to which database sequences match the query sequence is
shown. Note that three database sequences can be aligned with the entire length of the query sequence and are therefore likely
to be highly significant alignments. Other alignments found are only with portions of the query sequence. The mouse may be
used to go directly to the alignments represented in the graph. The scores of the requested 10 highest-scoring database
sequences and the 1 identical database sequence are reported, one in each row. Each row includes the database sequence iden-
tifier where “sp” indicates a SwissProt match followed by SwissProt accession number and locus name, the score of the align-
ment in bits (see C), and the expectation value (E) of the alignment. E values of 0.0 and e~ '*® (which is 10 %) in the first and
second rows indicate that the match is highly significant. The first match is to the query sequence itself and the next two match-
es are closely related to the query sequence as indicated by their low E scores. If older versions of BLAST that give ungapped
alignments or the ungapped option is used, or if the results are from BLASTX and TBLASTN searches, each row may have an
additional column displaying 1, the number of HSPs found and the probability of the sum of these HSP scores, as indicated in
step 11 above. (C) Gapped alignments between the query sequence and the matched database sequences are shown. The query
sequence is named as such and the database sequence is called the subject sequence. Note the filtering of a low-complexity
region in the query sequence indicated by the replacement of sequence by X. Gaps are indicated by a dash. Shown in each align-
ment are the sequence ID and length, and the score of the alignment in bits (“score” is the sum of log odds scores of each match-
ing amino acid pair in the alignment less gap penalties; the raw score in bits is the log odds score in units of logarithms to the
base 2). The score shown in the program output is in units of normalized bits = (A X raw score — In K) / In 2. This number is
independent of the scoring matrix used, but the raw score in bits is also shown in parentheses. The expectation value E of chance
matches of unrelated sequences from a database of this size, percent identities in the alignment, percent positives in the align-
ment (identities plus positive scoring matches in the BLOSUM62 matrix), and percent of the alignment that is gaps are also
shown. (D) Statistical information about the search is provided, including the numbers found in the steps outlined above. The
statistical parameters K and X, which are different for gapped and ungapped alignments (Chapter 3), and the gap penalty scores
are also shown. This information will be useful as a basis for adjustment of the basic input parameters.
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308 « CHAPTER 7

Sequence Filtering

The BLAST programs include a feature for filtering the query sequence through programs
that search for low-complexity regions or for sequence repeats. Note that filtering is only
applied to the query sequence and not to the database sequence. These regions are marked
with an X (protein sequences) or N (nucleic acid sequences) and are then ignored by the
BLAST program. Such regions tend to give high scores that do not reflect sequence simi-
larity but rather the occurrence of low-complexity or repetitive sequences. Removing these
types of sequences increases emphasis on the more significant database hits. The NCBI
programs SEG and PSEG are used for amino acid sequences, and NSEG for nucleic acid
sequences (Wootten and Federhen 1993, 1996). The SEG programs are available by anony-
mous FTP from ncbi.nlm.nih.gpv/pub/seg, including documentation. The program DUST
is also used for DNA sequences (see http://www.ncbi.nlm.nih.gov/BLAST/filtered.html).

Regions of low-complexity or repetitive sequences may be readily visualized in a dot
matrix analysis of a sequence against itself (see Chapter 3, p. 63). Low-complexity regions
with a repeat occurrence of the same residue can appear on the matrix as horizontal and
vertical rows of dots representing repeated matches of one residue position in one copy of
the sequence against a series of the same residue in the second copy. Repeats of a sequence
pattern appear in the same matrix as short diagonals of identity that are offset from the
main diagonal (see Fig. 3.6). Sequence complexity may also be analyzed by examining the
fraction of all possible residues that are represented in a sequence window.

The compositional complexity in a window of sequence of length L is given by (Woot-
ten and Federhen 1996)

where N is 4 for nucleic acid sequences and 20 for protein sequences, and #; are the num-
bers of each residue in the window. K will vary from 0 for very low complexity to 1 for high
complexity. Thus, complexity is given by:

Compositional complexities are sometimes calculated to logarithms to the base 2 to
produce scores in bit units. A sliding window (usually 12 residues) is moved along the
sequence, and the complexity is calculated at each position. Regions of low complexity are
identified, neighboring regions are then combined, and the resulting region is then
reduced to a single optimal segment by a minimization procedure. SEG is used for analy-
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sis of either proteins or nucleic acids by the above methods. PSEG and NSEG are similar
to SEG but are set up for analysis of protein and nucleic acid sequences, respectively. These
versatile programs may also be used for locating specific sequence patterns that are char-
acteristic of exons (Chapter 8) or protein structural domains (Chapter 9). In database
searches involving comparisons of genomic DNA sequences with EST sequence libraries,
use of repeat masking is important for filtering the output to the most significant matches
(Claverie 1996).

In addition to low-complexity regions, BLAST will also filter out repeat elements (such
as human SINE and LINE retroposons; see Chapter 10). Another filtering program for
repeats of periodicity less than 10 residues (XNU;j Claverie and States 1993) is used by the
BLAST stand-alone programs, but is not available on the NCBI server.

Another Web server, RepeatMasker (http://ftp.genome.washington.edu/cgi-bin/) screens
sequence for interdispersed repeats known to be present in mammalian genomes and also
can filter out low-complexity regions (A.F.A. Smeet and P. Green, see Web site above). A
dynamic programming search program (cross-match, P. Green, see Web site) performs a
search of a repeat database with the query sequence (Claverie 1996). A database of rep-
etitive elements (Repbase) maintained at http://www.girinst.org/!server/repbase.html)
by the Genetics Information Research Institute (Jurka 1998) can also be used for this pur-
pose.

)ther BLAST Programs and Options

There are a number of different versions of the BLAST program for comparing either
nucleic acid or protein query sequences with nucleic acid or protein sequence databases.
If necessary, the programs translate nucleic acid sequences in all six possible reading
frames to compare them to protein sequences. These BLAST programs are shown in Table
7.4 along with the types of alignment, gapped or ungapped, that they produce. Table 7.5
lists the databases that are available, and Table 7.6 lists the options and parameter settings
that are available on the BLAST server. These various options may be chosen and are also
described on the main BLAST Web page at http://www.ncbi.nlm.nih.gov/. The results
produced by a sample BLASTP version 2 output are shown and described in Figure 7.5.

1. BLAST CLIENT (BLASTcI3) is a network-client BLAST that may be established on a
local machine and used to access the BLAST2 server (FTP at ncbi.nlm.nih.gov/blast/
network/netblast) rather than using a Web browser.

2. Stand-alone BLAST. Executable versions of all of the BLAST programs for Windows,
Macintosh, and UNIX platforms are available (FTP at ncbi.nlm.nih.gov/blast).

3. BLAST E-mail server. When the BLAST server is busy so that the interactive Web page
is slow and unresponsive, an alternative is to send the job by E-mail and to have the
results returned by E-mail. A standard format is required in the E-mail message, as
shown in Figure 7.6. The format changes periodically, therefore it is a good idea to send
for the current format by sending the message help to the BLAST E-mail server,
BLAST@ncbi.nlm.nih.gov. Note that there are obligatory and optional lines in the E-
mail message.

)ther BLAST-related Programs

1. BLAST-enhanced alignment utility (BEAUTY). BEAUTY adds additional information
to BLAST search results, including figures summarizing the information on the loca-
tions of HSPs and any already known domains and sites present in the matching



Table 7.4. BLAST programs provided by the National Center for Biotechnology Information

Program Query sequence Database Type of alignment®
BLASTP protein protein gapped

BLASTN nucleic acid nucleic acid gapped

BLASTX translated nucleic acid®  protein each frame gapped
TBLASTN protein translated nucleic acid® each frame gapped
TBLASTX® translated nucleic acid®  translated nucleic acid® ungapped

2 Type of alignment available between query and database sequences in BLAST2. A gapped alignment is
usually preferred, if available. BLASTX and TBLASTN generate gapped alignment for each reading frame
found and may use sum statistics. TBLASTX provides only ungapped alignments and sum statistics.
Ungapped alignments available as option for BLASTP and BLASTN.

b Nucleic acid sequence is translated in all six possible reading frames and then compared to the protein

sequence.

© TBLASTX is a heavy user of computer resources and therefore cannot be used with the nr nucleic acid
—database on the BLAST Web page.

Table 7.5. Databases available on BLAST Web server

Database Description
A. Peptide sequence databases
nr translations of GenBank DNA sequences
with redundancies removed, PDB, SwissProt, PIR, and PRF
month new or revised entries or updates to nr in the previous 30 days
swissprot latest release of the SwissProt protein sequence database®
Drosophila genome provided by Celera and Berkeley Drosophila genome project
yeast yeast (Saccharomyces cerevisiae) genomic sequences
E. coli E. coli genomic sequences
pdb sequences of proteins of known three-dimensional structure
from the Brookhaven Protein Data Bank
yeast yeast (S. cerevisiae) protein sequences
E. coli E. coli genomic coding sequence translations
pdb sequences of proteins of known three-dimensional structure

kabat [kabatpro]
alu

from the Brookhaven Protein Data Bank
Kabat’s database of sequences of immunological interest
translations of select Alu repeats from REPBASE,

a database of sequence repeats

B. Nucleotide sequence databases

nr GenBank, EMBL, DDBJ, and PDB sequences with redundancies removed
(EST, STS, GSS, and HTGS sequences excluded)

month new or revised entries or updates to nr in the previous 30 days

dbest® EST sequences from GenBank, EMBL, and DDBJ with redundancies
removed

dbsts® STS sequences from GenBank, EMBL, and DDBJ with redundancies
removed

htgs® high-throughput genomic sequences

kabat [kabatnuc] Kabat’s database of sequences of immunological interest

vector vector subset of GenBank

mito database of mitochondrial sequences

alu select Alu repeats from REPBASE, a database of sequence repeats;
suitable for masking Alu repeats from query sequences

epd eukaryotic promoter database

gss® genome survey sequences, includes single-pass genomic data,

exon-trapped sequences, and Alu PCR sequences

2 The SwissProt database is carefully curated but not always up to date because updates are released after
longer intervals. SwissProt and PIR are the preferred protein databases for searches because the nr protein
database is a composite of several databases and has duplicates of many sequences. Unfortunately, PIR is nof
provided as a separate choice on the database menu.

b Databases containing sequences that may have been less accurately determined.
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Table 7.6.  Options and parameter settings available on the BLAST server

Range of choices

Parameter or values Function
Descriptions 0-500 number of matching sequences to report
Alignments 0-500 number of alignments to show

Expect 0.001-1000 number of matches from unrelated sequences

expected by chance from the selected database
smaller values decrease chance of reporting of such matches

Filter yes or no removes regions of low sequence complexity from the query
sequence because they can give misleading high scoring
matches

NCBI-gi yes or no gi identifier shown in output

Genetic code various codon for translation of nucleic acid sequences

use tables®

Graphical yes or no useful display of matches to the query sequence

overview mouse may be used to show alignment

Advanced options — type into space provided®

? Codon tables include standard, vertebrate mitochondrial, yeast mitochondrial, mold mitochondrial,
invertebrate mitochondrial ciliate nuclear, echinoderm mitochondrial, euplotid nuclear, bacterial, alterna-
tive yeast nuclear, ascidian mitochondrial, flatworm mitochondrial, and blepharisma macronuclear. These
are numbered 1-15, respectively, for E-mail access.

® Options include (where 7 is an integer 0,1,2, ... ): =G n, penalty or cost to open a gap; —E #, penalty
to extend a gap; —¢ n penalty for a mismatch in BLASTN; —r #, match score in BLASTN; — W #, initial word
size; —v n, number of descriptions; b 1, number of alignments to show; and —E r, expect value where r is a
real number such as 10.0. For example, to set the gap opening penalty to 10 and the gap extension penalty
to 2, click the mouse on the advanced options form and then type —G 10 —E 2. For more advanced search-
es of the entire proteome of an organism using stand-alone BLAST on a local machine, additional options

must be used, for example, effective database size, to obtain reliable statistical results.

database sequences (Worley et al. 1995). To make this enhanced type of analysis possi-
ble, a database of domains and sites was created for use with the BEAUTY program. A
new database of sequence domains and sites was made showing for each sequence in
ENTREZ the possible location of patterns in the Prosite catalog, the BLOCKS database,
and the PRINTS protein fingerprint database. This information is displayed in the fol-
lowing example of the program output (Fig. 7.7). The BEAUTY program is accessible
on the BCM Search Launcher (http://dot.imgen.bcm.tmc.edu:9331/seq-search/protein-
search.html).

BLAST searching with a Cobbler sequence. The BLOCKS server (http://www.
blocks.ftherc.org) offers a variety of BLAST searches that use as a query sequence a con-
sensus sequence derived from multiple sequence alignment of a set of related proteins.
This consensus sequence, called a Cobbler sequence (Henikoff and Henikoff 1997), is
used to focus the search on residues that are in the majority in each column of the mul-
tiple sequence alignment, rather than on any one particular sequence. Hence, the search
may detect additional database sequences with variation unlike that found in the origi-
nal sequences, yet still representing the same protein family. An example of a Cobbler
sequence is shown in the BLOCKS search example on page 325.

BLAST2. This program uses the BLASTP or BLASTN algorithms for aligning two
sequences and may be reached at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. This site

should be useful for aligning very long sequences, but sequences >150 kb are not rec-
ommended.
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DATABASE SEARCHES WITH THE SMITH-WATERMAN

The objective of similarity searching in a sequence database is to discover as many
sequences as possible that are similar to the query sequence. For proteins, the resulting col-
lection of sequences may represent a sequence family. Because there may be < 20% amino
acid identity (an alignment has this many identical residues) between some family mem-
bers, finding such distant relatives is a difficult task. The aforementioned programs,
FASTA and BLAST, are designed to find database sequences related to a query sequence
rapidly and with high reliability. They achieve their speed by searching first for short iden-
tical patterns in the query sequence and each database sequence and then by aligning the
sequences starting at these patterns. Because patterns are very often found in related
sequences, the methods work most of the time. FASTA and BLAST are not based on an
algorithm that guarantees the best or optimal alignment, but instead on a heuristic method
that works most of the time in practice; thus, they may fail to detect some distant sequence
relationships.

The Smith-Waterman dynamic programming algorithm discussed in Chapter 3 is
mathematically designed to provide the best or optimal local alignment between two
sequences and is therefore expected to be the most reliable method for finding family
members in a database search. Several studies discussed below have shown that such is the
case. The disadvantage of using dynamic programming is that it is 50100 times slower
than FASTA and BLAST, and until recently a search could take up to several hours on a
typical medium-sized machine. With the advent of faster and more powerful computers
and improvements in the dynamic programming algorithm discussed in Chapter 3 (and
on the book Web site), it is now possible to perform database searches in an hour or less.
Some institutions have gone so far as to establish a powerful system of several computers
linked together in a parallel architecture that allows a search to be performed within min-
utes. Several of these sites listed below offer public access through the Web (Table 7.5). It
is important to examine the site for use of up-to-date databases and use of an appropriate
statistical analysis. Detection of distant sequence relationships depends on use of the sta-
tistical methods that have been developed for BLAST and FASTA. For routine use of
dynamic programming methods for database searches, establishing the program
SSEARCH (FTP to ftp.virginia.edu/pub/fasta; Pearson 1991; Pearson and Miller 1992) and
the appropriate sequence databases on a local UNIX server is recommended.

In several studies (Pearson 1995, 1996, 1998; Agarwal and States 1998; Brenner et al.
1998), it has been shown that using SSEARCH, which is based on the Smith-Waterman
dynamic programming algorithm, is more suitable for identifying related proteins of lim-
ited sequence similarity than FASTA and BLAST in a database search. In several of these
studies, known members of protein families are used as a query sequence searching for the
remaining members in a protein sequence database. In another study, the performance of
the sequence analysis methods was determined using protein sequences of known struc-
tural relationships (Brenner et al. 1998). The results are presented in terms of the sensitiv-
ity and selectivity of the algorithm, or the ability to identify correct family members,
including some that are only weakly similar, without incorrectly identifying other unrelat-
ed proteins as members (Pearson 1995, 1998). The ability to discriminate true from false
matches depends on the use of appropriate amino acid substitution matrices, gap opening
and extension penalties that provide local alignments, and a careful statistical analysis of
the search results using the extreme value distribution to predict scores from unrelated
sequences (Brenner et al. 1998; Pearson 1998). The program SSEARCH has the necessary



316 s CHAPTER 7

SSEARCH version 3.1t02 March, 1998

xurtg.aa, 222 aa vs PIR NBRF library

opt E()

< 20 16 Oz=
22 3 0:=
24 16 0:=
26 29 23%

28 84 27:
30 290 163:%=

one = represents 183 library sequences

*

* ok

*

==

*
]

*

88 125 130:* inset = represents 5 library

102 26 22:% H *=

104 16 17:* :

106 8 13:* s==%*

108 14 10:* s=h=

110 7 8+ s=*

112 10 6:* =%

114 14 5% s ¥==

116 7 4% s*=

118 4 3:* sk
>120 216 23%= s

sequences

40855328 residues in 118225 sequences

Figure 7.8. Figure continues on next page.
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statistics extrapolated from 50000 to 118006 sequences

Expectation_n fit: rho(ln(x))= 7.5260+/~0.000579; mu= 1.3848+/- 0.033;
mean_var=57.7254+/-11.311, Z-trim: 110 B-trim: 0 in 0/58
Kolmogorov-Smirnov statistic: 0.0114 (N=29) at 48

Smith-Waterman (3.1 March, 1997) function (BL50 matrix), gap-penalty: -12/-2 reg.-scaled

The best scores are: s-w z~sc E(118006)
P1;XURTG ( 249) 1446 1896.7 9.1e-99
P1;A26653 ( 271) 1401 1836.7 2e-95
P1;C28946 ( 259) 1387 1818.7 2e-94
P1;1GSDB ( 241) 1081 1416.6 5e-72
>>P1;A26653 (271 aa)

Figure 7.8. Example of SSEARCH. The PIR database was searched with the rat glutathione transferase sequence (EC
2.5.1.18). PIR was used to avoid multiple reports of the same sequence that is obtained with combined databases such as
Genpept. SSEARCH was obtained from ftp.virginia.edu/FASTA and compiled on a local UNIX server. The PIR database
was accessed by the program from the Genetics Computer Group sequence libraries, which are locally available. SSEARCH
was run in the UNIX command line mode since a Web page interface was not available. The program output is very simi-
lar to that of FASTA which is described in detail in Fig. 7.3. Note that, if not specified otherwise, SSEARCH uses the BLO-
SUMS50 scoring matrix with gap penalties —12/—2. Like FASTA, the program calculates the statistical parameters A and K
from the alignment scores calculated for 50,000 unrelated sequences, and then uses these parameters to calculate the E-value
scores of the alignment scores with related sequences. The z values are calculated from a linear regression of the scores
against the logarithm of the sequence length, and deviations from this line are converted to standard z scores, as described
for FASTA. The glutathione transferases are a large and diverse group of sequences, some of which share very little sequence
similarity with the others (Pearson 1996). The large number of normalized scores >120 indicates that a large number of
related sequences were found in PIR. Only a few of the alignments are shown, and the alignment of the query sequence with
itself is omitted. Figure continues on next page.

features and is available for database searches. The reliability of the statistical scores report-
ed by FASTA, BLAST2, and SSEARCH has been determined using sequences of known
structural relatedness as a guide. The E-value scores reported by FASTA and SSEARCH are
reliable, with the number of false positives agreeing with the scores. BLAST2 E-value scores
also appear to be reliable (see Brenner et al. 1998).

An example of an SSEARCH vers. 3 database search is given in Figure 7.8. Several guest
Web sites for performing a database search with the Smith-Waterman dynamic program-
ming algorithm are listed in Table 7.7.

From the discussion so far, it is apparent that the fastest and most convenient way to per-
form sequence database searches is with the FASTA and BLAST2 programs. The much
slower Smith-Waterman dynamic programming programs, such as SSEARCH, may find
more distantly related sequences. The significance of the alignment scores can be accu-
rately evaluated by these programs. A even better method for detection of distant sequence
relationships has been described; this is the Bayes block aligner (Zhu et al. 1998), which
was previously discussed in Chapter 3 (p. 126). This program requires several series of
computational steps roughly proportional to the product of the sequence lengths and is
therefore considerably slower than SSEARCH. As an indication of length of time required,
alignment of two standard-sized proteins scoring 7 blocks with all available BLOSUM or
PAM matrices on the author’s 500 MHz laptop with 500 megabytes of memory running
the Linux operating system took less than 10 seconds.
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Figure 7.8. Continued.
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Table 7.7.  Examples of guest Web sites for performing a database search based on the Smith-Waterman dynamic pro-
gramming algorithm

Server/program Reference Web address
BCM Search Baylor College of Medicine http://dot.imgen.bem.tmc.edu:9331/
Launcher seq-search/protein-search.html

{with programming
links to several servers)

bic-sw* Bic server http://www.ebi.ac.uk/bic_sw/
European Bioinformatics Institute
Mpsearch® National Institute of http://www.dna.affrc.go.jp/htbin/mp_PP.pl

Agrobiological Resources,
Tsukuba, Japan

Scanps G.Barton, European Bioinformatics http://barton.ebi.ac.uk;
Institute http://www.ebi.ac.uk/scanps
SSEARCH DNA Databank of Japan http://www.ddbj.nig.ac.jp/E-mail/homology.html
E-mail server
Swat® Phil Green, University http://www.genome.washington.edu/UWGC/
of Washington analysistools/swat.htm

A comprehensive list of servers for these types of analyses may be found at http://www.sdsc.edu/ResTools/biotools/biotools1.html.

* Bic-sw provides a combination of amino acid scoring matrix and gap penalties and also length-normalized z scores (similar to
FASTA and BLAST) which are most appropriate for resolving more distantly related sequences.

® MPSearch is an extremely fast implementation of the Smith-Waterman dynamic programming algorithm by J.F. Collins and §.
Sturrock, Biocomputing Resource Unit, the University of Edinburgh, distribution rights by Oxford Molecular Ltd. An E-mail server is
at http://www.gen-info.osaka-u.ac.jp/. Some versions of the Mpsearch algorithm at this site use the same penalty for all gaps, others use
gap opening and extension penalties. The former is designed to find similar sequences in which gaps are less important in the align-
ment, the latter the more distant sequence alignments. An on-line manual is available at http://www.dna.affrc.go.jp/htdocs/
MPsrch/MPsrchMain.html. Current versions of these programs rank the sequences found by two kinds of scoring systems. A statisti-
cal analysis is performed but the scores do not appear to be length-normalized. Hence, the sensitivity of the program may not exceed
that shown by FASTA (Pearson 1996).

“Includes Smith-Waterman and Needleman-Wunsch search algorithms. Calculates statistical significance using extreme value statis-
tics (like FASTA and BLAST).

Evaluation of programs for finding related proteins is usually based on searches in
databases for families using sequence similarity (Pearson 1998). A more difficult type of
evaluation is based on the searches of structural databases (Brenner et al. 1998). In these
databases, discussed in Chapter 9, the sequences have been organized into families having
similar three-dimensional structures. Three of these databases representing groups of pro-
teins that have less than 25%, 35%, or 45% identities (Hobohm et al. 1992) were searched
using representatives of structural families in each. In each case, the block aligner slightly
but significantly outperformed SSEARCH in finding structural relatives. For example, at
the 1% false-positive level, the Bayes block aligner found an average of 14.4% of the pro-
teins in the less-than-25% identity group, whereas SSEARCH with usual scoring matrix,
gap penalties, and statistical score options found 12.9%, a difference of 1.5%. In addition,

A Web page describing the Bayes block aligner can align sequences that have very little simil.arity bu't proyide align-

Bayesian bioinformar- ~ ments that closely match those found by a careful structural analysis described in Chapter

ics and the source of 9 using the VAST program (Madej et al. 1995). A similar study (Brenner et al. 1998) com-

ﬁgﬁﬁgﬁs il;h;(c)l;;l;gnz pared the ability of BLAST2, FASTA, and SSEARCH to identify proteins in the families of

http:/fwww.wadsworth.  the SCOP structural database (Murzin et al. 1995, and see Chapter 9).

org/resnres/bioinfol. The Bayes block aligner uses a new method for producing sequence alignments. The
method, discussed in detail in Chapter 3, starts by finding all possible blocks, which are
patterns without gaps, that are located in two sequences. A large number of possible align-
ments between two sequences are generated by aligning combinations of blocks. Gaps will
be present between the blocks, as illustrated in Figure 7.9. The sequence alignments are
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Sequence 1 XXXXXX-—-O==-XXXXXXXXXX000-OOOXXXXXX
Sequence 2 XXXXXXOOOOOOXXXXXXXXXXO-0OO—-OXXXXXX
blockl block2 block3

Figure 7.9. Alignment found by the Bayes block aligner. The alignment between two sequences
includes ungapped blocks (marked by x where aligned x’s may be identical or substitutions; there will
be at east one identity in each block used to identify the block) and intervening unaligned regions with
gaps (marked by o for unaligned residue and — for a gap). These two regions are designed to repre-
sent conserved structural alignments in the protein core and variable surface loops, respectively. A
large number of alignments of this type involving different combinations of blocks are found. These
alignments are then evaluated by a set of scoring matrices. The best alignment is then derived by a
Bayesian statistical analysis, described in Chapter 3.

scored only where the sequences are aligned in the blocks: There is no gap penalty as in the
dynamic programming method of alignment.

Alignments are also scored differently by the Bayes block aligner than by the dynamic
programming method. In the Bayes block aligner, a set of amino acid substitution matri-
ces is used. Each scoring matrix models a different degree of substitution between the
sequences, and the matrices that best represent this degree should give the highest align-
ment scores. When PAM-type matrices are used, the evolutionary distance between parts
of sequences can be estimated knowing the best-scoring matrix. When the analysis has
been completed, there are a large number of possibilities to sort out, including choices of
block number, alignments, and scoring matrices.

By using a Bayesian statistical analysis of the results, it is possible to derive block align-
ments in which amino acids in each sequence are most often associated, regardless of the
many possible choices. These alignments are represented as the posterior probability of
aligning those amino acids given the initial preferences of block number and scoring
matrices. It is these block alignments that are statistically the best representation of the
alignment between two sequences. From the Bayesian analysis, the probability that the
sequences are related may be calculated from the posterior probabilities of block number
by examining the analysis for evidence that the block number is greater than zero. If this
calculation, described in Chapter 3 (p. 130), yields a probability greater than 0.5, the
Bayesian analysis supports a relationship between the sequences (Zhu et al. 1998)

The methods for database searching discussed so far in this chapter are based on using a
single query sequence to search a sequence database. Another method of database search-
ing is to use the variation found in a multiple sequence alignment of a set of related
sequences to search for matching database sequences. This enhanced type of search will
locate database sequences that match new combinations of sequence characters in the mul-
tiple sequence alignment. For example, if column 1 of a multiple sequence alignment
includes the amino acids P and Q and column 2 the amino acids D and E, then database
sequences that match all four combinations of these two amino acids can be found, where-
as only the combinations found in the original sequences would be matched if single query
sequences were to be used.

Multiple sequence alignments represent the occurrence of one or more patterns com-
mon to a set of sequences. These patterns may be relatively short or may include long con-
served stretches of sequence. In Chapter 4, two methods for identifying a common set of
patterns in sequences were described. The first extracts a set of patterns from a multiple
sequence alignment, which can be produced by methods such as dynamic programming,
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genetic algorithms, or hidden Markov models. The second uses pattern finding and statis-
tical methods, including expectation maximization and Gibbs sampling methods, to locate
patterns in unaligned sequences. Hidden Markov models are also useful for representing a
set of conserved patterns that includes gaps, in a protein family. The resulting PROFILE
HMM (Durbin et al. 1998) may then be used to search a query sequence for matches to the
set of patterns. Chapter 4 should be consulted for a discussion of these methods; the rele-
vant programs and Web sites are described below.

To search a sequence database for matches to a set of patterns, the sequence informa-
tion is stored as a matrix of 20 rows, one row for each amino acid, and # columns, one col-
umn for each column in the multiply aligned sequence patterns. In addition, there may be
extra rows for ambiguous or unidentified symbols and, in the sequence profile matrix,
there are rows for gap opening and extension penalties. Examples are shown in Figures
4.11 and 4.12 in Chapter 4.

The simplest scoring matrix, the position-specific scoring matrix (PSSM), represents an
alignment of sequence patterns of the same length (no gaps). The production of a PSSM is
also discussed in Chapter 4 (p. 192). To summarize, the sequence patterns are first aligned
as a multiple sequence alignment so that corresponding residues are in the same column.
Raw amino acid counts are first found by summing the numbers in each column of the
alignment, and these numbers are placed in the corresponding columns of the scoring
matrix, one for each amino acid in the designated row. These counts are then adjusted by
a weighting method designed to prevent overrepresentation of the amino acids in the more
closely related sequences. Otherwise, the matrix would be more tuned to those sequences
than to the less-alike ones in the group. To these raw scores, additional counts are added
based on previously observed general types of amino acid variations in alignments of relat-
ed proteins. The idea behind this strategy is that the small number of sequences usually
present in these alignments does not represent the full range of expected amino acid vari-
ations. Therefore, additional pseudocounts are added based on substitution patterns found
in an amino acid substitution matrix or representative blocks in the BLOCKS database
(Dirichlet mixtures). The statistical basis for adding counts is that including prior infor-
mation in the form of pseudocounts should increase the sensitivity of the scoring matrix.
The sum of the raw and additional counts in each column is then divided by the expected
frequency of the amino acid from the data or from other sources. The resulting ratio rep-
resents the odds for finding a match of another related sequence to the column divided by
the chance of a random match with an unrelated sequence. For ease in multiplying prob-
abilities by adding their logarithms, each odds score is converted to a log odds score, usu-
ally to logarithms to the base 2. The log odds score for each column in the alignment is
placed in the corresponding column of the matrix, and there is one row of scores for each
amino acid that is the same width as the pattern window. The resulting PSSM is easy to
align with a sequence, as discussed below.

SEARCHING SEQUEN.CE DATABASES WITH A POSITION-SPECIFIC

R R R S s

Aligning a PSSM with a protein sequence is illustrated in Figure 7.10. Every possible
sequence position is scored by sliding the matrix along the sequence one position at a time.
The amino acid substitution scores in each column of the PSSM are used to evaluate each
sequence position. Positions with the highest scores are the best matches of the corre-
sponding set of sequence patterns with the sequence. In searches of a sequence database,
those sequences with a region that is a close match to the pattern will produce the highest
scores and may be readily identified.
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Figure 7.10. Scoring an alignment of a PSSM with a sequence. Only a few matrix values are shown
for simplicity. The PSSM is first aligned with sequence position 1 so that columns 1-10 match posi-
tions 1-10 in the sequence. The column values that match each sequence position are then added to
give a total log odds score for sequence position 1. The PSSM is then moved to sequence position 2
and a new score for matches with sequence positions 2-11 is calculated. This process if repeated until
the last 10 sequence positions are matched. The highest scores represent the best matches of the motif
represented by the PSSM to the sequence. This type of scoring system preferentially rewards matches
to columns that have a conserved amino acid more than to matches with variable columns, and penal-
izes mismatches to columns that have a conserved amino acid more heavily than mismatches to vari-
able columns.

Scoring matrices that correspond to a sequence profile also include two extra rows for
gap penalty scores (sometimes these scores may be found in extra columns if the labeling
of the rows and columns is reversed). When aligning this type of scoring matrix with a
sequence, a similar procedure to the above is followed in that the score for matching the
profile scoring matrix to each sequence character is calculated. In addition, a gap of any
length may be inserted into the sequence or profile at that position, and the gap penalties
are those given in the relevant column of the profile. The gap penalties are usually quite
high with respect to the match scores, but are less when gaps were present in the original
multiple sequence alignment. The problem of finding the best alignment between the pro-
file and a given start position in the sequence is similar to the problem of aligning two
sequences. As with alignment of sequences, the dynamic programming algorithm is used,
except that the match scores and gap penalties are site-specific and are the values given in
the profile columns.
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Web sites and programs for finding common motifs and profiles in a set of related
sequences or for searching a protein sequence database with these patterns are listed in
Table 7.8. Also shown are sites that can be given an ambiguous pattern, called a regular
expression, to use in a protein sequence database search. The first programs available for
producing profiles and using these for sequence searches were Profilemake for making
profiles from a multiple sequence alignment, Profilegap for aligning a profile with one or
more sequences, and Profilesearch for searching a protein sequence database with a profile
(Gribskov and Veretnik 1996). These programs are best known as components of the
Genetics Computer Group suite of programs. Profiles produced by newer versions of these
programs use evolutionary predictions of the amino acid changes in each column, which

Table 7.8. Programs and Web sites for database similarity searches with a regular expression, motif, block, or profile

Program Database searched Source or location of analysis

1. Regular expressions and motifs®

EMOTIF Scan SwissProt and Genpept http://dna.stanford.edu/scan/

Prosite patterns SwissProt and TrEMBL http://www.expasy.ch/tools/scnpsit2.html

ISREC pattern-

finding service  ©  SwissProt and non- http://www.isrec.isb-sib.ch/software/PATEND_form.html

redundant EMBL database

tpat PDB SwissProt Genpept http://www.ibc.wustl.edu/fpat/

PHI-BLAST BLAST databases http://www.ncbi.nlm.nih.gov/

MOTIF SwissProt, PDB, http://www.motif.genome.ad.jp/MOTIF2.html
PIR, PRF, Genes

2. Blocks

BLOCKS® most databases http://www.blocks.fhere.org/blockmkr/make_blocks.html

MAST® most databases http://meme.sdsc.edu/meme/website/

BLIMPS! locally available anonymous FTP ncbi.nlm.nih.gov/repository/blocks/unix/blimps
databases

Probe® BLAST databases anonymous FTP ncbi.nlm.nih.gov/pub/neuwald/probel.0

Genefind® PIR http://pir.georgetown.edu/gfserver

3. Profiles

Profilesearch® locally available anonymous FTP ftp.sdsc.edu/pub/sdsc/biology/profile_programs
databases

Profile-SS" most databases http://www.psc.edu/general/software/packages/profiless/profiless.html

These resources search for similarity to a sequence pattern. Resources for producing patterns from aligned or unaligned sequences
are described in Chapter 4. An individual sequence may also be searched for matches to a motif database, and this procedure is dis-
cussed in Chapter 9. Additional resources for database searching are listed in Bork and Gibson (1996).

A statistical estimate of finding the site by random chance in a sequence is sometimes but not always given. Reading how these esti-
mates are derived by the individual programs is strongly recommended. The statistical theory for sequence alignments described in
Chapter 3 can be used in these types of analyses (Bailey and Gribskov 1998) but may not always be implemented.

* The Scan Web page shows how to compile a regular expression. Mismatches within the expression are allowed. The Prosite form
of a regular expression is at http://www.expasy.ch/tools/scnpsit3.html. PHI-BLAST is a BLAST derivative that searches a given sequence
for a regular expression and then searches iteratively for other sequences matching the pattern found, at each iteration including the
newly found sequences to expand the search.

® The BLOCKS server will send a new block analysis to the MAST server.

¢ MAST is the Motif Alignment and Search Tool (Bailey and Gribskov 1998). Available protein databases are similar to those on the
BLAST server. It is also possible to search translated nucleotide sequence databases.

4 BLIMPS will prepare a PSSM from a motif and perform a database search with the PSSM (see README file on FTP site).

¢ PROBE (Neuwald et al. 1997) is described in the text.

fThe GENEFIND site has the program MOTIFIND for Motif Identification by Neural Design (Wu et al. 1996). This motif finder
uses a neural network design to generate motifs and a search strategy for those motifs. The method performed favorably in sensitivity
and selectivity with others such as Blimps and Profilesearch and is in addition very fast. Neural networks are described in Chapters 8
and 9.

# Profilesearch is one of a set of programs in the GCG suite (see text). It is important to review the parameters of the program which
if used inappropriately can lead to incomplete or low-efficiency searches (Bork and Gibson 1996).

P A version of Profilesearch running at the University of Pittsburgh Supercomputing Center.
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improves the ability of the profile to find related proteins in a database search. Methods for
making evolutionary profiles and for using them are discussed in Chapter 4 (p. 163). Pro-
file searches may be performed at two supercomputer centers (Table 7.8). The standard
Genetics Computer Group multiple sequence alignment format, the MSF file (described in
Chapter 2), is used as input to these programs. READSEQ and other sequence reformat-
ting programs can be used to change the sequence format to the MSF format (see Chapter
2), which can then be used with Profilemake. ;

There is a difference in the way PSSM and the profile matrix are generated that should
influence the results of a database search. The PSSM treats all amino acids as being equal,
so that matching an Ala with an Ala is as significant as matching a Cys with a Cys. Scores
for amino acid substitutions are based on the distribution of amino acids in each column
of the alignment on which the PSSM is based. Profile scores are also based on the distri-
bution of amino acids in each column of the alignment, but the matrix values are also
derived from an amino acid substitution matrix, such as the Dayhoff PAM matrices.
Hence, the PSSM and profile methods should give different results.

To illustrate these methods, the results of finding blocks by the BLOCKS server, and of
using motifs found by the MEME server, for a search of the SwissProt database by MAST
are given below. The terms “blocks” and “motifs” are used interchangeably by these sites
in that both mean a reasonably long ungapped pattern in a family of protein sequences.
Once matching sequences have been found, other searches can be performed with sets of
blocks or motifs of shorter or longer length and of more occurrences. Use of the program
MACAW, which runs on many computer platforms with a Windows interface, is also very
useful for exploring motif size and number (see Chapter 4, p. 177). This program can find
motifs either by an alignment method using an amino acid scoring matrix or by the statis-
tical Gibbs sampling method. The relative positions of the found motifs are shown on a
graphical representation of the sequences. :
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A.
**BLOCKS from MOTIF**

>www.blo xpf95.pro 957 a.a. family
3 sequences are included in 15 blocks

www.bloA, width = 30
gi|131810| 113 GKGLGLLDIVANLLHVLATPTSINGQLKRA
gi[2842712 27 GLGADRLLYHFLQLHCHPACLVLVLNTQPA
xpf95.pro 27 GLSLAKLIASLLILHSPSQGTLLLLLSPAA

COBBLER sequence from MOTIF

>www.blo gi|2842712 from 1 to 905 with embedded consensus blocks
maplleyerqlvlelldtdglvvcarGLGLGRLIYHFLLLHCHPTCTVLVLQTKPAeeeyfinqlkiegvehlprrvtne
itsnsRYKLYTSGGVLFITSRILIVDLLTDRIPPNRITGILVLNAHSIRENCNEAFILRIYRSKNSWGFIKAFSDRPQAF
VIGFchvervmrnlfvrklylwprfhvavns fleqhkpEVVEIRVSMTNTMVGIQFAIMECLNACLKELRKRHNPs leved
lslenaigkpfdktirhy1dPLWHRLGYKTKQLVKDLKFLRHLLQYLVQYDCVDFlnlLEALKPTEKAKYQNSPWLFVDS
SYKVFDYAKKRVthpdakmskkekisekmeikegeetkkEYVLEENPKWEALTEILHEIeaenkesealgngPVLVCC
SDDRTCMQeryitlgaeafllrlyrktfekdskaeevwmkfrkedsskrirkshkrpkdquKERHVDKARCTKKKkrk
ltltqmvgkpeeleeegdveegyrreissspescpeeikheefdvnlssdaafgilkepltiihpllgcsdpyaltrvlh
evePSYIIMYDPDLSFVRQLEVYKASNPGKPLKVYFLYYGESTEEQKYLTAIRREKEAFEKLIREKASMVVpeeregrde
tnldlvrgtasadvsthRKAGGQQqngtqqsivvdmrefrselpslihrrgidiepvtlequyiltpemcverksiSD
LIGSLNNGRLYHQCEKMSRYYRYPVLLIEFDQDKSFSltsrgalfqeissndisskltl1t1HFPRLRILWSPSPHATAE
IFTELKQNRDQPDaatalaitadsetlpesENYNPSPFEFLLKMPGVSKANYRSLMHKIKSFAELASLSqde1tsilgna
anakglydfihtsfaevvskgkgkk

B.
**BLOCKS from GIBBS**

>www.blo xpf95.pro 957 a.a. family
3 sequences are included in 10 blocks

www.bloA, width = 45

gi|131810] 201 ERRRKLYISGGILSITSRILIVDLLSGIVHPNRVTGMLVLNADSL
gil2842712 84 NSRYEVYTQGGVIFATSRILVVDFLTDRIPSDLITGILVYRAHRI
xpf95.pro 85 NQRYSLYTSGSPFFITPRILIVDLLTQRIPVSSLAGIFILNAHSI

Figure 7.11. Example of BLOCK output.
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B D B e R

One variation of the method for comparing sequences and patterns is to search a query
sequence with a database of patterns (search type E, Table 7.1). If the sequence contains
patterns representative of a protein family, the sequence is a candidate for membership in
that same family. A large number of protein pattern databases are available (Table 9.5),
most of them offering this type of search.

FASTA-pat and FASTA-swap are versions of FASTA that may be used for comparinga 4§
query sequence to a database of patterns characteristic of protein families. They are {
designed to search for remotely related protein sequences by a finely tuned system of {
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MAST - version 2.2
DATABASE swissprot contains 74596 sequences

MOTIF WIDTH BEST POSSIBLE MATCH

SECTION I: HIGH-SCORING SEQUENCES

SEQUENCE NAME DESCRIPTION E-VALUE LENGTH
sp|Q92889 | XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP... 5.3e-35 905
sp|P06777 |RAD1_YEAST DNA REPAIR PROTEIN RAD1 1.1e-31 1100
sp|P36617 |RA16_SCHPO DNA REPAIR PROTEIN RAD16 8.4e-23 892
sp|Q07864 | DPOE_HUMAN DNA POLYMERASE EPSILON, CATALYTIC S... 0.62 2257

SECTION II: MOTIF DIAGRAMS

SEQUENCE NAME

sp|092889 | XPF_HUMAN 5.3e-35 181-[4]-405-[3]=71-[6]-20~[1]-20~[2]-41~
[5]-114

sp|P06777|RAD1_YEAST l.1e-31 298-[4]-433-[3]-75-[6]-20-{1]~20-[2]-55~
[5]-146

sp|P36617|RAL6_SCHPO 8.4e-23 185-[4]-241-[2]-134~[3]-83-[6]-20-[1]-20~

sp|Q07864 | DPOE_HUMAN 0.62 190-[6]=175-[2]-381-[2]=426-[5]~34~[4]~-

SECTION III:

ANNOTATED SEQUENCES

QCKMMSRYY
YFMFYGES
WPRFHVDV
HFPRLRILW
IVDMREFM

E-VALUE MOTIF DIAGRAM

[2]1-41-[5]-106

366-[2]-478-[6]-147

Figure 7.12. Example of MAST output. Figure continues on next page.

amino acid matches. The FASTA algorithm normally identifies sequence similarity very
rapidly by a method for finding common patterns, or k-tuples, in the same order in two
sequences. In FASTA-pat and FASTA-swap, the same rapid method is used to find com-
mon patterns. FASTA-pat performs a faster method of comparing sequences to patterns by
means of a lookup table, as described above (Table 7.3). FASTA-swap performs a more rig-
orous search for the most significant matches of sequence to patterns.

These programs use databases of patterns found in columns of multiple sequence align-
ments of related protein sequences. Multiple sequence alignments of a large number of
protein families were prepared using the PIMA program (see Chapter 4, p. 160). From
these alignments, a large number of conserved patterns were identified, and the pattern
was placed in a new type of scoring matrices. Unlike PSSMs, the columns in these matri-
ces only indicate whether or not a given amino acid is present; there is no score indicating
frequency.

In addition to these pattern matrices, two log odds scoring matrices, weighted-match
minimum average matrix (WMM) and empirical matrix (EMMA), were prepared from
the scoring matrices. These scoring matrices are used by FASTA-pat and FASTA-swat for
comparing a query sequence with a database of pattern matrices.

The scoring system takes into account the possibility that the substitution of amino acid
a for amino acid b may not be as likely as the substitution of b for a. An example from
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gi|548659 |sp|P36617 |RA16_SCHPO
DNA REPAIR PROTEIN RAD16
LENGTH = 892 COMBINED P-VALUE = 1.12e-27 E-VALUE = 8.4e-23
DIAGRAM: 185-[4]-241-[2]1-134-[3]-83-[6]-20-[1]-20-[2]-41-[5]~106

[4]
1.9%9e-07
WPRFHVDV
+++++ +
151 TGFIKAFSDDPEQFLMGINALSHCLRCLFLRHVFIYPRFHVVVAESLEKSPANVVELNVNLSDSQKTIQSCLLTC

[2]
8.8e-05
QCRMMSRYY
+ 4+t
376 ETMLADTDAETSNNSIMIMCADERTCLQLRDYLSTVTYDNKDSLKNMNSKLVDYFQWREQYRKMSKSIKKPEPSK

(3]
6.8e-10
YFMFYGES
+tttttt
526 NSIYIYSYNGERDELVLNNLRPRYVIMFDSDPNFIRRVEVYKATYPKRSLRVYFMYYGGSIEEQKYLFSVRREKD

(6]
3.6e-09
IVDMREF
+++ +++
601 SFSRLIKERSNMAIVLTADSERFESQESKFLRNVNTRIAGGGQLSITNEKPRVRSLYLMFICIKTLKVIVDLREF

[1] [2]

6.0e-13 8.5e-09
M VGDYILTPDIC QCRMMSRYY
+ $tbtttt 4+

676 RSSLPSILHGNNFSVIPCQLLVGDYILSPKICVERKSIRDLIQSLSNGRLYSQCEAMTEYYEIPVLLIEFEQHQS

(5]
3.7e-08
HFPRLRILW
4+ 4+ +

751 FTSPPFSDLSSEIGKNDVQSKLVLLTLSFPNLRIVWSSSAYVTSIIFQDLKAMEQEPDPASAASIGLEAGQDSTN

CPU: ghidorah
Time 68.583141 secs.

Figure 7.12. Continued.

Ladunga et al. (1996) is informative. On the one hand, if an alignment column has 9 Cys
and 1 Ala, the substitution of Ala for Cys in this column would be given a low substitution
score because Cys is involved in disulfide bonds and this function cannot be replaced by
Ala. Cys-to-Cys substitutions receive a high score for the same reason. On the other hand,
if a column has 1 Cys and 9 Ala, then the Cys might readily substitute for the Ala, which
has no comparable specific function. The substitution of Cys for Ala is considered to bea
random insertion of no particular significance and is therefore given a corresponding like-
lihood score of zero. When aligning a query sequence to a pattern, a single amino acid in
the sequence is matched to a series of possible substitutions in the pattern. WMM uses the
minimum of the scores for aligning the amino acid in the query sequence with each of the
amino acids in the pattern. WMM gives significantly better results than EMMA, probably
because it is more finely tuned for detecting the types of variations in related sequences.
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Program outputs of FASTA-pat and FASTA-swap are very similar to those of FASTA
described above.

Another type of pattern database searching is to use a pattern query to search a database
of patterns. The LAMA (Local Alignment of Multiple Alignments) server at the BLOCKS
Web site, described below, performs such a search. A final variation is to use a query
sequence, called a Cobbler sequence (see Fig. 7.11), modified by substituting a consensus
sequence for the corresponding part of the sequence. The BLOCKS server automatically
produces such sequences when generating new blocks from sequences, and they may be
used for sequence database searches. Embedding consensus residues has been demonstrat-
ed to improve database searches by a query sequence (Henikoff et al. 1995).

LAMA is a type of analysis provided on the BLOCKS server (http://www.blocks.
there.org/blockshelp/LAMA _help.html#LAMA) that compares a query PSSM represent-
ing a particular set of proteins with a database of such matrices to find related sets of pro-
teins (Pietrokovski 1996). In this manner, new and larger related sets of proteins not iden-
tified previously might be discovered. Because the search is for matching sequence patterns
instead of entire sequence alignments, there is an opportunity to analyze the evolution of
function in different parts of a protein molecule (Henikoff et al. 1997). For example, a
given group of proteins may be found to have two regions, one related to one particular
group of proteins and a second related to another group. The LAMA program compares
the scores found in each column of one PSSM to those in a second to discover whether
there is any correlation. Examples of the procedure are given at http://www.blocks.
there.org/blockshelp/LAMA_help. htmI#EXAMPLES.

PSI-BLAST, A Version of BLAST for Finding Protein Families

As described above, there are advantages to using a scoring matrix that represents con-
served sequence patterns in a protein family instead of a single query sequence to search a
sequence database. The search of sequence databases will thereby be expanded to identify
additional related sequences that might otherwise be missed. The major difficulty with
such an expanded search is that an alignment of related sequences must already be avail-
able to know the variations at each position in the query sequence. A new version of BLAST
called position-specific-iterated BLAST, or PSI-BLAST, has been designed to provide
information on this variation starting with a BLAST search by a single query sequence. A
similar program, PHI-BLAST, performs a similar type of search starting with a specified
pattern in a query sequence (see below).

The method used by PSI-BLAST involves a series of repeated steps or iterations. First, a
database search of a protein sequence database is performed using a query sequence. Sec-
ond, the results of the search are presented and can be assessed visually to see whether any
database sequences that are significantly related to the query sequence are present. Third,
if such is the case, the mouse is clicked on a decision box to go through another iteration
of the search. The high-scoring sequence matches found in the first step are aligned, and,
from the alignment, a type of scoring matrix that indicates the variations at each aligned
position is produced. The database is then again searched with this scoring matrix. Thus,
the search has been expanded to include sequences that match the variations found in the
multiple sequence alignment at each sequence position. The results are again displayed,
indicating any newly discovered sequences that are significantly related to the aligned
sequences in addition to those found in the previous iteration. Again, an opportunity is
given to go through another iteration of the program, but this time including any newly
recruited sequences to refine the alignment. In this fashion, a new family of sequences that
are significantly similar to the original query sequence can be found.
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This new method was made possible by the development of the gapped BLAST pro-
gram, which increased the speed of the BLAST algorithm by over one-half so that more
sophisticated search routines of PSI-BLAST could be added without an overall loss of
speed. PSI-BLAST may not be as sensitive as other pattern-generating and searching pro-
grams described in Chapter 4 and above, but the simplicity and ease of use of this program
are very attractive features for exploring protein family relationships. In a comparison of
the ability of PSI-BLAST with the Smith-Waterman dynamic programming program
SSEARCH to identify members of 11 protein families defined by sequence similarity, PSI-
BLAST found more sequences and, in some cases, many-fold more sequences, than
SSEARCH and at a 40-fold greater speed.

A similar program, MAXHOM, has been described previously (Sander and Schneider
1991). The sequence alignment is built up in two steps. Matching sequences found in a
database search are aligned by dynamic programming with a query sequence, and a profile
is made from the alignment. A new round of sequences that match the updated profile are
then picked from the SwissProt database (visit http://www.embl-heidelberg.de/predictpro-
tein/predictprotein.html).

The main difficulty with searching for subtle sequence relationships based on similarity
is determining the significance of the alignments that are found. Such similarities may be
evidence of structural or evolutionary relationships, but they could also be due to match-
ing of random variations that have no common origin or function (Bork and Gibson
1996). Protein structures are in general composed of a tightly packed core and outside
loops. Amino acid substitutions within the core are common, but only certain substitu-
tions will work at a given amino acid position in a given structure. Thus, sequence simi-
larity is not usually a good indicator of structural similarity (see Chapter 9), and the align-
ments found need to be carefully evaluated before any firm conclusions can be drawn.
Another difficulty with the PSI-BLAST approach is that the procedure follows a type of
algorithm called a greedy algorithm. Put simply, once additional sequences that match the
query are found, these newly found sequences influence the finding of more sequences like
themselves, and so on. Ifa different but also related query sequence was used initially, a dif-
ferent group with possible overlaps with the first may be found. Thus, there is no guaran-
tee that the alignments finally discovered represent the same set of related sequences. Nev-
ertheless, PSI-BLAST potentially offers exciting opportunities to the curious but careful
investigator. New types of relationships in the protein databases may be readily discovered
and used to infer evolutionary origins of proteins (Tatusov et al. 1997).

The later steps of a PSI-BLAST search use a scoring matrix that represents the align-
ments found. PSI-BLAST has been engineered to find database matches to this matrix
almost as rapidly as BLASTP finds matches to a query sequence. However, there are some
differences between the matrix produced by PSI-BLAST and those produced by other
matrix programs: (1) The matrix covers the entire length of the aligned sequences where-
as other matrices cover only a short stretch of the alignment; (2) the same gap penalties are
used throughout the procedure and there is no position-specific penalty as in other pro-
grams; (3) each subsequent alignment is based on using the query sequence as a master
template for producing a multiple sequence alignment of the same length as the query
sequence. Columns in the alignment involve varying numbers of sequences depending on
the extent of the local alignment of each sequence with the query, and columns with gaps
in the query sequence are ignored. Sequences >98% similar to the query are not included
to avoid biasing the matrix. Thus, the multiple sequence alignment is a compilation of the
pairwise alignments of each matching database sequence with the query sequence and is
not a true multiple sequence alignment, as illustrated below. The resulting alignment pro-
vides the columns for the scoring matrix

Gt
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Once the alignment has been found, the frequencies of amino acids in each column are
adjusted by weighting the sequences to reduce the influence of the more-alike sequences,
and by adding more counts (pseudocounts) representing other amino acid substitutions
found among the observed types in order to increase the statistical power of the matrix.
These procedures are discussed in Chapter 4 (p. 192). The resulting scores in each column
of the scoring matrix are scaled using the same scaling factor \ as the BLOSUMS62 scoring
matrix so that a threshhold value T for HSPs and other statistical parameters used by
BLASTP may also be used by PSI-BLAST. At each iteration, previously matched sequences
with an E value less than 0.001 are used to produce the next alignment, but this value may
also be changed. PSI-BLAST is in a state of evolution, and the Web page should be con-
sulted for recent improvements. An example of a PSI-BLAST result is shown in Figure
7.13.

Pattern-Hit Initiated BLAST (PHI-BLAST)

PROBE

This program functions much like PSI-BLAST except that the query sequence is first
searched for a complex pattern provided by the investigator (Zhang et al. 1998). The sub-
sequent search for similarity in the protein sequence database is then focused on regions
containing the pattern. Thus, the method provides an opportunity to explore variations of
a known pattern in the sequence database. This program is accessible from the BLAST
server at http://www.ncbi.nlm.nih.gov/.

The chosen query sequence is first searched for a particular pattern or class of patterns
called a regular expression, which allows for a wide range of pattern-matching options. The
Prosite catalog also uses regular expressions to describe variability in the amino acid pat-
terns for the active sites of proteins. For example, the expression [LIVMF]-G-E-x-[GAS]-
[LIVM]-x(5,11)-R-[STAQ]-A-x-[LIVMA]-x-[STACV] means: one of LIVMF in the first
position, followed by G and then E, followed by any single character (indicated by x), fol-
lowed by one of GAS and then by one of LIVM, followed by any 5-11 characters indicat-
ed by x(5,11), then by R, one of STAQ, then A, then any single character, then one of
LIVMA, then any single character, and finally by one of STACV. More information about
these patterns may be provided by the investigator in a standard file, as described on the
Prosite Web site (http://www.expasy.ch/prosite/.

PROBE is a database search tool that is similar to PSI-BLAST but performs a more com-
plex and rigorous type of data analysis (Neuwald et al. 1997). Like PSI-BLAST, the pro-
gram PROBE starts with a single query sequence and searches for family members by a
BLASTP search. After removing the most-alike sequences, PROBE constructs an alignment
model by means of a Bayesian statistical approach that uses both a Gibbs sampling proce-
dure and the genetic algorithm (both methods are described in Chapter 4) to sort the pat-
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% File Edit View Go Bookmarks Options Directory Window 12:31 MR @

| Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A, Schéffer, Jinghui Zhang,
Zheng Zhang, Webb Miller, and David ]. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs”, Nucleic Acids Res. 25:3389-3402.

Database| nr |

\ k
| The amino acid query sequence is filtered for low complexity regions by default.

| Enter here your amino acid sequence as|__ Sequence in FASTA format | ;i |
{? :

b ) e

Figure 7.13. Example of PSI-BLAST search. The sequence of the Arabidopsis XPF DNA repair gene was used to query the
SwissProt database, with an E setting of 0.01, requesting 10 descriptions and alignments with otherwise the recommended
default program settings. The initial iteration found three matching sequences, and these were used to enter iteration 1. Itera-
tion 1 did not produce any additional matches at the chosen level of significance, and the program indicated that the search
had converged with no more sequences at the chosen level of significance. Therefore, for iteration 2 the sequences scoring worse
than the threshhold were used. Since only those lower-scoring sequences that have an alignment with the query could influ-
ence the result, this option could potentiaily find additional sequences. A yeast transport protein was then reported. With
another iteration using the four sequences above threshhold, another set of sequences was now pulled into the high-scoring
group. This search therefore revealed that the SwissProt database has three other sequences strongly related to the query
sequence but that other sequences of less-significant similarity were also present. Figure continues on next page.

terns in all possible combinations in order to find the most significant set. As in PSI-
BLAST, the alignment model is then used as a query for additional database sequences.
PROBE provides a new and powerful approach toward finding a sequence family and is
available by anonymous FTP from ncbi.nlm.nih.gov/pub/neuwald/.

As the sequence databases continue to increase in size, for the most part with genomic
DNA sequences of unknown function, it is important to have a set of computational tools
for predicting the functions of these sequences. The first choice is usually to go to the
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<Psi-BLAST output example>

Psi~BLAST initial iteration

sp|Q92889 | XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 504 e-142

sp|P06777 |RAD1_YEAST DNA REPAIR PROTEIN RAD1 300 6e-81

sp|P36617 [RA16_SCHPO DNA REPAIR PROTEIN RAD16 231 3e-60

Psi-BLAST iteration 1

with sequences scoring better than E threshhold

Converged

sp|Q92889|XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1020 0.0

sp|P06777 |RAD1_YEAST DNA REPAIR PROTEIN RAD1 953 0.0

sp|{P36617 |RA16_SCHPO DNA REPAIR PROTEIN RAD16 897 0.0

Psi-BLAST iteration 2

with sequences scoring worse than E threshhold

sp|Q92889|XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1020 0.0

Sp|P06777 |RAD1_YEAST DNA REPAIR PROTEIN RAD1 967 0.0

sp|P36617 |RA16_SCHPO DNA REPAIR PROTEIN RAD16 939 0.0

sp|P25386|USOI_YEAST INTRACELLULAR PROTEIN TRANSPORT PROTEIN USO1 53 3e-06

Psi-BLAST iteration 3

with sequences scoring better than E threshhold

sp|Q92889 |XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1007 0.0

sp|{P06777 |RAD]1_YEAST DNA REPAIR PROTEIN RAD] 950 0.0

Sp|{P36617 |RA16_SCHPO DNA REPAIR PROTEIN RAD16 884 0.0

Sp|P25386 |USO1l_YEAST INTRACELLULAR PROTEIN TRANSPORT PROTEIN USO1 294 S5e-79

sp|{Q08696 |MST2_DROHY AXONEME-ASSOCIATED PROTEIN MST101(2) 52 4e-06

Sp|Q62209 |SCP1_MOUSE SYNAPTONEMAL COMPLEX PROTEIN 1 (SCP-1 PROT... 49 b5e-05

sp|Q03410(SCP1_RAT SYNAPTONEMAL COMPLEX PROTEIN 1 (SCP-1 PROTEIN) 49 5e-05

sp|Q02224 |CENE_HUMAN CENTROMERIC PROTEIN E (CENP-E PROTEIN) 45 5e-04
Figure 7.13. Continued.

BLAST Web site because a variety of database searches are possible against regularly updat-
ed databases and can be performed with rapid turnaround time. This chapter has discussed
a variety of additional resources for such searches, most available on Web sites or available
for setup on a local computer system. For extensive searching, establishment of the
databases and programs on a local system is a reasonable and achievable option. It is then
possible to set up batch files or scripts that automate the searches. These searches generate
large amounts of information that needs to be organized into a database.

Some of the most interesting matches are those to more distantly related sequences. A
short alignment region between a query and a database sequence is usually not biological-
ly significant, even though there may be a number of identities in the alignment. If addi-
tional sequences can be found that share the same alignment, however, it is possible that
the pattern represents a common structure in a family of related proteins. There are, in
addition, databases of conserved patterns in protein families, and it has been estimated that
about one-half of these patterns can be linked to a protein structural fold. Thus, it is very
worthwhile to follow the distant relationships further with the eventual goal of trying to
discover a relationship to a protein of known structure. There are some excellent comput-
er tools available to the molecular biologist for finding conserved patterns in protein fam-
ilies and for searching new sequences with these patterns, and it can be anticipated that the
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number will continue to grow. There are a large number of Web servers for this purpose,
and these are described in Chapter 9.

As methods are used to search for related sequences, it is important to keep an eye on
the statistical significance of the matches and the plausibility of the observed amino acid
substitutions from a structural perspective. It is quite easy to end up with a group of
sequences that are related to each other but not to the query sequence. There are present-
ly no guides as to which of the above methods is most likely to work. The best advice is to
go further than the basic methods and Web sites by becoming familiar with the range of
available methods.
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