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INTRODUCTION

A PHYLOGENETIC ANALYSIS OF A FAMILY of related nucleic acid or protein sequences is a
determination of how the family might have been derived during evolution. The evolu-
tionary relationships among the sequences are depicted by placing the sequences as outer
branches on a tree. The branching relationships on the inner part of the tree then reflect
the degree to which different sequences are related. Two sequences that are very much alike
will be located as neighboring outside branches and will be joined to a common branch
beneath them. The object of phylogenetic analysis is to discover all of the branching rela-
tionships in the tree and the branch lengths.

Phylogenetic analysis of nucleic acid and protein sequences is presently and will contin-
ue to be an important area of sequence analysis. In addition to analyzing changes that have
occurred in the evolution of different organisms, the evolution of a family of sequences may
be studied. On the basis of the analysis, sequences that are the most closely related can be
identified by their occupying neighboring branches on a tree. When a gene family is found
in an organism or group of organisms, phylogenetic relationships among the genes can help
to predict which ones might have an equivalent function. These functional predictions can
then be tested by genetic experiments. Phylogenetic analysis may also be used to follow the
changes occurring in a rapidly changing species, such as a virus. Analysis of the types of
changes within a population can reveal, for example, whether or not a particular gene is
under selection (McDonald and Kreitman 1991; Comeron and Kreitman 1998; Nielsen and
Yang 1998), an important source of information in applications like epidemiology.

Procedures for phylogenetic analysis are strongly linked to those for sequence alignment
discussed in Chapters 3 and 4, and similar difficulties are encountered. Just as two very
similar sequences can be easily aligned even by eye, a group of sequences that are very sim-
ilar but with a small level of variation throughout can easily be organized into a tree. Con-
versely, as sequences become more and more different through evolutionary change, they
can be much more difficult to align. A phylogenetic analysis of very different sequences is
also difficult to do because there are so many possible evolutionary paths that could have
been followed to produce the observed sequence variation. Because of the complexity of
this problem, considerable expertise is required for difficult situations.

Phylogenetic analysis programs are widely available at little or no cost. A comprehensive
list will not be given here since one has been published previously (Swofford et al. 1996).
The main ones in use are PHYLIP (phylogenetic inference package) (Felsenstein 1989
1996) available from Dr. ]J. Felsenstein at http://evolution.genetics.washington.edu/
phylip.html and PAUP (phylogenetic analysis using parsimony) available from Sinauer
Associates, Sunderland, Massachusetts, http://www.lms.si.edu/PAUP/. Current versions of
these programs provide the three main methods for phylogenetic analysis—parsimony,
distance, and maximum likelihood methods (described below)—and also include many
types of evolutionary models for sequence variation. Examples using these programs are
given later in the chapter. Each program requires a particular type of input sequence for-
mat that is described below and in Chapter 2. Another program, MacClade, is useful for
detailed analysis of the predictions made by PHYLIP, PAUP, and other phylogenetic pro-
grams and is also available from Sinauer (also see http://phylogeny.arizona.edu/macclade/
macclade.html). MacClade, as the name suggests, runs on a Macintosh computer. PHYLIP
and PAUP run on practically any machine, but the user interface for PAUP has been most
developed for use on the Macintosh computer.

There are also several Web sites that provide information on phylogenetic relationships
among organisms (Table 6.1). There are several excellent descriptions of phylogenetic
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Table 6.1. Phylogenetic relationships among organisms

Site name Address Description Reference
Entrez http://www3.ncbi.nlm.nih.gov/ taxonomically related structures see Web page
Taxonomy/taxonomyhome.html or group of organisms
RDP (Ribosomal  http://www.cme.msu.edu/RDP/ ribosomal RNA-derived trees Maidak et al. (1999)
database project)
Tree of life http://phylogeny.arizona.edu/tree/  information about phylogeny and Maddison and
phylogeny.html biodiversity Maddison (1992)

analysis in which the methods are covered in considerable depth (Li and Graur 1991;
Miyamoto and Cracraft 1991; Felsenstein 1996; Li and Gu 1996; Saitou 1996; Swofford et
al. 1996; Li 1997).

When the sequences of two nucleic acid or protein molecules found in two different organ-
isms are similar, they are likely to have been derived from a common ancestor sequence.
Chapter 3 discusses sequence alignment methods used to determine sequence similarity.
Chapter 4 discusses multiple sequence alignment methods that need to be applied to a set
of related sequences before a phylogenetic analysis can be performed. Chapter 7 describes
methods for searching through a database of sequences to locate sequences that are simi-
lar to a query sequence. A sequence alignment reveals which positions in the sequences
were conserved and which diverged from a common ancestor sequence, as illustrated in
Figure 6.1. When one is quite certain that two sequences share an evolutionary relation-
ship, the sequences are referred to as being homologous.

The commonest method of multiple sequence alignment (the progressive alignment
method, p. 152) first aligns the most closely related pair of sequences and then sequential-
ly adds more distantly related sequences or sets of sequences to this initial alignment (see
flowchart, p. 144). The alignment so obtained is influenced by the most alike sequences in
the group and thus may not represent a reliable history of the evolutionary changes that
have occurred. Other methods of multiple sequence alignment attempt to circumvent the
influence of alike sequences (see Chapter 4, p. 157). Once a multiple sequence alignment
has been obtained, each column is assumed to correspond to an individual site that has

GAATC sequence 1
GAGTT sequence 2

GAATC GAGTT
total of 2
seguence changes

GA(A/G)T(C/T) ancestor sequence

Figure 6.1. Origin of similar sequences. Sequences 1 and 2 are each assumed to be derived from a
common ancestor sequence. Some of the ancestor sequence can be inferred from conserved positions
in the two sequences. For positions that vary, there are two possible choices at these sites in the ances-
tor.
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been evolving according to the observed sequence variation in the column. Most methods
of phylogenetic analysis assume that each position in the protein or nucleic acid sequence
changes independently of the others (analysis of RNA sequence evolution is an exception:
see Chapter 5).

As indicated above, the analysis of sequences that are strongly similar along their entire
lengths is quite straightforward. However, to align most sequences requires the position-
ing of gaps in the alignment. Gaps represent an insertion or deletion of one or more
sequence characters during evolution. Proteins that align well are likely to have the same
three-dimensional structure. In general, sequences that lie in the core structure of such
proteins are not subject to insertions or deletions because any amino acid substitutions
must fit into the packed hydrophobic environment of the core. Gaps should therefore be
rare in regions of multiple sequence alignments that represent these core sequences. In
contrast, more variation, including insertions and deletions, may be found in the loop
regions on the outside of the three-dimensional structure because these regions do not
influence the core structure as much. Loop regions interact with the environment of small
molecules, membranes, and other proteins (see Chapter 9).

Gaps in alignments can be thought of as representing mutational changes in sequences,
including insertions, deletions, or rearrangements of genetic material. The expectation that
a gap of virtually any length can occur as a single event introduces the problem of judging
how many individual changes have occurred and in what order. Gaps are treated in various
ways by phylogenetic programs, but no clear-cut model as to how they should be treated has
been devised. Many methods ignore gaps or focus on regions in an alignment that do not
have any gaps. Nevertheless, gaps can be useful as phylogenetic markers in some situations.

Another approach for handling gaps is to avoid analysis of individual sites in the
sequence alignment and instead to use sequence similarity scores as a basis for phyloge-
netic analysis. Rather than trying to decide what has happened at each sequence position
in an alignment, a similarity score based on a scoring matrix with penalties for gaps is often
used. As discussed below, these scores may be converted to distance scores that are suitable
for phylogenetic analysis (Feng and Doolittle 1996) by distance methods (p. 254).

When performing a phylogenetic analysis, it is important to keep in mind that the genomes
of most organisms have a complex origin. Some parts of the genome are passed on by ver-
tical descent through the normal reproductive cycle. Other parts may have arisen by hori-
zontal transfer of genetic material between species through a virus, DNA transformation,
symbiosis, or some other horizontal transfer mechanism. Accordingly, when a particular
gene is being subjected to phylogenetic analysis, the evolutionary history of that gene may
not coincide with the evolutionary history of another.

One of the most significant uses of phylogenetic analysis of sequences is to make pre-
dictions concerning the tree of life. For this purpose, a gene should be selected that is uni-
versally present in all organisms and easily recognizable by the conservation of sequence in
many species. At the same time, there should be enough sequence variation to determine
which groups of organisms share the same phylogenetic origin. Ideally, the gene should
also not be under selection, meaning that as variation occurs in populations of organisms,
certain sequences are not favored with a loss of the more primitive variation.

Two molecules of this type that carry a great deal of evolutionary history in inter-species
sequence variations are the small rRNA subunit and mitochondrial sequences. A large
number of rRNA sequences from a variety of organisms were aligned and the secondary
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structure was deduced following methods discussed in Chapter 5. Phylogenetic predictions
were then made using the distance method described below (Woese 1987). On the basis of
rRNA sequence signatures, or regions within the molecule that are conserved in one group
of organisms but different in another (Fig. 6.2), Woese (1987) predicted that early life
diverged into three main kingdoms—Archaea, Bacteria, and Eukarya—a view that has
been challenged (Mayr 1998). Evidence for the presence of additional organisms in these
groups has since been found by PCR amplification of environmental samples of RNA
(Barns et al. 1996). A more detailed analysis was used to find relationships among individ-
ual species within each group. The types of relationships found among the prokaryotic
organisms are illustrated in Figure 6.3. The use of mitochondrial sequences for analysis of
primate evolution is given below in the description of the parsimony method of phyloge-
netic analysis.

Although these studies of rRNA sequences suggest a quite clear-cut model for the evo-
lution of life, phylogenetic analysis of other genes and gene families has revealed that the
situation is probably more complex and that a more appropriate model might be the one
shown in Figure 6.4. There are now many examples of horizontal or lateral transfer of
genes between species (see Fig. 3.3, p. 55) that introduce new genes and sequences into an
organism (Brown and Doolittle 1997; Doolittle 1999). These types of transfers are inferred
from the finding that the phylogenetic histories of different genes in an organism, such as
genes for metabolic functions, are not the same or that codon use in different genes varies
(see Chapter 10). Another type of phylogenetic analysis is based on the number of genes
shared between genomes and produces a tree that is similar to the rRNA tree (Snel et al.
1999).

To track the evolutionary history of genes, more attention has also been paid to the
methodology of phylogenetic analysis and to the inherent errors in many of the assump-
tions (Doolittle 1999). Problems associated with variations between rates of change in dif-
ferent sites and of analyzing more distantly related sequences are discussed below. More-
over, there is evidence that genomes undergo extensive rearrangements, placing sequences
of different evolutionary origin next to each other and even causing rearrangements with-
in protein-encoding genes (Henikoff et al. 1997).

The different regions of independent evolutionary origin in a sequence therefore need
to be identified. As discussed in Chapter 9, proteins are modular with functional domains,
sometimes repeated within a protein and sometimes shared within a protein family. These
regions are identified by their sharing of significant sequence similarity. The remainder of
the aligned regions in the group may have variable levels of similarity. In nucleic acid
sequences, a given sequence pattern may provide a binding site for a‘regulatory molecule,
leading to promoter function, RNA splicing, or some other function. It may be difficult to
decide the extent of these patterns for phylogenetic analysis; however, statistical approach-
es discussed in Chapter 4 may be used.

Another feature of genome evolution that should be considered in phylogenetic analy-
sis is the occurrence of gene duplication events that create tandem copies of a gene. These
two copies may then evolve along separate pathways leading to different functions. How-
ever, these copies maintain a certain level of similarity and undergo concerted evolution, a
process of acquiring mutations in a coordinated way, probably through gene conversion or
recombination events. Speciation events following gene duplications will give rise to two
independent sets of genes and sequences, one set for each gene copy. As discussed in Chap-
ter 3 and illustrated in Figure 3.3, two genes in the same lineage can have different rela-
tionships. In the example shown in Figure 3.3, genes al and a2 have been derived from
gene a. The pair is then segregated by speciation such that there is one al a2 pair in one
species evolving along one path and a second al a2 pair in a second species evolving along
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a Proteobacteria y Proteobacteria Euryarchaeota
Caulobacter crescentus, _Escherichia coli, Azotobacler, i
Bartonella benselae, Actinobacillus actinomycetemcomitans, Archaeglobus fulgidus,
Rickeftsia prowazeki Legionella pneumophila, Francisella Methanobacterium
B Proteobacteria tularensis, Pseudomonas aeruginosa, thermoautotrophicum.
Neisseria gonorrhoeae Salmonella typhimurium, Shewanelia Ihermoplasma_acidophilum,
Pyracoceus furiosus,
¢ Proteobacteria Pyrococeus shinkaj,
Thermoplasma acidophilum
Gra;r_n
Bacteria positives
-see .
Proteobacteria lower Chlamydia Archaea
(purple bacteria) right trachomatis "Korarchaeota"
-see above _ ‘ Euryarchaeota - see above
B, Spirochetes
o -see below Crenarchaeota
. Sulfolobus solfataricus
Cyanobacteria Aquifex
Synechocystis sp. Aquifex
aeolicus
Bacteriodes- o
Flavobacteria EUkary a
Porphyromonas Thermotogales
gingivalis Thermotoga
Green non maritima
sulfur bacteria
Deinococcus
[adiodurans "Cenancestor"
High G+C gram positive
) )
M-“mmﬂ“mﬁm“ bactorium tubercuiosi
Mycoplasma mycoides.
Streptomyees coelicolor
SEpiroc[_ he! tes orfer] Low G+C gram positive
Bacillus subtilis,
Clostridi tobutyli
Enterococeus faecalis,
Streptococeus pneumoniae,
Streplococcus coelicolor,
Ureaplasm uealyticum

Figure 6.3. Rooted tree of life showing principal relationships among prokaryotic domains Bacteria and Archaea (Woese 1987;
Barns et al. 1996; Brown and Doolittle 1997). Branch lengths are approximate only. Species that have been sequenced or are
being sequenced are shown. A comprehensive database of sequenced microbial genomes is maintained at http://www.tigr.org/.
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Figure 6.4. The reticulated or net-like form of the tree of life. Analysis of rRNA sequences originally
suggested three main branches in the tree of life, Archaea, Bacteria, and Eukarya. Subsequent phylo-
genetic analysis of genes for some metabolic enzymes is not congruent with the rRNA tree. Hence, for
these metabolic genes, the tree has a reticulated form due to horizontal transfer of these genes between
species. (Reprinted, with permission, from Martin 1999 [copyright Wiley-Liss, Inc.].)

a second path, reproductively and genetically isolated from each other. The al genes in the
different species are orthologous to each other, as are the a2 genes, but the al and a2 genes
are paralogous because they arose from a gene duplication event. These relationships can
be determined by a careful analysis of genomes and sequence relationships (Tatusov et al.
1997) that is discussed further in Chapter 10.

An evolutionary tree is a two-dimensional graph showing evolutionary relationships
among organisms, or in the case of sequences, in certain genes from separate organisms.
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The separate sequences are referred to as taxa (singular taxon), defined as phylogenetical-
ly distinct units on the tree. The tree is composed of outer branches (or leaves) represent-
ing the taxa and nodes and branches representing relationships among the taxa, illustrat-
ed as sequences A-D in Figure 6.5. Thus, sequences A and B are derived from a common
ancestor sequence represented by the node below them, and C and D are similarly related.
The A/B and C/D common ancestors also share a common ancestor represented by a node
at the lowest level of the tree. It is important to recognize that each node in the tree repre-
sents a splitting of the evolutionary path of the gene into two different species that are iso-
lated reproductively. Beyond that point, any further evolutionary changes in each new
branch are independent of those in the other new branch. The length of each branch to the
next node represents the number of sequence changes that occurred prior to the next level
of separation. Note that, in this example, the branch length between the A/B node and A is
approximately equal to that between the A/B node and B, indicating the species are evolv-
ing at the same rate.

The amount of evolutionary time that has transpired since the separation of A and B is
usually not known. What is estimated by phylogenetic analysis is the amount of sequence
change between the A/B node and A and also between the A/B node and B. Hence, judg-
ing by the branch lengths from this node to A and B, the same number of sequence changes
has occurred. However, it is also likely that for some biological or environmental reason
unique to each species, one taxon may have undergone more mutations since diverging
from the ancestor than the other. In this case, different branch lengths would be shown on
the tree. Some types of phylogenetic analyses assume that the rates of evolution in the tree
branches are the same, whereas others assume that they vary, as discussed below. The
assumption of a uniform rate of mutation in the tree branches is known as the molecular
clock hypothesis and is usually most suitable for closely related species (Li and Graur 1991;
Li 1997). Tests for this hypothesis have been devised as described below. Even if there is a
common rate of evolutionary change, statistical variations from one branch to another can
influence the analysis. The number of substitutions in each branch is generally assumed to
vary according to the Poisson distribution (see Chapter 3, p. 103, for an explanation of the
Poisson distribution), and the rate of change is assumed to be equal across all sequence
positions (Swofford et al. 1996).

A. Rooted tree
sequence A
node
sequence B
sequence C
branch
sequence D
B. Unrooted tree
sequence A sequence C
sequence B sequence D
Figure 6.5. Structure of evolutionary trees.
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The tree shown is only one of many, each predicting a different evolutionary relation-
ship among the sequences or taxa. The number of possible rooted trees increases very
rapidly with the number of sequences or taxa, as shown in Table 6.2. A root has been
placed at this position indicating that in this evolutionary model of the sequences this basal
node is the common ancestor of all of the other sequences. A unique path leads from the
root node to any other node, and the direction of the path indicates the passage of evolu-
tionary time. The root is defined by including a taxon that we are reasonably sure branched
off earlier than the other taxa under study but should be related to the remaining taxa. It
is also possible to predict a root, assuming that the molecular clock hypothesis holds.

The sum of all the branch lengths in a tree is referred to as the tree length. The tree is
also a bifurcating or binary tree, in that only two branches emanate from each node. This
situation is what one would expect during evolution—only one splitting away of a new
species at a time. Trees can have more than one branch emanating from a node if the events
separating taxa are so close that they cannot be resolved, or to simplify the tree.

An alternative representation of the relationships among sequences A-D in Figure 6.5A
is shown in Figure 6.5B. The difference between the tree in A and that in B is that the tree
in B is unrooted. The unrooted tree also shows the evolutionary relationships among
sequences A-D, but it does not reveal the location of the oldest ancestry. B could be con-
verted into A by placing another node and adjoining root to the black line. A root could
also be placed anywhere else in the tree. Hence, there are a great many more possibilities
for rooted than for unrooted trees for a given number of taxa or sequences, as shown in
Table 6.2.

Three methods—maximum parsimony, distance, and maximum likelihood—are gen-
erally used to find the evolutionary tree or trees that best account for the observed varia-
tion in a group of sequences. Each of these methods uses a different type of analysis as
described below. The flowchart on page 247 descibes the types of considerations that need
to be made in choosing a method. These methods may find that more than one tree meets
the criterion chosen for being the most likely tree. The branching patterns in these trees
may be compared to find which branches are shared and therefore are more strongly sup-
ported. PAUP provides methods for finding consensus trees, and such trees are also calcu-
lated by the CONSENSE program in the PHYLIP package. Trees are stored as a tree file
that shows the relationships in nested-parenthesis notation, i.e., a file with the line
(A,(B,(C,D))) represents the tree shown below in Table 6.2. Sometimes, branch lengths are

Table 6.2. Number of possible evolutionary trees to consider as a function of number of

sequences
Taxa or sequence no. No. of rooted trees No. of unrooted trees
3 3 1
4 15
5 105 15

7 10,395 954
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also included next to the names, e.g., A:0.05. From this information, a tree-drawing pro-
gram may be used to produce a tree representation of the data.

METHODS
Choose Obtain Yes Maximum
set of - multiple parsimony
related sequence methods
seguences.’ alignment
(Chapter 4).2
Yes
Distance
methods
No
Maximum Analyze how
likelihood 5| \Welldata
methods® support
prediction.®

1. The sequences chosen can be either DNA or protein sequence: Different programs and program
options are used for each type. RNA sequences are analyzed by covariation methods and by analyzing
changes in secondary structure, as outlined in Chapter 5. The selected sequences should align with
each other along their entire lengths, or else each should have a common set of patterns or domains
that provides a strong indication of evolutionary relatedness.

2. The alignment of the sequence pairs should not have a large number of gaps that are obviously nec-
essary to align identical or related characters (see Chapter 3 flowchart, p. 58). A phylogenetic analysis
~should only be performed on parts of sequences that can be reasonably aligned. In general, phyloge-
netic methods analyze conserved regions that are represented in all the sequences. The more similar
the sequences are to each other, the better. The simplest evolutionary models assume that the varia-
tion in each column of the multiple sequence alignment represents single-step changes and that no
reversals (A — T — A) have occurred. As the observed variation increases, more multiple-step
changes (A — T — G) and reversions are likely to be present. Corrections may be applied for such
variation, thereby increasing the observed amount of change to a more reasonable value. These cor-
rections assume a uniform rate of change at all sequence positions over time. Gaps in the multiple
sequence alignment are usually not scored because there is no suitable model for the evolutionary
mechanisms that produce them.

3. This question is designed to select sequences suitable for maximum parsimony analysis. Other meth-
ods may also be used with these same sequences. For parsimony analysis, the best results are obtained
when the amount of variation among all pairs of sequences is similar (no very different sequences are
present) and when the amount of variation is small. Some columns in the multiple sequence align-
ment will have the same residue in all sequences; other columns will include both conserved and non-
conserved residues. There should be a clear-cut majority of certain residues in some columns of the
alignment but also some variation. These more common residues are taken to represent an earlier
group of sequences from which others were derived. If there is too much variation, there will be too
many possible ancestral relationships. Because the maximum parsimony method has to attempt to fit
all possible trees to the data, the method is not suitable for more than 11 or 12 sequences because there
are too many trees to test. More than one tree may be found to be equally parsimonious. A consensus
tree representing the conserved features of the different trees may then be produced.
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4. The purpose of this question is to select sequences for phylogenetic analysis by distance methods. Dis-
tance methods are able to predict an evolutionary tree when variation among the sequences is present
(some sequences are more alike than others) and when the amount of variation is intermediate. The
number of changed positions in an alignment between two sequences divided by the total number of
matched positions is the distance between the sequences. As distances increase, corrections are neces-
sary for deviations from single-step changes between sequences (see note 3). Of course, as distances
increase, the uncertainty of alignments also increases (see Chapter 4), and a reassessment of the suit-
ability of the multiple sequence alignment method may be necessary. Sequences with this type of vari-
ation may also be suitable for phylogenetic analysis by maximum likelihood methods. Distance meth-
ods may be used with a large number of sequences. The program CLUSTALW produces a
distance-based tree at the same time as a multiple sequence alignment (Higgins et al. 1996).

5. Maximum likelihood methods may be used for any set of related sequences, but they are particularly
useful when the sequences are more variable. These methods are computationally intense, and com-
putational complexity increases with the number of sequences since the probability of every possible
tree must be calculated as described in the text. An advantage of these methods is that they provide
evolutionary models to account for the variation in the sequences.

6. The data in the multiple sequence alignment columns is resampled to test how well the branches on
the evolutionary tree are supported (boot-strapping).

This method predicts the evolutionary tree (or trees) that minimizes the number of steps
required to generate the observed variation in the sequences. For this reason, the method
is also sometimes referred to as the minimum evolution method. A multiple sequence
alignment is required to predict which sequence positions are likely to correspond. These
positions will appear in vertical columns in the multiple sequence alignment. For each
aligned position, phylogenetic trees that require the smallest number of evolutionary
changes to produce the observed sequence changes are identified. This analysis is contin-
ued for every position in the sequence alignment. Finally, those trees that produce the
smallest number of changes overall for all sequence positions are identified. This method
is used for sequences that are quite similar and for small numbers of sequences, for which
it is best suited. The algorithm followed is not particularly complicated, but it is guaran-
teed to find the best tree, because all possible trees relating a group of sequences are exam-
ined. For this reason, the method is quite time-consuming and is not useful for data that
include a large number of sequences or sequences with a large amount of variation. One or
more unrooted trees are predicted and other assumptions must be made to root the pre-
dicted tree.

PAUP offers a number of options and parameter settings for a parsimony analysis in the
Macintosh environment. The main programs for maximum parsimony analysis in the
PHYLIP package (Felsenstein 1996) are listed below.

For analysis of nucleic acid sequences, programs are:

1. DNAPARS, which treats gaps as a fifth nucleotide state.

2. DNAPENNY, which performs parsimonious phylogenies by branch-and-bound search
that can analyze more sequences (up to 11 or 12).

3. DNACOMP, which performs phylogenetic analysis using the compatibility criterion.
Rather than searching for overall parsimony at all sites in the multiple sequence align-

ment, this method finds the tree that supports the largest number of sites. This method
is reccommended when the rate of evolution varies among sites.

4, DNAMOVE, which performs parsimony and compatibility analysis interactively.



Branch-and-bound is
a method that stops
analyzing a particular
branching pattern in
trees when it is not
possible to obtain a
more  parsimonious
solution than has been
already found.
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For analysis of protein sequences, the program is:

1. PROTPARS, which counts the minimum number of mutations to change a codon for
the first amino acid into a codon for the second amino acid, but only scores those muta-
tions in the mutational path that actually change the amino acid. Silent mutations that
do not change the amino acid are not scored on the grounds that they have little evolu-
tionary significance.

The maximum parsimony analysis is illustrated in the following example of four
sequences shown in Table 6.3 and Figure 6.6 (adapted from Li and Graur 1991). An exam-
ple of a parsimony analysis of mitochondrial sequences using PAUP and MacClade is then
given. Note that in a multiple sequence alignment, only certain sequence variations at a
given site are useful for a parsimony analysis. In the analysis, all of the possible unrooted
trees (three trees for four sequences) are considered. The sequence variations at each site
in the alignment are placed at the tips of the trees, and the tree that requires the smallest
number of changes to produce this variation is determined. This analysis is repeated for
each informative site, and the tree (or trees) that supports the smallest number of changes
overall is found. The length of the tree, defined as the sum of the number of steps in each
branch of the tree, will be a minimum.

In the above example, because there were only four sequences to consider, it was neces-
sary to consider only three possible unrooted trees. For a larger number of sequences, the
number of trees becomes so large that it may not be feasible to examine all possible trees.
The example of 12 sequences below took only a few seconds on a Macintosh G3. The
exhaustive and branch-and-bound options of the program PAUP will analyze all possible
trees, and if the number is too large, the program can keep running for a very long time.

For large numbers of sequences, PAUP provides a program option called “heuristic,”
which searches among all possible trees and keeps representative trees that best fit the data.
The presence of common branch patterns in these trees reveals some of the broader fea-
tures of the phylogenetic relationships among the sequences.
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Table 6.3. Example of phylogenetic analysis to find the correct unrooted tree from four aligned
sequences by the maximum parsimony method

Sequence position (sites)

Taxa and character
1 2 3 4 5 6 7 8 9
1 A A G A G T G C A
2 A G C C G T G C G
3 A G A T A T C C A
4 A G A G A T C C G
Adapted from Li and Graur 1991.
TREE | TREE lI TREE 1l
Taxon 1 Taxon3  Taxon 1 Taxon2  Taxon 1 Taxon 2
N A N e "\ e
G—A *>a—al? A—~nl"*
°
. / \A A / \A A / \A
Taxon 2 Taxon4  Taxon 3 Taxon4  Taxon 4 Taxon 3
Total tree 1 2 3
length plus 2 other character arrangements
in trees Il and |li
e is a substitution
Figure 6.6. Example of phylogenetic analysis using the maximum parsimony method. (Redrawn,
with permission, from Li and Graur 1991 [copyright Sinauer Associates].)

Parsimony can give misleading information when rates of sequence change vary in the
different branches of a tree that are represented by the sequence data. These variations pro-
duce a range of branch lengths, long ones representing more extended periods of time and
short ones representing shorter times. For example, the real tree shown below in Figure
6.8A includes two long branches in which G has turned to A independently, probably with
a number of intermediate changes that are not observed in the sequence data. Because in
a parsimony analysis rates of change along all branches of the tree are assumed to be equal,
the tree predicted by parsimony and shown in Figure 6.8B will not be correct.

Although other columns in the sequence alignment that show less variation may pro-
vide the correct tree, the columns representing greater variation dominate the analysis
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(Swofford et al. 1996). Such long branches may be broken down if additional taxa are pres-
ent that are more closely related to taxa 1 and 4, thereby providing branches that intersect
the long branches and give a better resolution of the changes.

Another method for identifying such long branches is called Lake’s method of invari-
ants or evolutionary parsimony, available in PAUP. In this method, four of the sequences
are chosen at a time, and only transversions in the aligned positions are scored as changes
on the grounds that transversions are the most significant base changes during evolution.
Transversions of any base to each possible derivative, e.g., A = C or T, are assumed to
change at the same rate to create a balanced distribution, and the changes in each column
of the alignment (each sequence position) are assumed to occur independently of each
other. Suppose that there are two long branches as in the case discussed immediately
above. The correct tree is shown in Figure 6.9A, and one of the sites has changed multiply
but ends up as the same base A by chance. Traditional parsimony will identify this tree
incorrectly, as indicated above. If these long branches do indeed exist, then other sites
should give the type of transversion events shown in Figure 6.9B. The greater the number
of B-type sites, the less one can depend on the A-type sites revealed in A. The evolutionary
parsimony method subtracts the number of type B from the number of type A. If, on the
one hand, long branches are not present in the quartet of sequences, there will be very few
type B, and type A will be taken as evidence for the correct tree. On the other hand, if many
examples of type B are present, the A type will carry little weight. These calculations are
performed for all three possible unrooted trees and all possible types of transversions for
the four sequences, and the tree receiving the most support is chosen. These methods and
other more sophisticated methods for correcting uneven branch lengths are discussed in
detail in Swofford et al. (1996). The PHYLIP program DNAINVAR computes Lake’s and
other phylogenetic invariants for nucleic acid sequences. PAUP also includes an option for
Lake’s invariant.

Compared to the above methods, maximum likelihood and distance methods provide
more reliable predictions when corrections are made for multiple substitutions. Distance
methods such as neighbor joining discussed below have been shown generally to be better
predictors than both standard and evolutionary parsimony methods when branch lengths
are varying (Jin and Nei 1990; Swofford et al. 1996).

There are options in PAUP and MacClade for selecting among the most parsimonious
trees. With MacClade it is possible to view the changes in sequence characters in each
branch of the tree to arrive at the current base in each sequence or taxon, as shown below.
As these characters are traced from positions lower in the tree to upper positions, some
nodes in the tree may be assigned an unambiguous character (shown in color, Fig. 6.10).
For other nodes, the assignment may be ambiguous because the node is leading to two dif-
ferent characters above (thin black line). It is possible to arrange these ambiguities option-
ally in two ways: one is to delay them going as far up the tree away from the root as possi-
ble (the Deltran option; not shown in figure); a second is to introduce them as soon as
possible and as close to the root as possible (the Acctran option; not shown in figure). The
effect of using Deltran is to force parallel changes in the upper branches of the tree, that of
Acctran is to force reversals in the upper branches. Using these options is not recom-
mended unless such variations are expected, as in analysis of more divergent sequences
(Maddison and Maddison 1992).

Homoplasy refers to the occurrence of the same sequence change in more than one
branch of the tree. If all the sequence character changes support the same tree, there is no
homoplasy. In reality, homoplasy is usually found for some characters for any tree. Mac-
Clade allows changing of the tree to avoid homoplasy at a sequence position, but the new
tree length will often increase, thus making the tree a less parsimonious choice than the



This sequence format
is the NEXUS format,
which allows addi-

tional  information
about the sequences,
species  relationship,

and a scoring system
for base substitution
referred to as a cost or
step matrix.

A. Mitochondrial sequences.

#NEXUS

begin taxa;
dimensions
end;

begin characters;
dimensions

format missing=? gap=- matchchar=.

ntax=12;

nchar=898;
interleave datatype=dna;

options gapmode=missing;

matrix

Lemur catta
Homo_sapiens

Pan

Gorilla

Pongo

Hylobates
Macaca_fuscata
M. mulatta

M. fascicularis
M._sylvanus
Saimiri_sciureus
Tarsius_syrichta

Lemur_catta
Homo_sapiens

Pan

Gorilla

Pongo

Hylobates
Macaca_fuscata
M. mulatta

M. fascicularis
M. sylvanus
Saimiri_sciureus
Tarsius_syrichta

end;

B. Phylogenetic tree

Lemur catta

Homo sapiens

Pan

AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCATCCATATTATT
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTATT
ARGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCATTATTATT
AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCATTATTATT
ARGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCCCTACTGTT
AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTTCCCTGCTATT
AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTTCCATATATTT
BAAGCTTTTCTGGCGCAACCATCCTCATGATTGCTCACGGACTCACCTCTTCCATATATTT
AAGCTTCTCCGGCGCAACCACCCTTATAATCGCCCACGGGCTCACCTCTTCCATGTATTT
AAGCTTCTCCGGTGCAACTATCCTTATAGTTGCCCATGGACTCACCTCTTCCATATACTT
AAGCTTCACCGGCGCAATGATCCTAATAATCGCTCACGGGTTTACTTCGTCTATGCTATT
AAGTTTCATTGGAGCCACCACTCTTATAATTGCCCATGGCCTCACCTCCTCCCTATTATT

CTGTCTAGCCAACTCTAACTACGARCGAATCCATAGCCGTACAATACTACTAGCACGAGG
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATCCTCTCTCAAGG
CTGCCTAGCAAACTCAAATTATGAACGCACCCACAGTCGCATCATAATTCTCTCCCAAGG
CTGCCTAGCARACTCAAACTACGAACGARCCCACAGCCGCATCATAATTCTCTCTCARGG
CTGCCTAGCAAACTCAAACTACGAACGAACCCACAGCCGCATCATAATCCTCTCTCAAGG
CTGCCTTGCAARCTCAARACTACGAACGAACTCACAGCCGCATCATAATCCTATCTCGAGG
CTGCCTAGCCAATTCARACTATGAACGCACTCACAACCGTACCATACTACTGTCCCGAGG
CTGCCTAGCCAATTCARACTATGAACGCACTCACAACCGTACCATACTACTGTCCCGGGE
CTGCTTGGCCAATTCAAACTATGAGCGCACTCATAACCGTACCATACTACTATCCCGAGG
CTGCTTGGCCAACTCAAACTACGAACGCACCCACAGCCGCATCATACTACTATCCCGAGG
CTGCCTAGCAAACTCAAATTACGAACGAATTCACAGCCGAACAATAACATTTACTCGAGG
TTGCCTAGCAAATACAAACTACGAACGAGTCCACAGTCGAACAATAGCACTAGCCCGTGG

Gorilla

Pongo
Hylobates
Macaca fuscata
M. mulatta

M. fascicularis
M. sylvanus
Saimiri sciurei

Tarsius syrichi
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A. B
Taxon 1 Taxon 4
G G
Taxon 1 Taxon 2
G
A A G A
Taxon 2 Taxon 3 Taxon 4 Taxon 3

Figure 6.8. Type of sequence variation that leads to an incorrect prediction by the maximum parsi-
mony method.

Taxon 1 Taxon 2 Taxon 1 Taxon 2
A A G A

C C C C
Taxon 4 Taxon 3 Taxon 4 Taxon 3

Figure 6.9. Type of sequence variation that, if detected, can reduce incorrect predictions by the max-
imum parsimony method.

original. Another parameter used is the consistency index (CI), which is the minimum
possible tree length divided by the actual tree length. The more homoplasy, the greater the
actual tree length, and the smaller the value of CI.

Parsimony methods can use information on the number of changes required or steps to
change one residue into another. For example, the number of mutations required to
change one amino acid into another in one branch of a tree can be taken into account. The
parsimony method then attempts to minimize the number of such steps. This number of
steps for interchanging characters can be incorporated into a matrix, called a step or cost
matrix for programs such as PAUP and MacClade to use.

A program designated PROTPARS for protein squences in the PHYLIP package scores
only those mutations that produce amino acid changes (Felsenstein 1996). This program
uses an algorithm similar to one described by Sankoff (1975) for determining the mini-

g
3

Figure 6.7. Analysis of mitochondrial sequences using the maximum parsimony method provided by
the PAUP program. (A) Portion of a multiple sequence alignment of the mitochondrial sequences pro-
vided in the PAUP distribution package. PAUP will import sequences in other multiple sequence align-
ment format and convert them into the NEXUS format. The program READSEQ will reformat multiple
sequence alignments into the NEXUS format. This format includes information about type of sequence,
coding information, codon positions, differential weights for transitions and transversions, treatment of
gaps, and preferred groupings (see Chapter 2). Only a portion of the NEXUS file is shown. In this anal-
ysis, branch-and-bound and otherwise default options were used. Gaps are treated as missing informa-
tion. The number of sequences is indicated as ntaxa, number of alignment columns as nchar, and the
interleave command allows the data to be entered in readable blocks of sequence 60 characters long. (B)

One of the two predicted trees. The tree file of PAUP was edited in MacClade and output as a graphics
file.
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Asp Leu Gly Ser

Figure 6.10. Tracing of sequence characters in an evolutionary tree by MacClade.

mum number of mutations in a tree for changing one sequence into another. Similar
types of analyses for proteins are also available in PAUP and MacClade. The PAUP pro-
gram uses a 3+ 1 option in the stepmatrices option, which is a short cut for analyzing trees
that represent the most possible ancestors of an amino acid (PAUP vers 3.1 manual, pp.
124-126).

S

R s

The distance method employs the number of changes between each pair in a group of
sequences to produce a phylogenetic tree of the group. The sequence pairs that have the
smallest number of sequence changes between them are termed “neighbors.” On a tree,
these sequences share a node or common ancestor position and are each joined to that
node by a branch. The goal of distance methods is to identify a tree that positions the
neighbors correctly and that also has branch lengths which reproduce the original data as
closely as possible. Finding the closest neighbors among a group of sequences by the dis-
tance method is often the first step in producing a multiple sequence alignment, as dis-
cussed in Chapter 4.

The distance method was pioneered by Feng and Doolittle, and a collection of programs
by these authors will produce both an alignment and tree of a set of protein sequences
(Feng and Doolittle 1996). The program CLUSTALW, discussed in Chapter 4, uses the
neighbor-joining distance method as a guide to multiple sequence alignments. PAUP ver-
sion 4 has options for performing a phylogenetic analysis by distance methods. Programs
of the PHYLIP package that perform a distance analysis include the following programs,
which automatically read in a sequence in the PHYLIP infile format (see Chapter 2) and
automatically produce a file called outfile with a distance table.

1. DNADIST computes distances among input nucleic acid sequences. There are choices
given for various models of evolution as described below and a choice for the expected
ratio of transitions to transversions.

2. PROTDIST computes a distance measure for protein sequences, based on the Dayhoff
PAM model (see p. 78) or other models of evolutionary change in proteins (Felsenstein
1996).

Once distance matrices have been produced, they may be used as input to the following
distance analysis programs in PHYLIP. The PHYLIP programs all automatically read an
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input file called infile and produce an output file called outfile. Hence, file names have to
be edited when using these programs. In this example, the distance outfile must be edited
to include only the distance table and the number of taxa, and then the file is saved under
the sequence name infile.

Distance analysis programs in PHYLIP:

1. FITCH estimates a phylogenetic tree assuming additivity of branch lengths using the
Fitch-Margoliash method described below and does not assume a molecular clock
(allows rates of evolution along branches to vary).

2. KITSCH estimates a phylogenetic tree using the Fitch-Margoliash method but under
the assumption of a molecular clock.

3. NEIGHBOR estimates phylogenies using the neighbor-joining or unweighted pair
group method with arithmetic mean (UPGMA) described below. The neighbor-joining
method does not assume a molecular clock and produces an unrooted tree. The
UPGMA method assumes a molecular clock and produces a rooted tree.

Recall that in aligning sequences, we normally calculate a similarity score, defined as the
sum of the number of identities and number of conservative substitutions in the alignment
of the two sequences, with gaps being ignored. An identity score between the sequences
showing just the identities may also be found from the alignment. For phylogenetic analy-
sis, the distance score between two sequences is used. This score between two sequences is
the number of mismatched positions in the alignment or the number of sequence positions
that must be changed to generate the other sequence. Gaps may be ignored in these calcu-
lations or treated like substitutions. When a scoring or substitution matrix is used, the cal-
culation is slightly more complicated, but the principle is the same. These methods are
described below.

The success of distance methods depends on the degree to which the distances among a
set of sequences can be made additive on a predicted evolutionary tree. Suppose there are
four sequences, A-D, as shown below in Figure 6.11A, and that they were derived from
evolutionary changes reflected by the tree in Figure 6.11D. The number of changes along
the branches of the tree corresponds to distances between the sequences shown in Figure
6.11, B and C. In this tree, each change only occurs once, and there are no examples of the
same change occurring twice (homoplasy). Although this pattern of change is idealized and
most groups of sequences would have examples of the same change occurring more than
once, as well as reversions, this example illustrates the additivity principle for four
sequences. The principle is that for four sequences predicted by this tree, dag + dcp = dac
+ dpp = dap + dpc. In this example the additivityis 3 + 3 =7 + 7 = 8 + 6. For any other
tree, there would be examples of parallel changes and reversions. The additivity condition
can be relaxed such that dAB + dCD = dAC + dBD and dAB + dCD = dAD + dBC will still hold
even for sequences in which the changes in the sequence are not fully additive. For each set
of four sequences, the tree for which the above additivity condition among the distances
best holds provides information as to which sequences are neighbors. This method may be
used to evaluate trees and find the minimum evolution tree for four sequences and for any
additional number of sequences by extending the analysis to additional groups of four
sequences (Sattath and Tversky 1977; Fitch 1981; for references, see Swofford et al. 1996).
In order to calculate branch lengths, distance methods assume additivity in the distances
between sequences. However, real sequence data may not fit these idealized conditions. As
a result, a small positive, zero, or even a negative value may be calculated for a branch
length. This result may be due to errors in the sequences or sequence alignment, statistical
variation, or simply a reflection of two or more sequences diverging at approximately the
same time from a common ancestor.
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A. Sequences

sequence A ACGCGTTGGGCGATGGCAAC
sequence B ACGCGTTGGGCGACGGTAAT
sequence C ACGCATTGAATGATGATAAT
sequence D ACACATTGAGTGATAATAAT

B. Distances between sequences, the number of steps
required to change one sequence into the other.

NaB
Nac
NaD
Npc
NBp
Nep

W~NOONW

C. Distance table

A B C D
A - 3 7 8
B - - 6 7
C - - - 3
D - - - -

D. The assumed phylogenetic tree for the sequences A-D
showing branch lengths. The sum of the branch lengths
between any two sequences on the trees has the same
value as the distance between the sequences.

7 N

B D

Figure 6.11. Set of idealized sequences for which the branch lengths of an assumed tree are addi-
tive.

An even more demanding condition, rarely found in real distance data, is that the dis-
tances are ultrametric, meaning that for three taxa, dac = max(dag, dpc). If the data meet
this condition, the distances between two taxa and their common ancestor are equal
(Swofford et al. 1996). If the distances follow this relationship, the rates of evolution in the
tree branches are approximately the same, thereby meeting the expectations of the molec-
ular clock hypothesis. If these conditions are not met, an analysis based on the assumption
of a molecular clock may give misleading results. One method of finding the best tree
under such conditions is to transform the sequences after identifying one or more
sequences that are least like the rest, called an outgroup (Li and Graur 1991). Some dis-
tance methods are based on this assumption and others are not. The overall objective of
the distance methods described below is to find this tree by the identification of consecu-
tive sets of neighbors starting with the most alike sequence pair.

Fitch and Margoliash Method and Related Methods

The Fitch and Margoliash (1987) method uses a distance table illustrated in Figure 6.11C.
The sequences are combined in threes to define the branches of the predicted tree and to
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calculate the branch lengths of the tree. The branch lengths are assumed to be additive, as
described above. This method of averaging distances is most accurate for trees with short
branches. The presence of long branches tends to decrease the reliability of the predictions
(Swofford et al. 1996). The following first example describes the use of the algorithm for

three sequences, and the second example expands the analysis to more than three
sequences.

A
a
o C
b
B
Figure 6.12. Tree showing relationship among three sequences A, B, and C.
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The procedure generally followed is to join all combinations of sequences in pairs to
find a tree that best predicts the data in the distance table. The percent change from the
actual to the predicted distance is determined for each sequence pair. These values are
squared and summed over all possible pairs. This sum divided by the number of pairs =
n(n—1)/2 less one (the number of degrees of freedom) provides the square of the percent
standard deviation of the result.

C
A
10 Cfg
a
5
. 20 Nd
12 6/ ¢
e
B E
Figure 6.13. Tree showing relationships among sequences A-E.
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The Neighbor-joining Method and Related Neighbor Methods

The neighbor-joining method (Saitou and Nei 1987) is very much like the Fitch-Margo-
liash method except that the choice as to which sequences to pair is determined by a dif-
ferent algorithm. The neighbor-joining method is especially suitable when the rate of evo-
lution of the separate lineages under consideration varies. When the branch lengths of trees
of known topology are allowed to vary in a manner that simulates varying levels of evolu-
tionary change, the neighbor-joining method and the Sattath and Taversky method,
described below, are the most reliable in predicting the correct tree (Saitou and Nei 1987).
Pearson et al. (1999) have enhanced the neighbor-joining method so that a set of trees that
fit the data, rather than just a single tree, may be determined. The general neighbor join-
ing (GNJ) is available from ftp.virginia.edu/pub/fasta/GNJ.

Neighbor-joining chooses the sequences that should be joined to give the best least-
squares estimates of the branch lengths that most closely reflect the actual distances
between the sequences. It is not necessary to compare all possible trees to find the least-
squares fit as in the Fitch-Margoliash method. The method pairs sequences based on the
effect of the pairing on the sum of the branch lengths of the tree. To start, the distances
between the sequences are used to calculate the sum of the branch lengths for a tree that
has no preferred pairing of sequences. The star-like appearance of such a tree and the cal-
culation of the length of the tree using the data in Example 2 above are shown in Figure
6.14.

The next step in the neighbor-joining algorithm is to decompose or modify the star-like
tree in Figure 6.14 by combining pairs of sequences. When this step is performed for
sequences D and E in Example 2, the new tree shown in Figure 6.15 will be produced. The
tree has A and B paired from a common node that is joined by a new branch j to a second
node to which C, D, and E are joined. The sum of the branch lengths of this new tree is cal-
culated as shown in Figure 6.15.

In the neighbor-joining algorithm, each possible sequence pair is chosen and the sum of
the branch lengths of the corresponding tree is calculated. For example, using the data of
Example 2, Sag = 67.7, Spc = 81, Scp = 76, and Spg = 70, plus six other possible combi-
nations. Of these, Sap has the lowest value. Hence, A and B are chosen as neighbors on the
grounds that they reduce the total branch length to the largest extent. Once the choice of
neighbors has been made, the branch lengths a and b and the average distance from AB to
CDE may be calculated by the FM method, as described in the last section. a is calculated
bY a = [dAB+ (dAC+ dAD+dAE)/3_ (dBC+dBD+dDE)/3]/2 - (22+397_4170)/2: 10,
and b is calculated by b = [dap+(dpctdpptdee)/3—(dactdap+dar)/3]/2 =
(22+41.7—39.7)/2=12.



PHYLOGENETIC PREDICTION m 261

Figure 6.14. Tree for five sequences with no pairing of sequences. In the neighbor-joining method,
the sum of the branch lengths S, = a + b + ¢ + d + e is calculated. The known distances from (1) A
toB,Dap=a+ b (2)AtoC=Dac=a+ ¢ 3)BtoC=Dgc=b + ¢ and finally (4) D to E, Dpg
=d + eforatotal of 4 + 3 + 2 + 1 =10 combinations. In summing the 10 distances = 22 + 39 +
...+ 10 = 314, each branch g, b, ¢, etc., is counted four times. Hence, the sum of branch lengths is
314/4 = 78.5. In general, for N sequences, So = 2 Dy /(N — 1), where Dj; represents the distances
between sequences i and j, i < j.

The next step of the neighbor-joining algorithm is like that of the Fitch-Margoliash
method: a new distance table with A and B forming a single composite sequence is pro-
duced. The neighbor-joining algorithm is then used to find the next sequence pair and
Fitch-Margoliash is then used to find the next branch lengths. The cycle is repeated until
the correctly branched tree and the branch distances on that tree have been identified.

The neighbors relation method (Sattath and Tversky 1977; Li and Graur 1991) also is a
reliable predictor of trees when the rate of evolution varies. In this method, the sequences
are divided into all possible groups of four. The sum of the pair-wise distances for the three
possible neighbor groupings (AB/CD, AC/BD, AD/BC) for each group are then compared
to find which grouping of the three gives the lowest sum of pairs. This procedure is repeat-
ed for all possible groups of four. The pair that appears most often in the lowest sum of
pairs is selected as neighbors. An example of this method is shown in Table 6.4. The pair is
then treated as a composite grouping and the entire process is repeated to find the next
closest neighbor until all of the sequences have been included.

The Unweighted Pair Group Method with Arithmetic Mean

The above distance methods provide a good estimate of an evolutionary tree and are not
influenced by variations in the rates of change along the branches of the tree. The UPGMA

Figure 6.15. Tree for five sequences with pairing of A and B. The sum of the branch lengths S, = a
+ b+ ¢+ d + e + fis calculated algebraically from the original distance data. The sum is given by
Sub = [(dAC + dAD + dCE + dBC + dBD + dBE)/6) + dAB /2 + [( dCD + dCE + dDE )/3] = 244/6 +
22/2 + 48/3 = 67.7. In general, the formula for N sequences when m and 7 are paired is S,., = [(3
dipy + din)2(N — 2)] + dpiu/2 + 2, dyi/N — 2 where i and j represent all sequences except # and n,
and i <j.
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Table 6.4. The Sattath and Tversky (1977) method for finding repeated neighbors

Chosen set of 4 Sum of distances Pairs chosen

ABCD nagp + icp =22 + 18 = 40 AB, CD
nAc+nBD:39+41 = 80
nAD+nBC:39+41 = 80
Map + feg = 22 + 20 = 42
nac + npg = 39 + 43 = 82

ABCE nug + npe =39 + 41 =82 AB, CE
nAB+”DE:22+10:32
ABDE nap + npp = 39 + 43 = 82 AB,DE

nAE+nBD:41 + 41 =82
nac + npg =39 + 10 = 49

ACDE fap + nep =39 + 20 =59 AC,DE
HAE+TLCD:41+18:59
ngc + npg =41 + 10 =51

BCDE nBp + Nce = 41 + 20 = 61 BC, DE
ngg + nep = 43 + 18 = 61

Totals from Column 3 giving the number of times a pair gives the lowest score: AB (3), DE (3), CD (1),
CE (1), and BC (1). AB and DE are therefore closest neighbors.

The five sequences used in the above example (see Fig. 6.13) are divided into the five possible groups of
four. The sums of distances for each set of sequence pairs for the three possible groupings are then deter-
mined and the closest pairs in each grouping are determined. The closest neighbors overall are those that
appear as neighbors most often. In this example, AB and DE appear most often as neighbors. These
sequences are then chosen as neighbors to calculate the branch lengths on the phylogenetic tree by the
method of Fitch and Margoliash.

method is a simple method for tree construction that assumes the rate of change along the
branches of the tree is a constant and the distances are approximately ultrametric (see
above). There are also a number of variations of this method for pairing or clustering
sequences. The UPGMA method starts by calculating branch lengths between the most
closely related sequences, then averages the distance between this pair or sequence cluster
and the next sequence or sequence cluster, and continues until all the sequences are includ-
ed in the tree. Finally, the method predicts a position for the root of the tree.
Using Example 2 from the above analysis:

A. B.
d o, b
d
e E e
E
Figure 6.16. Branch lengths of most closely related sequences by UPGMA method.
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Figure 6.18. Inclusion of fourth and fifth sequences in UPGMA tree.
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Figure 6.19. Final UPGMA rooted tree for five sequences.
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The UPGMA method can lead to an erroneous tree if the rates of mutation in the
branches of the tree are not uniform (Li and Graur 1991; Li 1997).

Choosing an Outgroup

If we have independently obtained information that certain sequences are more distantly
related, a procedure may be followed which ensures that those sequences are added last to
the tree and are closest to the root. This modification can improve the prediction of trees
by the above methods by forcing the addition of the outgroup at a later stage in the proce-
dure. One or more sequences of this type are referred to as an outgroup. Suppose, for
example, that sequences A and B are from species that are known to have separated from
the others at an early evolutionary time based on the fossil record. A and B may then be
treated as an outgroup. Choosing one or more outgroups with the distance method can
also assist with localization of the tree root (Swofford et al. 1996). The root will be placed
between the outgroup and the node that connects the rest of the sequences. It is important
that the sequence of the outgroup be closely related to the rest of the sequences, but also
that there are significantly more differences between the outgroup and the other sequences
than there are among the other sequences themselves. Choosing too distant a sequence as
the outgroup may lead to incorrect tree predictions due to the more random nature of the
differences between the distant outgroup and the other sequences (Li and Graur 1991; Li
1997). Multiple sequence changes at each site are more possible, and there has been more
time for complex genetic rearrangements. For the same reason, using sequences that are
too different in the distance method of phylogenetic prediction can lead to errors (Swof-
ford et al. 1996). As the number of differences increases, the history of sequence changes
at each site becomes more and more complex, and therefore much more difficult to pre-
dict. In choosing an outgroup, one is assuming that the evolutionary history of the gene
under study is the same as that provided by the external information. If this assumption is
incorrect, such as if horizontal gene transfer has occurred, an incorrect analysis could
result.

Converting Sequence Similarity to Distance Scores

For determining phylogenetic relationships among a group of sequences, it is necessary to
know the distances between the sequences. The majority of the available sequence align-
ments determine degree of similarity between sequences rather than distances. For simple
scoring systems, similarity is a measure of the number of sequence positions that match in
an alignment, whereas distance is the number of positions that are different and that must
be changed to convert one sequence into the other. This difference reflects the number of
changes that occurred since the sequences diverged from a common ancestor.

As outlined in Chapter 3, similarity methods provide an alignment score, and the sig-
nificance of this score can be quite reliably calculated based on the probability that a score
between unrelated sequences could achieve that score. What is needed is a way to convert
such a score to a distance equivalent so that the appropriate phylogenetic analysis can be
performed. A simple method, described and used above, is to count the number of differ-
ent sequence pairs in an alignment. Another method is to convert the similarity score
between two sequences to a normalized measure of similarity that varies from 0 for no sim-
ilarity to 1 for full similarity. The distance can then be readily calculated.

Feng and Doolittle (1996) describe a method for calculating such a normalized score
between a pair of aligned sequences. They calculate the similarity score between two
sequences S, for a given scoring matrix and gap penalty using a Needleman-Wunsch
alignment algorithm (see Chapter 3). They then shuffle both sequences many times, align
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pairs of shuffled sequences using the same scoring system, and obtain a background aver-
age score Spanq for unrelated sequences. Finally, each sequence is aligned with itself to give
a maximum score that could be obtained in an alignment of two identical sequences with
the scoring system used, and the average of these two scores, Sigens, is calculated. The nor-
malized similarity score S between the proteins is then given by

A different method for calculating S,,,4 from the scoring matrix, amino acid composition,
and number of gaps in a multiple sequence alignment is also given (Feng and Doolittle
1996).

If, instead, a local alignment based on the Smith-Waterman algorithm is obtained (see
Chapter 3), then the statistics of local similarity scores can be used. If N\ and K have been
calculated for a given scoring matrix and gap penalty combination, the standardized score
of an alignment of score S,anq is given by

where m and n are the sequence lengths. Recall that " gives approximate probability of a
higher score by e™5 (see Chapter 3, p. 109). A conservative value of 5 for §' corresponds
to a probability of 7 X 1072, A value of Sy.nq is then given by

An expected value for Sigent, Sident(calc)> 18 provided by the scoring matrix as the score for a
match of identical amino acids (the scores along the diagonal of the log odds form of the
amino acid substitution matrix) averaged over amino acid composition for the matrix. If
s;; is the score for a match and p; is the proportion of each amino acid, the predicted score
for an alignment of sequences of length m and #, Sigent(caic)> Where n is the length of the
shorter sequence, is given by

where 3, p; = 1. For the PAM250 matrix, the average expected score for a matched pair of
identical amino acids is 4.95. Subtracting Sy.nq from this value is not appropriate because
the score is not a local alignment score but a global one that grows proportional to
sequence length. With the above changes, Equation 1 becomes

Once the similarity score S has been obtained, it is tempting to calculate the distance
between the sequences as 1 — S. Recall that a simple model of amino acid substitutions is
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a constant probability of change per site per unit of evolutionary time. Accordingly, some
of the observed substitutions in a sequence alignment represent a single amino acid change
between the two sequences, but others represent two or more sequential changes. The
model predicts that the expected number of 0, 1, 2, . . . substitutions is expected to follow
the Poisson distribution, where D is the average number of substitutions. The calculated
probability of zero changes is e~ . The probability of one or more changes, which corre-
sponds to S, is then given by 1 — ¢~ such that

Taking logarithms of both sides and rearranging then gives

which is used to calculate D.
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Correction of Distances between Nucleic Acid Sequences
for Multiple Changes and Reversions

In the above examples, the assumption is made that each observed sequence change repre-
sents a single mutational event. This assumption may be reasonable for sequences that are
very much alike, but as the number of observed changes increases, the chance that two or
more changes actually occurred at the same site and that the same site changed in both
sequences increases. Some of the types of changes that may have occurred are illustrated in
Figure 6.20. Note that of all the possible changes, only certain classes shown cause sequence
variations.

In the PAM model of evolutionary change described in Chapter 3, such multiple evolu-
tionary changes and reversions are taken into account for a fixed period of evolutionary
time called 1 PAM, where 1 PAM roughly equals 10 million years (my). Such tables pro-
vide a way to score a sequence alignment by taking into account all possible changes that
may have occurred. The PAM table is chosen that provides the highest log odds score
between two sequences, and the PAM value of this table then provides a measure of the
evolutionary distance between the sequences.

There are several models of evolutionary change of increasing complexity for correcting
for the likelihood of multiple mutations and reversions in nucleic acid sequences. These
models use a normalized distance measurement that is the average degree of change per
length of aligned sequence. For example, in the 20-amino-acid-long sequence alignment
given above, there are three changes between sequences A and B. Hence, dag = t1a5 / N =
3/20 = 0.15.

The simplest model, called the Jukes-Cantor model, is that there is the same probabili-
ty of change at each sequence position, and that once a mutation has occurred, that posi-
tion is also just as likely to change again. The model also assumes that each base will even-
tually have the same frequency in DNA sequences (0.25) once equilibrium has been
reached. It may be shown (Li and Graur 1991; Li 1997) that the average number of substi-
tutions per site Kop between two sequences A and B by this model is given by

Thus, Kap in the above example is Kap = —3/4 log, [1 — (4/3 X 0.15)] = 0.17, which is
slightly greater than the observed number of changes (0.15) to compensate for some muta-
tions that may have reverted. For more different sequences, such as A and D (dap = 8/20
= 0.4), the number of substitutions will be relatively higher than the observed number of
changes. Kap = —3/4 log. [1 — (4/3 X 0.4) = 0.57]. Hence, the difference between the
estimated and observed substitution rates will increase as the number of observed substi-
tutions increases.

The Jukes-Cantor model has been modified to take into account unequal base frequen-
cies (Swofford et al. 1996), which may be calculated from the multiple sequence alignment
of the sequences.
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Ancestral sequence
A
C
T
G
A
A
C
G ,
T
A
A
C
G
C
A A
C C—>A Single substitution
T T
G G
A—>C—->T A Multiple substitutions
A A
C—>G C—>A Coincidental substitutions
G G
T>A T->A Parallel substitutions
A . A,
A—>C—>T A>T * = Convergent substitution
C C
G G +
C C— T+ C + = Back substitution
Sequence 1 Sequence 2
Figure 6.20. Types of mutational changes in nucleic acid sequences that have diverged during evolu-
tion. Note that the observed sequence changes between these homologous sequences represent only a
fraction of the actual number of sequence variations that may have occurred during evolution and
that multiple changes may have occurred at many sites. (Redrawn, with permission, from Li and
Graur 1991 [copyright Sinauer Associates].)

where Bis given by B =1 — (fa® + fo* + fc* + f*) and f, is the frequency of A in the set
of sequences, etc.

A slightly more complex model of change, the so-called Kimura two-parameter model
(Kimura 1980), assumes that transition mutations should occur more often than transver-
sions. However, there are four ways of obtaining a transition mutation A <> Gand C & T,
but eight ways of making transversions, A <> C,A <> T, G <> T, and G & C. Thus, in gen-
eral, transversions can more readily be produced by multiple changes than transitions, and
the frequency of each should be adjusted separately. This model also assumes that the
eventual frequency of each base in the two sequences will be 1/4. In this case, it is necessary
to calculate the proportion of transition and transversion mutations between two
sequences. If the frequencies of transitions and transversions between two sequences A and
Bare dABtransition and dABtransversion’ reSPeCtiVCI}G ifa=1 / (1 _ZdABtransition - dABtransversion)
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and b = 1/ (1—2dagcransversion)> and if the basic mutation rate to transitions and transver-
sions is the same, the number of substitutions per site Kap (Li and Graur 1991) is given by

P

For example, suppose that between two 20-nucleotide-long aligned sequences there are six
transitions and two transversions, thena=1/(1 —2X 03 —-0.1) =333, b=1/(1 —
2 X 0.1) = 1.25, and Kp = 1/2 log, (3.33) + 1/4 log, (1.25) = 0.66. For comparison, by
the Jukes-Cantor model, Kyg = —3/4 log, [1 — 4/3 X 8/20] = 0.57. The larger predicted
distance between A and B in the Kimura two-parameter model is due to the greater num-
ber of sequence changes in this model that could have given rise to the two observed
transversion mutations.

The Jukes-Cantor and Kimura two-parameter models can be modified to take into
account variations in the rates of mutation at different sites in the sequence alignment (see
Swofford et al. 1996, p. 436), and there is also a Kimura three-parameter model that dis-
tinguishes between A <> T / G <> C transversions with A <> C/ G < T transversions.
These various models are used in the distance methods for phylogenetic construction
described above.

For distance calculations between sequences, these base-change models provide ways to
improve estimates of the average mutation rate between sequences. They have less effect
on phylogenetic predictions of closely related sequences and of the tree branch lengths, but
a stronger effect on the more distantly related sequences.

Comparison of Protein Sequences and Protein-encoding Genes

One of the commonest types of phylogenetic comparisons made by biologists is to perform
a multiple sequence alignment of a set of proteins using the BLOSUMS50 or BLOSUM62
scoring matrix and then to design a phylogenetic tree using the neighbor-joining method.
The fraction of sequence positions in an alignment that match provides a similarity score.
Ambiguous matches and gaps may also be included in the scoring system for similarity.
The distance, 1 minus the similarity score, is calculated and used to produce a tree.
CLUSTALW and other programs described in Chapter 4 provide both an alignment and a
tree.

Using amino acid variations for phylogenetic predictions offers several advantages.
Amino acids confer structure and function to proteins. The order of variations in the tree
may therefore provide information concerning the influence of the amino acids on func-
tion and of mutations associated with conservation of function and others with changes in
function. The difficulty of using the above methods with protein sequences is that, in many
cases, no evolutionary model of protein sequence variation is being used. Some amino acid
substitutions are much more rare than others and should therefore reflect a longer evolu-
tionary interval. Therefore, treating the substitutions equally may not provide the best
phylogenetic prediction.

Another method for circumventing this problem is to use PAM scoring tables. Recall
that as evolutionary distance between proteins increases, the expected pattern of amino
acid changes varies. Rarer substitutions come into play, and the rate of increase of other
changes with increasing time slows down. The Dayhoff PAM amino acid scoring matrices
were designed to predict the expected substitutions for proteins separated by different evo-
lutionary distances. The PAM score of the matrix that provides the best alignment score
between two sequences reflects the evolutionary separation of the proteins, a distance of 1
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PAM being approximately 10 my. Some phylogenetic programs use these original Dayhoff
PAM tables. Another updated set of protein PAM tables based on changes in 40-fold more
proteins (the PAM250 equivalent is called PET91) is also available (Jones et al. 1992). Some
phylogenetic prediction methods use these PAM tables.

The PAM tables have been criticized for failure to take the mutational origin of amino
acid changes into account. Although useful for analyzing amino acid variation, they do not
allow for the multiple mutations required for some amino acid changes (see Chapter 3, p.
83). Amino acid variation arises through mutation and natural selection acting on DNA
sequences. Some amino acid changes require several mutations in codons and should there-
fore be more rare than amino acid mutations, which require only one mutation in a codon.

Another method for comparing protein sequences is to assess the number of nucleic
acid changes that are likely to generate the amino acid differences. In the original Fitch-
Margoliash method, when only amino acid sequences were available, the distance between
an amino acid pair was chosen to be the minimum number of base changes that would be
required to change from a codon for the first amino acid into a codon for the second.

With the availability of the cDNA sequences that encode proteins, cDNA sequences may
be compared instead of the amino acid sequences of the encoded proteins. Distance meth-
ods may be applied directly to the DNA sequence after the number of different positions
in the sequences has been determined. If the protein sequences are very similar, most of the
changes that will be observed are silent changes that do not change the amino acid and
should provide an accurate representation of the phylogenetic history without the compli-
cations of evolutionary selection. However, as the amount of variation increases, the num-
ber of silent changes will increase and multiple mutations at some of these sites will occur,
whereas at other sites, other more rare types of changes will appear. It is very difficult to
make accurate predictions when faced with such variation in the rate of change at differ-
ent sites. One method around this difficulty is to analyze changes in only the first and sec-
ond base positions in each codon, ignoring the third position, which is the source of most
silent mutations (Swofford et al. 1996). A comparison of nucleic acid sequences that
encode proteins for mutations that either (1) change the amino acid or (2) do not change
the amino acid may be made. Once these types of changes have been distinguished, phylo-
genetic predictions based on only one of them may be made.

A final type of correction that may be made to phylogenetic predictions is for the
increase in multiple substitutions as the evolutionary distance between protein expected
sequences increases. Although use of the PAM matrices provides this type of correction,
another way is to adapt the Jukes-Cantor model for nucleic acid sequences to protein
sequences. The correction to the distance is given by Equation 9, where B = 19/20 for the
assumption of equal amino acid representation and B = 1 — X f,,; for unequal represen-
tation of the amino acids, where f,,; is the frequency of amino acid 4, and the sum is taken
over all 20 amino acids. The second representation is, of course, much preferred, since
amino acid frequencies in proteins vary.

Another correction that may be applied to protein distances is due to Kimura (1983).
This correction is based on the Dayhoff PAM model of amino acid substitution. If K is the
corrected distance and D the observed distance (number of exact matches between two
sequences divided by total number of matched residues in alignment), then

This formula may be used up to values of D = 0.75. Above this value, tables based on
the Dayhoff PAM model at these distances are used. This correction is applied by
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CLUSTALW, a commonly used program for multiple sequence alignment and phyloge-
netic analysis (Higgins et al. 1996).

Comparison of Open Reading Frames by Distance Methods

When nucleic acid sequences that encode proteins first became available, the appearance
of synonymous substitutions that do not change the amino acid (silent changes) and non-
synonymous substitutions (replacement changes) that do change the amino acid was ana-
lyzed. Separate analyses of these two kinds of substitutions can help remove site-to-site
variation in more closely related sequences and background noise of silent mutations in
more distantly related sequences (Swofford et al. 1996).

One method of estimating the rates of synonymous and nonsynonymous mutations (Li
et al. 1985; Li and Graur 1991; Li 1997) employs the following steps:

1. The fraction of substitutions at each codon position that can give rise to synonymous
substitutions and the fraction that can give rise to nonsynonymous substitutions are
counted. The first two positions of most codons count as two nonsynonymous sites
because the amino acid will change regardless of the substitution. Similarly, many third-
codon substitutions are synonymous. Other sites contribute synonymous and nonsyn-
onymous substitutions. The total number of each of these two possible substitutions is
determined for each sequence, and the average of these two values for the two sequences
is then calculated. Ny, is the average number of synonymous sites and Npgneyn is the
average number of nonsynonymous sites in the two sequences.

2. Each pair of codons in the alignment is then compared to classify nucleotide differences
into synonymous and nonsynonymous types. A single base difference can readily be
designated as synonymous or nonsynonymous. When the codons differ by more than
one substitution, all of the possible pathways of sequence change must be considered,
and the number of synonymous and nonsynonymous changes in each pathway is iden-
tified. The average of each type of change in the two pathways is then calculated.
Weights derived from the frequency of these pathways for known codon pairs may be
used to derive this average, or else the pathways may be weighted equally. These calcu-
lations give the number of synonymous differences M,,, and the number of nonsyn-
onymous differences Myonsym between the sequences.

3. The fraction of synonymous differences per synonymous site (foyn = Ny / My ) and
the fraction of nonsynonymous differences per nonsynonymous site (fnonsyn = Nnonsyn /
Nhonsyn) are calculated. These fractions may then be corrected for the effect of multiple
changes at the same site by the Jukes-Cantor formula (Eq. 8) or by some alternative
method.

An alternative method for estimating synonymous and nonsynonymous substitutions
(Li et al. 1985; Li and Graur 1991; Li 1993, 1997) is to classify each nucleotide position in
the coding sequences as nondegenerate, twofold degenerate, or fourfold degenerate. The
Genetics Computer Group program DIVERGE uses this method. A site is nondegenerate
if all possible changes at this site are nonsynonymous, twofold degenerate if one of the
three possible changes is synonymous, and fourfold degenerate if all possible changes are
synonymous. For simplification, the third position of isoleucine codons (ATA, ATC, and
ATT in the universal code) is treated as a twofold degenerate site even though in reality it
is threefold degenerate. The number of each type of site in each of the two sequences is cal-
culated and the average values for the two sequences are calculated. Each pair of codons in
the sequence alignment is then compared to classify nucleotide differences as to type of site
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(nondegenerate, twofold degenerate, or fourfold degenerate) and as to whether the change
is a transition or a transversion.

The scored codon differences are then used to calculate the proportions of each type of
site that are transitions or transversions. The proportion of synonymous substitutions per
synonymous site and the corresponding proportion for transversions may then be calcu-
lated. The two-parameter model of Kimura may be used to correct for multiple mutations
and for differences between rates of transitions and transversions before these calculations
are performed.
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A. Sequences in Phylip format

20 60
MACHIERH AACNGGCCTT CTACTAGCCA TACACTACAC CGCAGACACC ACCCTAGCCT TTTCATCTGT
CIRCUS AACTGGCCTN CTACTAGCAA CACACTATTC CGCAGACACT ACCCTGGCTT TCTCATCCGT
LOPHICTI AACTGGCCTC CTACTGGCCA TGCACTACAC CGCAGACACA TCACTAGCCT TCTCGTCCGT
AQUILA AACCGGCCTC CTATTAGCCA TACACTACAC GGCAGACACC ACCCTAGCCT TCTCATCCGT

ACCIPITE AACCGGCCTC CTCCTAGCAA TACACTACAC CGAAGACACC ACCCTAGCCT TTICATCAGT
BUTASTUS AACCGGCCTC CTCCTAGCAA TACACTACAC CGCAGACACC ACCCTAGCCT TTTCATCAGT
HAERAETU AACCGGCCTC CTACTAGCCA TGCACTACAC CGCAGACACC ACCCTAGCCT TCTCGTCCGT

B. DNA distances.

20

MACHIERH 0.0000 0.173% 0.1705 0.0899 0.089%% 0.0711 0.0899 0.1496 0.1292 0.1705 0.10
0.1292 0.1496

CIRCUS 0.173%9 0.0000 0.2373 0.1921 0.2144 0.1921 0.1921 0.1292 0.1496 0.1496 0.21
0.2144 0.2853

LOPHICTI 0.1705 0.2373 0.0000 0.1674 0.2326 0.2102 0.0883 0.1885 0.1674 0.2557 0.18
0.1674 0.1468

AQUILA 0.0899 0.1921 0.1674
0.0698 0.1674

ACCIPITE 0.0899 0.2144 0.2326
0.1885 0.2326

BUTASTUS 0.0711 0.1%21 0.2102
0.1674 0.2102

HAERAETU 0.089% 0.1921 0.0883 0.0698 0.1268 0.1073 0.0000 0.1268 0.1073 0.1674 0.08
0.1268 0.1468

ELANUS 0.1496 0.2853 0.1468 0.1674 0.2326 0.2102 0.1468 0.2102 0.2326 0.2795 0.21
0.1268 0.0000

o

.0000 ©.1268 0.1073 0.0698 0.1268 0.1468 0.1885 0.08

(=]

.1268 0.0000 0.0169 0.1268 0.1468 0.1268 0.1674 0.14

o

.1073 0.0169 0,0000 0.1073 0.1268 0.1073 0.1468 0.12

C. Fitch tree

Figure 6.21. Tree predicted by FITCH (Fitch-Margoliash distance method) for the DNA sequences
given in the example above.
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This method uses probability calculations to find a tree that best accounts for the variation
in a set of sequences. The method is similar to the maximum parsimony method in that
the analysis is performed on each column of a multiple sequence alignment. All possible
trees are considered. Hence, the method is only feasible for a small number of sequences.
For each tree, the number of sequence changes or mutations that may have occurred to
give the sequence variation is considered. Because the rate of appearance of new mutations
is very small, the more mutations needed to fit a tree to the data, the less likely that tree
(Felsenstein 1981). The maximum likelihood method resembles the maximum parsimony
method in that trees with the least number of changes will be the most likely. However, the
maximum likelihood method presents an additional opportunity to evaluate trees with
variations in mutation rates in different lineages, and to use explicit evolutionary models
such as the Jukes-Cantor and Kimura models described in the above section with
allowances for variations in base composition. Thus, the method can be used to explore
relationships among more diverse sequences, conditions that are not well handled by max-
imum parsimony methods. The main disadvantage of maximum likelihood methods is
that they are computationally intense. However, with faster computers, the maximum like-
lihood method is seeing wider use and is being used for more complex models of evolution
(Schadt et al. 1998). Maximum likelihood has also been used for an analysis of mutations
in overlapping reading frames in viruses (Hein and Stegvlbak 1996). PAUP version 4 can
be used to perform a maximum likelihood analysis on DNA sequences. The method has
also been applied for changes from one amino acid to another in protein sequences.
PHYLIP includes two programs for this maximum likelihood analysis:

1. DNAML estimates phylogenies from nucleotide sequences by the maximum likelihood
method, allowing for variable frequencies of the four nucleotides, for unequal rates of
transitions and transversions, and for different rates of change in different categories of
sites, as specified by the program.

2. DNAMLK estimates phylogenies from nucleotide sequences by the maximum likeli-
hood method in the same manner as DNAML, but assumes a molecular clock.

One starts with an evolutionary model of sequence change that provides estimates of
rates of substitution of one base for another (transitions and transversions) in a set of
nucleic acid sequences, as illustrated in Table 6.5. The rates of all possible substitutions are
chosen so that the base composition remains the same. The set of sequences is then aligned,
and the substitutions in each column are examined for their fit to a set of trees that describe
possible phylogenetic relationships among the sequences. Each tree has a certain likelihood
based on the series of mutations that are required to give the sequence data. The probabil-
ity of each tree is simply the product of the mutation rates in each branch of the tree, which
itself is the product of the rate of substitution in each branch times the branch length.
There are multiple sets of possible base changes within each tree to consider. For each col-
umn in the aligned sequences, the probability of each set of changes is found and the prob-
abilities are then added to produce a combined probability that a given tree will produce
that column in the alignment. A simple example of this approach is shown in Figure 6.22.
Once all positions in the sequence alignment have been examined, the likelihoods given by
each column in the alignment for each tree are multiplied to give the likelihood of the tree.
Because these likelihoods are very small numbers, their logarithms are usually added to
give the logarithm likelihood of each tree. The most likely tree given the data is then iden-
tified.
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Table 6.5. General model of sequence evolution

Base A C G T
A —ulamet+bugtcemy) uaT ubmg ucTy
C Ug, —u(gma+dmgtemy) udmg uemr
G uhm, WG —u(hmatjmetfmrr) ufarr
T Ui uks ulmr —ulima+kmg+lmr)

The table gives rates for any substitution in a nucleic acid sequence or for no substitution at all (the diag-
onal values). Base frequencies are given by 4, 7c, 7, and 71, the mutation rate by u, and the frequency of
change of any base to any other by g, b, c..,l. Rates of substitutions in one direction, i.e., A—G, are general-
ly considered to be the same as that in the reverse direction so that @ = g, b = h, etc. In the JC model these
frequencies are all equal, and in the Kimura two-parameter there are only two frequencies, one for transi-
tions (@) and the other for transversions (), and the frequency for transitions is twice that for transversions.
PAUP allows these numbers to be varied. This model assumes that changes in a sequence position constitute
a Markov process, with each subsequent change depending only on the current base. Furthermore, the
model assumes that each base position has the same probability of change in any branch of the tree (Swof-
ford et al. 1996).

IENT.BASE!

Thorne et al. (1991, 1992) have introduced a method of sequence alignment based on a
model (Bishop and Thompson 1986) that predicts the manner in which DNA sequences
change during evolution. Although this method has limitations and is only considered by
these authors to be preliminary, it will be outlined here because of its relationship to the
maximum likelihood method for phylogenetic analysis. The basis of this method is to
devise a scheme for introducing substitutions, insertions, and gaps into sequences and to
provide a probability that each of these changes occurs over certain periods of evolution-
ary time. Given each of these predicted changes, the method examines all the possible com-
binations of mutations to change one sequence into another. One of these combinations
will be the most likely one over time. Once this combination has been determined, a
sequence alignment and the distance between the sequences will be known. This method
is different from the Smith-Waterman local alignment algorithm in identifying the most
probable (maximum likelihood probability alignment) based on an evolutionary model of
change in sequences, as opposed to a score based on observed substitutions in related pro-
teins and a gap scoring system. The underlying mutational theory is, however, like those
used to produce the PAM matrices for predicting changes in DNA and protein sequences.

Sequences are predicted to change by a Markov process (see Chapter 3 discussion of
PAM matrices, p. 78) such that each mutation in the sequence is independent of previous
mutations at that site or at other sites. For example, a given nucleotide at any sequence
position can mutate into another at the same rate or may not change at all during a peri-
od of evolutionary time. This model is very similar to the PAM model of evolutionary
change in proteins introduced by Dayhoff and discussed earlier. In the Thorne et al. (1991)
model, single insertion—deletion events between any two nucleotides are modeled by a
birth~death process that leaves the sequence length roughly the same. Longer
insertion—deletion events were modeled in a similar way by considering the sequence to be
composed of a set of fragments, and the rate of substitution of these fragments is allowed
to vary (Thorne et al. 1992).

A set of transition probabilities for changing from one nucleotide to another or for
introducing an insertion or deletion into a sequence is derived mathematically from the
evolutionary model. The substitution probabilities are not unlike the substitution proba-
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bilities in the protein and DNA PAM matrices. An important difference between the PAM
matrices and the transition probabilities is that the insertion/deletion probabilities have
been derived from the evolutionary model rather than from the ad hoc gap penalty scor-
ing system (penalty = gap opening penalty + gap extension penalty X length) that is com-
monly used to produce sequence alignments by dynamic programming. Two algorithms
not unlike dynamic programming are then used, one to obtain a sequence alignment and
the other to calculate the likelihood that the sequences are related (the likelihood of the

A. Sequences

sequence a ACGCGTTGGG
sequence b ACGCGTTGGG
sequence C ACGCAATGAA
sequence d ACACAGGGAA

B. An unrooted phylogenetic tree for the sequences A-D.

A C

N 7
v N

B D

C. A rooted phylogenetic tree for the sequences A-D showing
the bases for one set of aligned sequence positions in A.

T T A G
a b ¢ d

LO

D. A rooted phylogenetic tree showing one set of base
assignments to nodes 0, 1 and 2.

T T A G
a b ¢ d

E. A rooted phylogenetic tree showing a second set of
base assignments to nodes 0, 1 and 2.

T T A G

F. L(Tree) = L(Tree1) + L(Tree2) + .... + L(Tree64)
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sequences) given the calculated set of parameters. The entries in the scoring matrices are
likelihood scores (giving the highest probability of arriving at that position in the scoring
matrix by a combination of mutations and gaps) and not a sum of weights for substitutions
based on a scoring matrix. To estimate the likelihood of the sequences also requires that
the number and types of substitutions, insertions, and deletions be optimized to find the
most likely path for changing one sequence into another. This path then provides an indi-
cation of the evolutionary distance between the sequences.

-
-

Figure 6.22. Maximum likelihood estimation of phylogenetic tree. For the hypothetical sequences
shown in A, one of three possible unrooted trees is shown in B. One column has been set aside for anal-
ysis. (C) One of five possible rooted derivatives of the unrooted tree is shown. The position of the root
is not important since the likelihood of the tree is the same regardless of the root location. This proper-
ty follows the assumption that the substitutions along each branch are considered to be a Markov chain
with reversible steps (Felsenstein 1981). The bases from the marked alignment column are shown on the
outer branches of this tree. Also shown are three interior nodes of the tree labeled 0, 1, and 2. The object
is to consider every possible base assignment to these three nodes and then to calculate the likelihood of
each choice. Since there are four possible bases for each of the three node positions of the tree, there are
4 X 4 X 4 = 64 possible combinations. Also shown on the tree are six likelihood values L1-L5 for the
probability of a base change per site along the respective branches of the tree, and a probability LO for the
base at node 0. These probabilities depend on the bases assigned to nodes 0, 1, and 2 and on the result-
ing types of base substitutions in the particular tree under consideration. The likelihood of a tree with a
particular choice of bases at nodes 0, 1, and 2 is given by the product of the probability of the base at
node 0 times the product of each of the substitution probabilities, or L(tree) = L0 X L1 X L2 X L3 X
L4 X L5 X L6 (Felsenstein 1981). (D) A possible tree (treel) with T assigned to nodes 0 and 1, and G
assigned to node 2. L0 will be given by the frequency of T and will have an approximate value of 0.25. 1.2
will be the probability of a transversion of T to G, and L5 the probability of a transition of G to A in this
tree. The remaining likelihoods will have an approximate value of unity with a small adjustment for the
possibility that a mutation has occurred and then reverted to the original base so that no substitutions
are observed. Assuming that the probabilities of the transition and transversion are 2 X107 and 1075,
respectively, the likelihood of treel is approximately 0.25 X 2 X107% X 107 = 5 X10™**, These num-
bers are usually very small and are therefore handled as logarithms in the computer. (E) Another possi-
ble arrangement of base assignments in tree2. The likelihood of this tree will take into account the prob-
ability of a G to T transversion (L1) and that of a G to A transition (L5). (F) The likelihood of the tree in
B or the tree in C s given by the sum of the likelihoods of these two trees. To this sum is added the prob-
ability of the other 62 possible arrangements of bases. This calculation is repeated for all other columns
in the multiple sequence alignment. The likelihood of the tree given the data in all of the aligned
columns, that in the first column, or that in the second, etc., will be the sum of the likelihoods so calcu-
lated for each column. Each of the three possible trees for four sequences is then evaluated in this same
manner and the one with the highest likelihood score is identified. These calculations can be computa-
tionally so intense for a large number of sequences that trees for a fraction of the sequences may first be
found. The data for additional sequences will then be sequentially added to refine this initial tree. The
procedure may then be repeated with a different starting group of sequences with the hope that the range
of trees found will give an indication of the most likely tree (Felsenstein 1981). However, this procedure
is not guaranteed to find the optimal tree. Additional calculations are made in the ML method. The
probability of each branch in the tree is individually adjusted by a method similar to expectation maxi-
mization (see Chapter 3) to maximize the likelihood of the tree while holding the probability of the other
branches at a constant value. The rate of evolution of each site or each column in the multiple sequence
alignment is also allowed to vary. Otherwise, the method will be biased by sites that do not vary much
and the information in variable sites may become lost, a problem shared with the maximum parsimony
method. For an average number of mutations x over all branches, the number along an individual branch
is assumed to vary according to the Poisson distribution P(n) = e™* x" / nl. A continuous variable giv-
ing the equivalent probability of observing a given number of changes along a particular branch for var-
lous average values of x (or a particular mutation rate along that branch) is given by the I distribution.
These probabilities may then be used in calculations of tree likelihoods (Swofford et al. 1996).
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As discussed earlier in this chapter, phylogenetic analysis of a set of sequences that aligns
very well is straightforward because the positions that correspond in the sequences can be
readily identified in a multiple sequence alignment of the sequences. The types of changes
in the aligned positions or the numbers of changes in the alignments between pairs of
sequences then provide a basis for a determination of phylogenetic relationships among
the sequences by the above methods of phylogenetic analysis. For sequences that have
diverged considerably, a phylogenetic analysis is more challenging. A determination of the
sequence changes that have occurred is more difficult because the multiple sequence align-
ment may not be optimal and because multiple changes may have occurred in the aligned
sequence positions. The choice of a suitable multiple sequence alignment method depends
on the degree of variation among the sequences, as discussed in Chapter 4. Once a suitable
alignment has been found, one may also ask how well the predicted phylogenetic relation-
ships are supported by the data in the multiple sequence alignment.

In the bootstrap method, the data are resampled by randomly choosing vertical columns
from the aligned sequences to produce, in effect, a new sequence alignment of the same
length. Each column of data may be used more than once and some columns may not be
used at all in the new alignment. Trees are then predicted from many of these alignments
of resampled sequences (Felsenstein 1988). For branches in the predicted tree topology to
be significant, the resampled data sets should frequently (for example, >70%) predict the
same branches. Bootstrap analysis is supported by most of the commonly used phyloge-
netic inference software packages and is commonly used to test tree branch reliability.
Another method of testing the reliability of one part of the tree is to collapse two branch-
es into a common node (Maddison and Maddison 1992). The tree length is again evaluat-
ed and compared to the original length, and any increase is the decay value. The greater the
decay value, the more significant the original branches. In addition to these methods, there
are some additional recommendations that increase confidence in a phylogenetic predic-
tion.

One further recommendation is to use at least two of the above methods (maximum
parsimony, distance, or maximum likelihood) for the analysis. If two of these methods
provide the same prediction, confidence in the prediction is much higher. Another rec-
ommendation is to pay careful attention to the evolutionary assumptions and models that
are used for both sequence alignment and tree construction (Li and Graur 1991; Swofford
et al. 1996; Li 1997).

The above methods provide a further level of sequence analysis by predicting possible evo-
lutionary relationships among a group of related sequences. The methods predict a tree
that shows possible ancestral relationships among the sequences. A phylogenetic analysis
can be performed on proteins or nucleic acid sequences using any one of the three meth-
ods described above, each of which utilizes a different type of algorithm. The reliability of
the prediction can also be evaluated.

The traditional use of phylogenetic analysis is to discover evolutionary relationships
among species. In such cases, a suitable gene or DNA sequence that shows just enough, but
not too much, variation among a group of organisms is selected for phylogenetic analysis.
For example, analysis of mitochondrial sequences is used to discover evolutionary rela-
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tionships among mammals. Two more recent uses of phylogenetic analysis are to analyze
gene families and to trace the evolutionary history of specific genes. For example, database
similarity searches discussed in Chapter 7 may identify several proteins in a plant genome
that are similar to a yeast query protein. From a phylogenetic analysis of the protein fam-
ily, the plant gene most closely related to the yeast gene and therefore most likely to have
the same function can be determined. The prediction can then be evaluated in the labora-
tory. Tracking the evolutionary history of individual genes in a group of species can reveal
which genes have remained in a genome for a long time and which genes have been hori-
zontally transferred between species. Thus, phylogenetic analysis can also contribute to an
understanding of genome evolution, as further explored in Chapter 10.
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