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THE PREVIOUS TWO CHAPTERS DISCUSS the alignment of protein and nucleic acid sequences.
The methods used either align entire sequences or search for common patterns in the
sequences. In either case, the objective is to locate a set of sequence characters in the same
order in the sequences. Nucleic acid sequences that specify RNA molecules have to be com-
pared differently. Sequence variations in RNA sequences maintain base-pairing patterns
that give rise to double-stranded regions (secondary structure) in the molecule. Thus,
alignments of two sequences that specify the same RNA molecules will show covariation at
interacting base-pair positions, as illustrated in Figure 5.1. In addition to these covariable
positions, sequences of RNA-specifying genes may also have rows of similar sequence char-
acters that reflect the common ancestry of the genes.
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Figure 5.1. Complementary sequences in RNA molecules maintain RNA secondary structure.
Shown is a simple stem-and-loop structure formed by the RNA strand folding back on itself.
Molecule A depends on the presence of two complementary sequences CGA and UCG that are base-
paired in the structure. In B, two sequence changes, G = A and C — U, which maintain the same
structure, are present. Aligning RNA sequences required locating such regions of sequence covaria-
tion that are capable of maintaining base-pairing in the corresponding structure.

INTRODUCTION

As genomic sequences of organisms become available, it is important to be able to identi-
fy the various classes of genes, including the major class of genes that encodes RNA
molecules. There are a large number of Web sites listed in Table 5.1 that provide programs

Table 5.1.  RNA databases and RNA analysis Web sites

Site or resource

Web address

Reference

5S Ribosomal RNA data bank

5S rRNA database

Comparative RNA Web site

GenLang linguistic sequence
analyzer

Gobase for mitochondrial
sequences

http://rose.man.poznan.pl/5SData/

and mirrored at http://userpage.chemie.fu-berlin.

de/fb_chemie/ibc/agerdmann/5S_rRNA.html
http://www.bchs.uh.edu/~nzhou/temp/5snew.html
http://www.rna.icmb.utexas. edu/
http://www.cbil.upenn.edu/

http://alice.bch.umontreal.ca/genera/gobase/
gobase.html

Szymanski et al. (1999)

Shumyatsky and Reddy (1993)
see Web site
Dong and Searls (1994)

Korab-Laskowska et al. (1998)
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Site or resource Web address Reference

Intron analysis—Saccharomyces http://www.cse.ucsc.edu/research/compbio/ Spingola et al. (1999)
cerevisiae yeast_introns.html

tRNA genes, higher plant ftp://ftp.ebi.ac.uk/pub/databases/plmitrna/ Ceci et al. (1999)
mitochondria

MFOLD minimum energy RNA  http://bioinfo.math.rpi.edu/~zukerm/rna/ Zuker et al. (1991)
configuration

Nucleic acid database and http://ndbserver.rutgers.edu/ Berman et al. (1998)
structure resource

Pseudobase—pseudoknot http://wwwbio.leidenuniv.nl/~batenburg/pkb.html see Web page

database maintained by E. van
Batenburg, Leiden University

Ribonuclease P database Web site  http://jwbrown.mbio.ncsu.edu/RNaseP/ Brown (1999)
home.html
Ribosomal RNA database http://www.cme.msu.edu/RDP/ Maidak et al. (1999)
project (RDP 1I)
Ribosomal RNA mutation http://www.fandm.edu/Departments/Biology/ Triman and Adams (1997)
databases Databases/RNA.html
RiboWeb Project—3D http://www-smi.stanford.edu/projects/helix/ Chen et al. (1997)
models of E. coli 30S ribo3dmodels/index.html
ribosomal subunit and
16s rfRNA

RNA aptamer sequence database  http://speak.icmb.utexas.edu/ellington/aptamers.html  see Web site
(University of Texas)

RNA editing Web site, UCLA http://www.lifesci.ucla.edu/RNA/index.html Simpson et al. (1998)

RNA editing, uridine insertion/ http://www.lifesci.ucla.edu/RNA/trypanosome/ Simpson et al. (1998)
deletion

RNA modification database http://medlib.med.utah.edu/RNAmods/ Limbach et al. (1994);

Rozenski et al. (1999)

RNA secondary structures, http://www.rna.icmb.utexas.edu Gutell (1994); Schnare et al.
Group I introns, 16S rRNA, (1996 and references therein)
23S rRNA

RNA structure database http://www.rnabase.org/ see Web page

RNA world at IMB Jena http://www.imb-jena.de/RNA.html Siihnel (1997)

rRNA-Database of ribosomal http://rrna.uia.ac.be/ De Rijk et al. (1992, 1999)
subunit sequences

Signal recognition particle http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html Samuelsson and Zwieb (2000)
database

Small RNA database http://mbcr.bcm.tme.edu/smallRNA/smallrna.html see Web page

snoRNA database for http://rna.wustl.edu/snoRNAdb/ Lowe and Eddy (1999)
S. cerevisiae

tmRNA?* database http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html Wower and Zwieb (1999)

tmRNA® Web site http://www.indiana.edu/~tmrna/ Williams (1999)

tRNAscan-SE search server http://www.genetics.wustl.edu/eddy/tRNAscan-SE/ Lowe and Eddy (1997)

tRNA and tRNA gene http://www.uni-bayreuth.de/departments/ Sprinzl et al. (1998)
sequences - biochemie/sprinzl/trna/

u RNA database http://psyche.uthct.edu/dbs/uRNADB/uRNADB.html  Zwieb (1997)

Vienna RNA package for RNA http://www.tbi.univie.ac.at/~ivo/RNA/ Hofacker et al. (1998);
secondary structure prediction Wuchty et al. (1999)
and comparison

Viroid and viroid-like RNA http://www.callisto.si.usherb.ca/~jpperra Lafontaine et al. (1999)
sequences

*tmRNA adds a carboxy-terminal peptide tag to the incomplete protein product from a broken mRNA molecule and thereby tar-
gets the protein for proteolysis.
A list of RNA Web sites and databases is available at http://bioinfo.math.rpi.edu/~zukerm/ and at http://pundit.colorado.edu:8080;.
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and guest sites for RNA analysis or for access to databases of RNA molecules and
sequences. These molecules perform a variety of important biochemical functions, includ-
ing translation; RNA splicing, processing, and editing; and cellular localization. As with
proteins, RNA-specifying genes may be identified by using the unknown gene as a query
sequence for DNA sequence similarity searches, as described in Chapter 7. If a significant
match to the sequence of an RNA molecule of known structure and function is found, then
the query molecule should have a similar role. For some small molecules, the amount of
sequence variation necessitates the use of more complex search methods, described later in
this chapter.

A computational method for predicting the most likely regions of base-pairing in an
RNA molecule has been designed, just given the sequence, thus providing an ab initio
prediction of secondary structure. From the many possible choices of complementary
sequences that can potentially base-pair, the compatible sets that provide the most
energetically stable molecules are chosen. Structures with energies almost as stable
as the most stable one may also be produced, and regions whose predictions are the
most reliable can be identified from such an analysis. Sequence variations found in re-
lated sequences may also be used to predict which base pairs are likely to be found in
each of the molecules. One variation of RNA structure prediction methods will pre-
dict a set of sequences that are able to form a particular structure. Methods for pre-
dicting three-dimensional structures from sequence are also being developed (see
http://bioinfo.math.rpi.edu/~zuker/rna/).

Another type of RNA secondary structure prediction method takes into account con-
served patterns of base-pairing that are conserved during evolution of a given class of RNA
molecules. Sequence positions that base-pair are found to vary at the same time during
evolution of RNA molecules so that structural integrity is maintained. For example, if two
positions G and C form a base pair in a given type of molecule, then sequences that have
C and G reversed, or A and U or U and A at the corresponding positions, would be con-
sidered reasonable matches. These patterns of covariation in RNA molecules are a mani-
festation of secondary structure that lead to a structural prediction. The computational
challenge is to discover these covariable positions against the background of other
sequence changes.

Like protein secondary structure, RNA secondary structure can be conveniently viewed as
an intermediate step in the formation of a three-dimensional structure. RNA secondary
structure is composed primarily of double-stranded RNA regions formed by folding the
single-stranded molecule back on itself. To produce such double-stranded regions, a run
of bases downstream in the RNA sequence must be complementary to another upstream
run so that Watson—Crick base-pairing between the complementary nucleotides G/C and
A/U (analogous to the G/C and A/T base pairs in DNA) can occur. In addition, however,
G/U wobble pairs may be produced in these double-stranded regions. As in DNA, the G/C
base pairs contribute the greatest energetic stability to the molecule, with A/U base pairs
contributing less stability than G/C, and G/U wobble base pairs contributing the least.
From the RNA structures that have been solved, these base pairs and a number of addi-
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stacked base pairs
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Figure 5.2. Types of single- and double-stranded regions in RNA secondary structures. Single-
stranded RNA molecules fold back on themselves and produce double-stranded helices where com-
plementary sequences are present. A particular base may either not be paired, as in A, or paired with
another base, as in B. The double-stranded regions will most likely form where a series of bases in
the sequence can pair with a complementary set elsewhere in the sequence. The stacking energy of
the base pairs provides increased energetic stability. Combinations of double-stranded and single-
stranded regions produce the types of structures shown in C-F, with the single-stranded regions
destabilizing neighboring double-stranded regions. The loop 6f the stem and loop in C must gener-
ally be at least four bases long to avoid steric hindrance with base-pairing in the stem part of the
structure. The stem and loop reverses the chemical direction of the RNA molecule. Interior loops,
as in D, form when the bases in a double-stranded region cannot form base pairs, and may be asym-
metric with a different number of base pairs on each side of the loop, as shown in E, or symmetric
with the same number on each side. Junctions, as in F, may include two or more double-stranded
regions converging to form a closed structure. The RNA backbone is red, and both unpaired and
paired bases are blue. The types of loop structures can be represented mathematically, thereby
aiding in the prediction of secondary structure (Sankoff et al. 1983; Zuker and Sankoff 1984).

(Adapted from Burkhard et al. 1999b.)

tional ones (see Burkhard et al. 1999a,b) have been identified. RNA structure predictions
comprise base-paired and non-base-paired regions in various types of loop and junction
arrangements, as shown in Figure 5.2.

In addition to secondary structural interactions in RNA, there are also tertiary interac-
tions, illustrated by the examples in Figure 5.3. These kinds of structures are not pre-
dictable by secondary structure prediction programs. They can be found by careful covari-
ance analysis.
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Figure 5.3. Examples of known interactions of RNA secondary structural elements. (A) Pseudo-
knot. (B) Kissing hairpins. (C) Hairpin-bulge contact. (Adapted from Burkhard et al. 1999b.)

In predicting RNA secondary structure, some simplifying assumptions are usually made.
First, the most likely structure is similar to the energetically most stable structure. Second,
the energy associated with any position in the structure is only influenced by local sequence
and structure. Thus, the energy associated with a particular base pair in a double-stranded
region is assumed to be influenced only by the previous base pair and not by the base pairs
farther down the double-stranded region or anywhere else in the structure. These energies
can be reliably estimated by experimentation with small, synthetic RNA oligonucleotides
(Tinoco et al. 1971, 1973; Freier et al. 1986; Turner and Sugimoto 1988; SantaLucia 1998)
recently improved to include sequence dependence (Mathews et al. 1999). They are most
reliable when used for standard Watson—Crick base pairs and single G-U pairs surrounded
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Figure 5.4. Display of base pairs in an RNA secondary structure by a circle plot. The predicted min-
imum free-energy structure shown in B is represented by a plot of the predicted base pairs as arcs
connecting the bases in the sequence, which is drawn around the circumference of a circle, as shown
in A (see Nussinov and Jacobson 1980). Note that none of the lines cross, a representation that the
structure does not include any knots. (Reprinted from Nussinov and Jacobson 1980.)
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by Watson~Crick pairs. Finally, the structure is assumed to be formed by folding of the
chain back on itself in a manner that does not produce any knots. The best way of repre-
senting this requirement is to draw the sequence in a circular form. The paired bases are
then joined by arcs. If the total structure with all predicted base pairs is to be free of knots,
none of the arcs must cross (Fig. 5.4). Note, however, that if a pseudoknot (Fig. 5.3) is rep-
resented on such a diagram, the lines will cross.

The development of methods for predicting RNA secondary structure has been reviewed
by von Heijne (1987). Tinoco et al. (1971) first estimated the energy associated with
regions of secondary structure by extrapolation from studies with small molecules and
then attempted to predict which configurations of larger molecules were the most ener-
getically stable. Energy estimates included the stabilizing energy associated with stacking
base pairs in a double-stranded region and the destabilizing influence of regions that were
not paired. Pipas and McMahon (1975) developed computer programs that listed all pos-
sible helical regions in tRNA sequences; using modified Watson—Crick base-pairing rules,
they created all possible secondary structures by forming permutations of compatible heli-
cal regions, and evaluated each possible structure for total free energy. Studnicka et al.
(1978) designed a method for adding compatible double-stranded regions together to pro-
duce the energetically most favorable structure. Martinez (1984) made a list of possible
double-stranded regions, and these regions were then given weights in proportion to their
equilibrium constants, calculated by the Boltzmann function [ exp (—AG/RT) ], where
—AG is the free energy of the regions, R is the gas constant, and T is the temperature. The
RNA molecule is folded by a Monte Carlo method in which one initial region is chosen at
random from a weighted pool, similar to the method used in Gibbs sampling (see p. 177).

Imagine each possible double-stranded region being represented by a marble in a bag.
The number of each type of marble is weighted by the Boltzmann probability so that mar-
bles corresponding to more energetically stable regions are more likely to be chosen. Addi-
tional compatible regions are then added sequentially by further selections from the
weighted pool until no more can be added. This method generates a set of possible struc-
tures weighted by energy, but it does not take into account the destabilizing effect of
unpaired regions. The Boltzmann probability function is used in more recent applications
(described below) to find the most probable secondary structures (Hofacker et al. 1998;
Wuchty et al. 1999).

Nussinov and Jacobson (1980) were the first to design a precise and efficient algorithm
for predicting secondary structure. The algorithm generates two scoring matrices—one
M(ij) to keep track of the maximum number of base pairs that can be formed in any inter-
val i to j in the sequence and a second K{(i,j) to keep track of the base position k that is
paired with'j. From these matrices, a structure with the maximum possible number of base
pairs could be deduced by a trace-back procedure similar to that used in performing
sequence alignments by dynamic programming. Zuker and Stiegler (1981) used the
dynamic programming algorithm and energy rules for producing the most energetically
favorable structure. Their method assumes that the most energetic, and usually longest,
predicted dsRNA regions are present in the molecule. Because many double-stranded
regions are predictable for most RNA sequences, the number of predictions is reduced by
including known biochemical or structural information to indicate which bases should be
paired or not paired, by enforcing topological restraints and by requiring that the structure
be in an energetically stable configuration.
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MFOLD, written by Dr. Michael Zuker and colleagues, is commonly used to predict the
energetically most stable structures of an RNA molecule (Jaeger et al. 1989, 1990; Zuker
1989, 1994). MFOLD provides a set of possible structures within a given energy range and
provides an indication of their reliability. The program also uses covariance information
from phylogenetically related sequences (Zuker et al. 1991). MFOLD includes methods for
graphic display of the predicted molecules. This program is one of the most demanding on
computer resources that is currently used because the algorithm is of N’ complexity, where
N is the sequence length. For each doubling of sequence length, the time taken to compute
a structure increases eightfold. The program also requires a large amount of memory for
storing intermediate calculations of structure energies in multiple scoring matrices. As a
result, MFOLD is most often used to predict the structure of sequences less than 1000
nucleotides in length. This method is most reliable for small molecules and becomes less
reliable as the length of the molecule increases.

MFOLD and many other types of useful information on RNA are found at the Web site
of Dr. Michael Zuker, at http://bioinfo.math.rpi.edu/~zuker/rna/. Details of running
MFOLD are not given here because the user manual for MFOLD is widely available (Jaeger
et al. 1990). Recently, a new method called the partition function method for finding the
most probable secondary structural configuration of an RNA molecule and the most prob-
able base pairs has been reported by the Vienna RNA group (Wuchty et al. 1999) and is
discussed below (p. 219).

One advance in the prediction of RNA structure has come from the recognition that
certain RNA sequences form specific structures and that the presence of these sequences is
strongly predictive of such a structure. For example, the hairpin CUUCGG occurs in dif-
ferent genetic contexts and forms a very stable structure (Tuerk et al. 1988). Databases of
such RNA structures and RNA sequences can greatly assist in RNA structure prediction
(Table 5.1).

The genetic algorithm (see Chapter 4, p. 157) has also been used to predict secondary
structure (Shapiro and Navetta 1994); for aligning RNA sequences, taking into account both
sequence and secondary structure and including pseudoknots (Notredame et al. 1997); and
for simulation of RNA-folding pathways (Gultyaev et al. 1995). The program FOLDALIGN
uses a dynamic programming algorithm to align RNAs based on sequence and secondary
structure and locates the most significant motifs (Gorodkin et al. 1997). Chan et al. (1991)
have described another algorithm for the same purpose, and Chetouani et al. (1997) have
developed ESSA, a method for viewing and analyzing RNA secondary structure.

METHODS

SELF-COMPLEMENTARY REGIONS IN RNA SEQUENCES PREDICT SECONDARY

R

One of the simplest types of analyses that can be performed to find stretches of sequence
in RNA that are self-complementary is a dot matrix sequence comparison for self-comple-
mentary regions. For single-stranded RNA molecules, these repeats represent regions that
can potentially self-hybridize to form RNA double strands (von Heijne 1987; Rice et al.
1991). All types of RNA secondary structure analysis begin by the identification of these
regions, and, once identified, the compatible regions may be used to predict a minimum
free-energy structure. A more advanced type of dot matrix can be used to show the most
energetic parts of the molecule (see Fig. 5.8, below).
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Figure 5.5. Dot matrix analysis of the potato tuber spindle viroid for RNA secondary structure
using the MATRIX function of DNA Strider v. 1.2 on a Macintosh computer.

Self-complementary regions in RNA may be found by performing a dot matrix analysis
with the sequence to be analyzed listed in both the horizontal and vertical axes. In one
method for finding such regions, the sequence is listed in the 5'—3’ direction across the
top of the page and the sequence of the complementary strand is listed down the side of
the page, also in the 5'—3' direction. The matrix is then scored for identities. Self-com-
plementary regions appear as rows of dots going from upper left to lower right. For RNA,
these regions represent sequences that can potentially form A/U and G/C base pairs. G/U
base pairs will not usually be included in this simple type of analysis. As with matching
DNA sequences, there are many random matches between the four bases in RNA, and the
diagonals are difficult to visualize. A long window and a requirement for a large number
of matches within this window are used to filter out these random matches.

An example of the RNA secondary structure analysis using a DNA matrix option of
DNA Strider is shown in Figure 5.5. An analysis of the potato spindle tuber viroid is shown,
using a window of 15 and a required match of 11. Note the appearance of a diagonal run-
ning from the center of the matrix to the upper left, and a mirror image of this diagonal
running to the lower right. The presence of this diagonal indicates the occurrence of a large
self-complementary sequence such that the entire molecule can potentially fold into a hair-
pin structure. An alternative dot matrix method for finding RNA secondary structure is to
list the given RNA sequence across the top of the page and also down the side of the page
and then to score matches of complementary bases (G/C, A/U, and G /U). Diagonals indi-
cating complementary regions will go from upper right to lower left in this type of matrix.
This is the kind of matrix used to produce an energy matrix (see Fig. 5.8, below).
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MINIMUM FREE-ENERGY METHOD FOR RNA SECONDARY STRUCTURE
REDICTIO.

To predict RNA secondary structure, every base is first compared to every other base by a
type of analysis very similar to the dot matrix analysis. The sequence is listed across the top
and down the side of the page, and G/C, A/U, and G/U base pairs are scored (for an exam-
ple using a dot matrix method to find hairpins, see Fig. 5.5). Just as a diagonal in a two-
sequence comparison indicates a range of sequence similarity, a row of matches in the RNA
matrix indicates a succession of complementary nucleotides that can potentially form a
double-stranded region. The energy of each predicted structure is estimated by the near-
est-neighbor rule by summing the negative base-stacking energies for each pair of bases in
double-stranded regions and by adding the estimated positive energies of destabilizing
regions such as loops at the end of hairpins, bulges within hairpins, internal bulges, and
other unpaired regions. Representative examples of the energy values that are currently
used are given in Table 5.2. To evaluate all the different possible configurations and to find
the most energetically favorable, several types of scoring matrices are used. The comple-
mentary regions are evaluated by a dynamic programming algorithm to predict the most
energetically stable molecule. The method is similar to the dynamic programming method
used for sequence alignment (see Chapter 3).

To calculate the stacking energy of a row of base pairs in the molecule, the stacking ener-
gies similar to those shown in Table 5.2 are used. An illustrative example for evaluation of
energy in a double-stranded region is shown in Figure 5.6. The sequence is listed down the
side of the matrix, and a portion of the same sequence is also listed across the top of the
matrix; matching base pairs have been identified within the matrix. The object is to find a
diagonal row of matches that goes from upper right to lower left, and such a row is shown
in the example. In Figure 5.6, a match of four complementary bases in a row produces a
molecule of free energy —6.4 kcal/mole. In general, each matrix value is obtained by con-
sidering the minimum energy values obtained by all previous complementary pairs

Table 5.2. Predicted free-energy values (kcal/mole at 37°C) for base pairs and other features of
predicted RNA secondary structures

A. Stacking energies for base pairs

A/U C/G G/C U/A G/U U/G
A/U —0.9 —1.8 —2.3 —1.1 —1.1 -0.8
C/G —1.7 —2.9 —3.4 —-2.3 —2.1 -~1.4
G/C —2.1 —2.0 —2.9 —1.8 ~1.9 —1.2
U/A -0.9 —1.7 —-2.1 —-0.9 -1.0 —0.5
G/U -0.5 —1.2 —1.4 —-0.8 ~0.4 —0.2
U/G —1.0 —1.9 —2.1 -1.1 —1.5 —0.4

B. Destabilizing energies for loops

Number of bases 1 5 10 20 30
Internal - 5.3 6.6 7.0 7.4
Bulge 3.9 4.8 5.5 6.3 6.7
Hairpin - 4.4 5.3 6.1 6.5

(Upper) Stacking energy in double-stranded region when base pair listed in left column is followed by
base pair listed in top row. C/G followed by U/A is therefore the dinucleotide 5’ CU 3’ paired to 5’ AG 3’.
(Lower) Destabilizing energies associated with loops. Hairpin loops occur at the end of a double-stranded
region, internal loops are unpaired regions flanked by paired regions, and a bulge loop is a bulge of one
strand in an otherwise paired region (Fig. 5.2). An updated and more detailed list of energy parameters may
be found at the Web site of M. Zuker (http://bioinfo.math.rpi.edu/~zuker/rna/energy/).

From Turner and Sugimoto (1988); Serra and Turner (1995).
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A. Base comparisons B. Free energy calculations
5! A C G u 3' 5' A C G U 3'
A A
C C
G G
) U
G C/G u/G G ~6.4
C G/C C -5.2
G C/G u/G G -1.8
u AU c/n G/U u
3' 3'

Figure 5.6. Evaluation of secondary structure in RNA sequence by the method described in the text.
The sequence is listed down the first column of A and B in the 5'—3’ orientation, and the first four
bases of the sequence are also listed in the first row of the tables in the 5'—3' direction. Several
complementary base pairs between the first and last four bases that could lead to secondary struc-
ture are shown in A. The most 5" base is listed first in each pair. The diagonal set of base pairs A/U,
C/G, G/C, and U/G reveals the presence of a potential double-stranded region between the first and
last four bases. The free energy associated with such a row of base pairs is shown in B. A C/G base
pair following an A/U base pair has a base stacking energy of —1.8 kcal/mole (Turner and Sugimo-
to 1988). This value is placed in the corresponding position in B. Similarly, a C/G base pair followed
by a G/C provides energy of —3.4, and a G/C followed by a U/G, —1.2 kcal/mole. Hence, the ener-
gy accumulated after stacking of these additional two base pairs is —5.2 and —6.4. The energy of this
double-stranded structure will continue to decrease (become more stable) as more base pairs are
added, but will be increased if the structure is interrupted by noncomplementary base pairs.

decreased by the stacking energy of any additional complementary base pairs or increased
by the destabilizing energy associated with noncomplementary bases. The increase
depends on the type and length of loop that is introduced by the noncomplementary base
pair, whether internal loop, bulge loop, or hairpin loop, as shown in Table 5.2. This com-
parison of all possible matches and energy values is continued until all nucleotides have
been compared. The pattern followed in comparing bases within the RNA molecule is
illustrated in Figure 5.7.

SUBOPTIMAL STRUCTURE PREDICTIONS BY MFOLD AND THE USE

SRR

S e

Originally, the FOLD program of M. Zuker predicted only one structure having the mini-
mum free energy. However, changes in a single nucleotide can result in drastic changes in the
predicted structure. A later version, called MFOLD, has improved prediction of non-base-
paired interactions and predicts several structures having energies close to the minimum free
energy. These predictions accurately reflect structures of related RNA molecules derived from
comparative sequence analysis (Jaeger et al. 1989; Zuker 1989, 1994; Zuker et al. 1991; Zuker
and Jacobson 1995). To find these suboptimal structures, the dynamic programming method
was modified (Zuker 1989, 1991) to evaluate parts of a new scoring matrix in which the
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Figure 5.7. Method used in dynamic programming analysis for identifying the most energetically
favorable configuration of a linear RNA molecule. (A) The sequence of an RNA molecule of length
n bases is listed across the top of the page and down the side. The index of the sequence across the
top is j and that down the side is i. The search only includes the upper right part of the matrix shown
in gray and begins at the first diagonal line for matching base pairs. First positions i =1 and j=2
are compared for potential base-pairing, and if pairing can occur, an energy value is placed in an
energy matrix W at position 1,2. Then, i = 2 and j = 3 base are compared, and so on, until all base
combinations along the dashed diagonal have been made. Then, comparisons are made along the
next upper right diagonal. As each pair of bases is compared, an energy calculation is made that is
the optimal one up to that point in the comparison. In the simplest case, if i +1 pairs with j—1,and
i pairs with j, and if this structure is the most favorable up to that point, the energy of the i/j base
pair will be added to that of the i +1/j —1 base pair. Other cases are illustrated in B. The process of
obtaining the most stable energy value at each matrix position is repeated following the direction of
the arrows until the last position, i =1 and j =#, has been compared and the energy value placed at
this position in matrix W, the value entered in W(1,n), will be the energy of the most energetically
stable structure. The structure is then found by a trace-back procedure through the matrices simi-
lar to that used for sequence alignments. The method used is a combination of a search for all pos-
sible double-stranded regions and an energy calculation based on energy values similar to those in
Table 5.2. The search for the most energetic structure uses an algorithm (Zuker and Stiegler 1981)
similar to that for finding the structure with maximum base-pairing (Nussinov and Jacobson 1980).
These authors recognized that there are three possible ways, illustrated here by the colored arrows,
of choosing the best energy value at position 7, in an energy matrix W. The simplest calculation (red
arrow) is to use the energy value found up to position i—1, j—1 diagonally below i,j. If i and jcan
form a base pair (and if there are at least four bases between them in order to allow enough sequence
for a hairpin) and i+1 and j—1 also pair, then the stacking energy of i/j upon i+ 1/j—1 will reduce
the energy value at i+1, j— 1, producing a more stable structure, and the new value can be consid-
ered a candidate for the energy value entered at position 4. If i and j do not pair, then another
choice for the energy at i,j is to use the values at positions i, j—1 or i+1, j illustrated by the blue
arrows. i and j then become parts of loop structures. Finally, i and j may each be paired with two
other bases, i with k and j with k+1, where k is between i and j (i < k < ), illustrated by the struc-
ture shown in yellow and green, reflecting the location of the paired bases. The minimum free-ener-
gy value for all values of k must be considered to locate the best choice as a candidate value at i, J-
Finally, of the three possible choices for the minimum free-energy value at i,j indicated by the four
colored arrows, the best energy value is placed at position W(i,j). The procedure is repeated for all
values of i and j, as illustrated in A. Besides the main energy scoring matrix W, additional scoring
matrices are used to keep track of auxiliary information such as the best energy up to i,j where i and
j form a pair, and the influence of bulge loops, interior loops, and other destabilizing energies. An
essential second matrix is V(i), which keeps track of all substructures in the interval 4,j in which i
forms a base pair with j. Some values in the W matrix are derived from values in the V matrix and
vice versa (Zuker and Stiegler 1981).
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sequence is represented in two tandem copies on both the vertical and horizontal axes. The
regions from i =1 to n and j =1 to n are used to calculate an energy V(i,j) for the best struc-
ture that includes an 4, base pair and is called the included region. A second region, the
excluded region, is used to calculate the energy of the best structure that includes i, j but is not
derived from the structure at i+1,j —1 (Fig. 5.7). After certain corrections are made, the dif-
ference between the included and excluded values is the most energetic structure that includes
the base pair 4,j. All complementary base pairs can be sampled in this fashion to determine
which are present in a suboptimal structure that is within a certain range of the optimal one.

An energy dot plot is produced showing the locations of alternative base pairs that pro-
duce the most stable or suboptimally stable structures, as illustrated in Figure 5.8. The pro-
gram may be instructed to find structures within a certain percentage of the minimum free
energy. Parameter d provides a measure of similarity between two structures. When
MFOLD is established on a suitable local host machine, the window is interactive, and
clicking a part of the display will lead to program output of the corresponding structure.
The dot plot may be filtered so that only suboptimal regions with helices of a certain min-
imal length are shown. One of the predicted structures is shown in Figure 5.9.

A limitation of the Zuker method and other methods (Nakaya et al. 1995) for computing
suboptimal RNA structures is that they do not compute all the structures within a given
energy range of the minimum free-energy structure. For example, no alternative structures
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Figure 5.8. The energy dot plot (boxplot) of alternative choices of base pairs of an RNA molecule (Jacobson and Zuker
1993). The sequence is that of a human adenovirus pre-terminal protein (GenBank U52533) that is given by M. Zuker as an
example on his Web site at http://bioinfo.math.rpi.edu/~zukerm. Foldings were computed using the default parameters of
the MFOLD program at http://bioinfo.math.edu/~mfold/rna/form1.cgi (Mathews et al. 1999) using the thermodynamic val-
ues of SantaLucia (1998). The minimum energy of the molecule is —280.6 kcal/mole and the maximum energy increment is
12 kcal/mole. Black dots indicate base pairs in the minimum free-energy structure and are shown both above and the mirror
image below the main diagonal. Red, blue, and yellow dots are base pairs in foldings of increasing 4, 8, and 12 kcal/mole ener-
gies greater than the minimum energy, respectively. A region with very few alternative base pairs such as the pairing of
370-395 with 530-505 is considered to be strongly predictive, whereas regions with many alternative base pairs such as the
base-pairing in the region of 340-370 with 570-530 are much less predictive.
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are produced that have the absence of base pairs in the best structure, and, if two sub-
structures are joined by a stretch of unpaired bases, no structures are produced that are
suboptimal for both structures. These factors limit the number of alternative structures
predicted compared to known variations based on sequence variations in tRNAs (Wuchty
et al. 1999).

These limitations have been largely overcome by using an algorithm originally described
by Waterman and Byers (1985) for finding sequence alignments within a certain range of
the optimal one by modifications of the trace-back procedure used in dynamic program-
ming. This method efficiently calculates a large number of alternative structures, up to a
very large number, within a given energy range of the minimum free-energy structure (see
Fig. 5.10). The method has been used to demonstrate that natural tRNA sequences can
form many alternative structures which are close to the minimum free-energy structure
and that base modification plays a major role in this energetic stability (Wuchty et al.
1999). The method may also be used to assess the thermodynamic stability of RNA struc-
tures given expected changes in energies associated with base pairs and loops as a function
of temperature. The RNA secondary structure prediction and comparison Web site at
http://www.tbi.univie.ac.at/~ivo/RNA/ will fold molecules of length > 300 bases, and the
Vienna RNA Package software for folding larger molecules on a local machine is available
from this site.

The Boltzmann con-
stant k is 8314510
J/mole/degree K.

In the above types of analyses, the energy associated with predicted double-stranded
regions in RNA is used to produce a secondary structure. Stabilizing energies associated
with base-paired regions and destabilizing energies associated with loops are summed to
produce the most stable structure or suboptimal RNA secondary structure. A different way
of predicting the structures is to consider the probability that each base-paired region will
form based on principles of thermodynamics and statistical mechanics. The probability of
forming a region with free energy AG is expressed by the Boltzmann distribution, which
states that the likelihood of finding a structure with free energy —AG is proportional to
[ exp (—AG/KT) | where k is the Boltzmann gas constant and T is the absolute tempera-
ture.

Note that the more stable a structure, the lower the value of AG. Since AG is a negative
number, the value of exp(—AG/kT) increases for more stable structures and also grows
exponentially with a decrease in energy. The probability of these regions forming increas-
es in the same manner. Conversely, the effect of destabilizing loops that have a positive AG
is to decrease the probability of formation. By using these probability calculations and a
dynamic programming method similar to that used in MFOLD, it is possible to predict the
most probable RNA secondary structures and to assess the probability of the base pairs that
contribute energetic stability to this structure.

For a set of possible structural states, the likelihood of each may be calculated using this
formula, and the sum of these likelihoods provides a partition function that can be used to
normalize each individual likelihood, providing a probability that each will occur. Thus,
probability of structure A of energy —AG, is [ exp (—AG,/kT) ] divided by the partition
function Q, where Q = Z [ exp (—AG/KkT) ], the sum of probabilities of all possible struc-
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Figure 5.9. Model of RNA secondary structure of the human adenovirus pre-terminal protein. This model is one of several
alternative structures represented by the above energy plot and provided as an output by the current versions of MFOLD. (A)
Simple text representation of one of the predicted structures. Each stem-and-loop structure is shown separately and the left end
of each structure is placed below the point of connection to the one above. (B) More detailed rendition of one part of the pre-
dicted structures. The structure continues beyond the right side of the page.
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tures, s. This kind of analysis allows one to calculate the probability of a certain base pair
forming.

The key to this analysis is the calculation of the partition function Q. A dynamic pro-
gramming algorithm for calculating this function exactly for RNA secondary structure
has been developed (McCaskill 1990). The algorithm is very similar to that used for com-
puting an optimal folding by MFOLD. Complexity similarly increases as the cube of the
sequence length, and the energy values used for base pairs and loops are also the same
except that structures with very large interior loops are ignored. Just as the minimum
free-energy value is given at W(1,n) in the Zuker MFOLD algorithm, the value of the
partition function is given at matrix position Q(1,n) in the corresponding partition
matrix.

As indicated above, the partition function is calculated as the sum of the probabilities of
each possible secondary structure. Because there are a very large possible number of struc-
tures, the calculation is simplified by calculating an auxiliary function, Q®(i,j), which is the
sum of the probabilities of all structures that include the base pair i,j. The partition func-
tion Q(3,7) includes both these structures and the additional ones where i is not paired with
j. An example illustrating the difference between the minimum free energy and the parti-
tion function methods should be instructive. Suppose that the bases at positions i +1,j —1
and i,j can both form base pairs. They then form a stack of two base pairs. In the minimum
free-energy method, the energy of the i,j pair stacked on the i +1, j —1 pair will be added
to V(i +1,j —1) to give V(i,j), where Vis a scoring matrix that keeps track of the best struc-
ture that includes an 4,j base pair. In contrast, the value for Q(i,j) will be calculated by
multiplying the matrix value Q°(i +1, j —1) by the probability of the base pair i,j given by
the Boltzmann probability [exp (—AG/KT)], where AG is the negative stacking energy of
the i,j base pair on the i +1, j —1 base pair, and will be a large number reflecting the prob-
ability given the stability of the base-paired region.

For a hairpin structure with a row of successive base pairs, the probability will be the
product of the Boltzmann factors associated with the stacked pair, giving a high number
for the relative likelihood of formation. The procedure followed by the partition function
algorithm is to calculate Q(3,j) and Q(i,j) iteratively in a scoring matrix similar to that
illustrated in Figure 5.7A until Q(1,n) is reached. This matrix position contains the value
of the full partition function Q.

Both the partition function and the probabilities of all base pairs are computed by this
algorithm, and the most probable structural model is thereby found. Information about
intermediate structures, base-pair opening and slippage, and the temperature dependence
of the partition function may also be determined. The latter calculation provides informa-
tion about the melting behavior of the secondary structure.

A suite of RNA-folding programs available from the Vienna RNA secondary structure
prediction Web site (http://www.tbi.univie.ac.at/~ivo/RNA/) uses this methodology to
predict the most probable and alternative RNA secondary structures. An example of the
folding of a 300-base RNA molecule is given in Figure 5.10. The probability of forming
each base pair is shown in a dot matrix display in which the dots are squares of increasing
size reflecting the probability of the base pair formed by the bases in the horizontal and ver-
tical positions of the matrix. Secondary structure prediction is done by two kinds of
dynamic programming algorithms: the minimum free-energy algorithm of Zuker and
Stiegler (1981) and the partition function algorithm of McCaskill (1990).
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Figure 5.10. Suboptimal foldings of an RNA sequence using probability distributions of base-pairings. The first 300 bases of
the same adenovirus sequence used in Fig. 5.8 was submitted to the Vienna Web server. (A) The region shown represents struc-
tures within the range of bases 150300 and may be compared to the same region in Fig. 5.8. The minimum free energy of this
thermodynamic ensemble is —134.85 kcal/mole, compared to a minimum free energy of 125.46 kcal/mole. The size of the
square box at highlighted matrix positions indicates the probability of the base pair and decreases in steps of 10-fold; i.e., order
of magnitude decreases. The size variations shown in the diagram cover a range of ~4—6 orders of magnitude. Calculations of
base-pair probabilities are discussed in the text. (B) The minimum free-energy structure representing base pairs as pairs of nest-
ed parentheses. A low-resolution picture was also produced (not shown).
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The second major method that has been used to make RNA secondary structure predic-
tions (Woese et al. 1983) and also tertiary structure analyses such as those shown in Figure
5.3 (Gutell et al. 1986) is RNA sequence covariation analysis. This method examines
sequences of the same RNA molecules from different species for positions that vary togeth-
er in a manner that would allow them to produce a base pair in all of the molecules. The
idea is quite simple. On the one hand, for double-stranded regions in RNA molecules,
sequence changes that take place in evolution should maintain the base-pairing. On the
other hand, sequence changes in loops and single-stranded regions should not have such a
constraint. The method of analysis is to look for sequence positions at which covariation
maintains the base-pairing properties. The justification for this method is that these types
of joint substitutions or covariations actually are found to occur during evolution of such
genes. As shown in Figure 5.11, when one position corresponding to a base pair is changed,
another position corresponding to the base-pairing partner will also change. For example,
if two positions G and C form a base pair, then sequences that have C and G reversed, or
A and T or T and A at the corresponding positions, would also be considered reasonable
matches. Sequence covariability has been used to improve thermodynamic structure pre-
diction as described in the above section (Hofacker et al. 1998). An example of using
covariation analysis to decipher base-pair interactions in tRNA is shown in Figure 5.12.

One method of covariation analysis also examines which phylogenetic groups exhibit
change at a given position. For each position, the base that generally predominates in one
particular part of the tree is determined. These methods have required manual examina-
tion of sequences and structures for covariation, but automatic methods have also been
devised and demonstrated to produce reliable predictions (Winker et al. 1990; Han and
Kim 1993; see box below).

l. Sequence alignment

seql. ———G————— C——-—
seq2. ———C————— G———
seq3. ———A————-— C———
seq4. ———A————— T———

Il. Structural alignment

A B C D

GC CG AC AU

Figure 5.11. Conservation of base pairs in homologous RNA molecules influences structure pre-
diction. The predicted structure takes into account sequence covariation found at aligned sequence
positions, and may also use information about conserved positions in components of a phylogenetic
tree. In the example shown, sequence covariations in A, B, and D found in sequences 1, 2, and 4,
respectively, permit Watson-Crick base and G-U base-pairing in the corresponding structure, but
variation C found in sequence 3 is not compatible. Sometimes correlations will be found that sug-
gest other types of base interactions, or the occurrence of a common gap in a multiple sequence
alignment may be considered a match. Positions with greater covariation are given greater weight
in structure prediction. Molecules with only one of the two sequence changes necessary for conser-
vation of the base-paired position may be functionally deleterious.
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Figure 5.12. Covariation found in tRNA sequences reveals base interactions in tRNA secondary and tertiary structure. (A)
Alignment of tRNA sequences showing regions of interacting base pairs. (+) Transition; (—) transversions; (]) deletion; (*)
ambiguous nucleotide. (B) Diagram of tRNA structure illustrating base-base interactions revealed by a covariance analysis.
Adapted from the Web site of R. Gutell at http://www.rna.icmb.utexas.edu.
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ratio of f,..(B1:B2) / [fn(B1) X fa(Bs)] is expected to equal 1, and if the frequencies

are correlated, then this ratio will be greater than 1. If they are perfectly covariant,

then f,,n(B1,B;) = Jn(B1) = f4(B;). To calculate the mutual information content H
- (m,n) in bits between the two columns m and n, the logarithm of this ratio is calcu-
' lated and summeé over all possxbie 16 base-pair combinations.

H (m,n) zm,azfm(ﬁlﬁz) X 1085 {fimn(B1sB2) / [fm(B1) fu(B2)]}

H (m,n) varies from the value of O bits of mutual information representing no corre-
lation to thatof 2 brts of mutual information, representing perfect correlation (Eddy
and Dm‘bm 1994) |

The mutual information content may be plotted on a motif logo (Gorodkin et al. 1997),
similar to that described in Chapter 4, page 196, for illustrating a sequence motif. The
example shown in Figure 5.13 shows the mutual information content M superimposed on
the information content of each sequence position in an RNA alignment.
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Figure 5.13. RNA structure logo. The top panel is the normal sequence logo showing the size of each
base in proportion to the contribution of that base to the amount of information in that column of
the multiple sequence alignment. The relative entropy method is used in which the frequency of bases
in each column is compared to the background frequency of each base. Inverted sequence characters
indicate a less than background frequency (see Chapter 4, page 196). The bottom panel includes the
same information plus the mutual information content in pairs of columns. The amount of informa-
tion is indicated by the letter M, and the matching columns are shown by nested sets of brackets and
parentheses. All sequences have a C in column 1 and a matching G in column 16. Similar columns 2
and 15 can form a second base pair stacked upon the first. Columns 7-10 and 25-22 also can form G/C
base pairs most of the time. Sequences with a G in column 7 frequently have a C in column 25, and
those with a C in column 7 may have a G in column 25. Thus, there is mutual information in these
two columns (Gorodkin et al. 1997 [using data of Tuerk and Gold 1990]).
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A formal covariance model has been devised by Eddy and Durbin (1994). Although very
accurate when used for identifying tRNA genes, the algorithm is extremely slow and
unsuitable for searching through large genomes. Instead, the method has been used to
screen through putative tRNA genes previously identified by faster methods (Lowe and
Eddy 1997). The difficulty that is faced in modeling RNA molecules is to identify the
potential base pairs in a set of related RNA molecules based on covariation at two sites.
Recall from Chapter 4 that the hidden Markov model is used for capturing the types of
variations observed in a sequence profile, including matches, mismatches, insertions, and
deletions. This type of model assumes each sequence can be predicted by a series of states
in the model, one after the other, as in a series of independent events in a Markov chain.
The hidden Markov model does not analyze joint variations at sequence positions such as
occur in RNA molecules. The model that is used for analyzing RNA secondary structure
(but not tertiary structure) is an ordered tree model. A simplified tree representation of
RNA secondary structure is shown in Figure 5.14.

The above assumes that we know which bases are paired in a model of RNA secondary
structure, whereas the goal is to build a model that discovers this information. The task is
achieved by constructing a more general model, training the model with a set of sequences,
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Figure 5.14. Tree model of RNA secondary structure. The model in A is represented by the ordered
binary tree shown in B. This model attempts to capture both the sequence and the secondary struc-
ture of the RNA molecule. The tree is read like a sequence starting at the root node at the top of the
model, then moving down the main branch to the bifurcation mode. Along the main trunk are nodes
that represent matched or unmatched base pairs. Shown are two A’s matching a “-,” indicating no
pairing with these bases. After the bifurcation mode, one then moves down the most leftward branch
to the end node. Along the branch are unmatched bases, matched base pairs, and mismatched pairs.
After the end node is reached, go back to the previous bifurcation node and follow the right branch.
(Reprinted, with permission of Oxford University Press, from Eddy and Durbin 1994.)
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and then having the model reveal the most likely base-paired regions. The approach is sim-
ilar to training a hidden Markov model for proteins to recognize a family of protein
sequences, thereby producing the most probable multiple sequence alignment. In the case
of RNA secondary structure, a tree model is trained by the sequences, and the model may
then be used to predict the most probable secondary structure. In addition, the model may
also be used to search a database for sequences that produce a high score when aligned to
the model. These sequences are likely to encode a similar type of RNA molecule such as
tRNA or 55 RNA. Each model is derived by training a more general tree model with the
sequences.

The general tree model needs to represent the types of variations that are found in align-
ing a series of related sequences, such as insertions, deletions, and mismatches. To allow
for such variations, each node in the tree is replaced by a set of states that correspond to all
of the possible sequence variations that might be encountered at that position. These states
are illustrated in Figure 5.15.

The mutual information content of all sequence positions is used in designing the
model, and the expectation maximization method (Chapter 4) is used to optimize the
parameters of the model. A dynamic programming method is used to find a model that
maximizes the amount of covariation. The structure of the model may subsequently be
altered during training. Once a covariance model suitable for an RNA molecule has been
established, the model is trained by the sequences. The methodology is similar to that of
hidden Markov models and is described in detail in Chapter 4. Basically, the model is ini-
tialized by giving starting values to the base and dinucleotide frequencies in each MATCH
and INS state and to the transition probabilities. All possible paths through the model are
found for each sequence in the training set. The frequencies and transition probabilities are
modified each time a particular path in the model is used. The base pairs are found from
MATP (see Fig. 5.15), which gives probabilities to the 16 possible dinucleotides.

Once the model has been trained, the most probable path for each sequence provides a
consensus structural alignment of the sequences. A dynamic programming algorithm is
used that matches subsequence alignments to the nodes of the covariance model. The
result is a log odds score of the sequence matching the covariance model. A similar method
may be used to find sequences in a genomic database with high matching scores to the
covariance model. The method was used to predict the structural alignment of representa-
tive sets of tRNA sequences, and it provided alignments that closely matched actual struc-
tural alignments based on other methods. The software for the COVELS program is avail-
able by request from the authors (Eddy and Durbin 1994).

STOCHASTIC CONTEXT-FREE GRAMMARS FOR MODELING

In the above section, we discussed the need to have models for RNA secondary structure
that reflect the interaction among base pairs. Simpler models of sequence variation treat
sequences as simple strings of characters without such interactions and are therefore not
suitable for RNA. A general theory for modeling strings of symbols, such as bases in DNA
sequences, has been developed by linguists. There is a hierarchy of these so-called trans-
formational grammars that deal with situations of increasing complexity. The application
of these grammars to sequence analysis has been extensively discussed elsewhere (Durbin
et al. 1998). The context-free grammar is suitable for finding groups of symbols in differ-
ent parts of the input sequence that thus are not in the same context. Complementary
regions in sequences, such as those in RNA that will form secondary structures, are an
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Root node

Left singlet node

Right singlet node
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Figure 5.15. Details of tree model for RNA secondary structure. Each type of node in the tree shown
in Fig. 5.14 is replaced by a pattern of states corresponding to the types of sequence variations that are
expected in a family of related RNA sequences. These states each store a table of frequencies of 4 bases
or of 16 possible dinucleotides. The seven different types of nodes are illustrated. BEG node includes
insert states for sequence of any length on the right or left side of the node. The pair-wise node
includes a state MATP for storing the 16 possible dinucleotide frequencies; MATL and MATR states
for storing single base frequencies on either the left or right side of the node, respectively; a DEL state
for allowing deletions; and INSL and INSR states that allow for insertions of any length on the left or
right of the node. DEL does not store information. The other five node types have the same types of
states. Each state is joined to other states by a set of transition probabilities shown by the arrows.
These probabilities are similar to those used in hidden Markov models. BIF is a bifurcation state with
transition probabilities entering the state from above and then leaving to one or the other of two
branches. (Reprinted, with permission of Oxford University Press, from Eddy and Durbin 1994.)

example of such context-free sequences. Stochastic context-free grammars (SCFG) intro-
duce uncertainty into the definition of such regions, allowing them to use alternative sym-
bols as found in the evolution of RNA molecules. Thus, SCFGs can help define both the
types of base interactions in specific classes of RNA molecules and the sequence variations
at those positions. SCFGs have been used to model tRNA secondary structure (Sakakibara
et al. 1994). Although SCFGs are computationally complex (Durbin et al. 1998), they are
likely to play an important future role in identifying specific types of RNA molecules.
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The application of SCFGs to RNA secondary structure analysis is very similar in form to
the probabilistic covariance models described in the above section. For RNA, the symbols
of the alphabet are A, C, G, and U. The context-free grammar establishes a set of rules
called productions for generating the sequence from the alphabet, in this case an RNA
molecule with sections that can base-pair and others that cannot base-pair. In addition to
the sequence symbols (named terminal symbols because they end up in the sequence),
another set of symbols (nonterminal symbols) designated Sy, S, S; . . . , determines inter-
mediate production stages. The initial symbol is S¢ by convention. The next terminal sym-
bol §; is produced by modifying S, in some fashion by productions indicated by an arrow.
For example, the productions S — S;, S; = C S, G generate the sequence C S, G where S,
has to be defined further by additional productions. The example shown in Figure 5.16
(from Sakakibara et al. 1994) shows a set of productions for generating the sequence
CAUCAGGGAAGAUCUCUUG and also the secondary structure of this molecule. The
productions chosen describe both features.

In this example of a context-free grammar, only one sequence is produced at each pro-
duction level. In a SCFG, each production of a nonterminal symbol has an associated prob-
ability for giving rise to the resulting product, and there are a set of productions, each giv-
ing a different result. For example, the production §; — C S, G could also be represented
by 15 other base-pair combinations, and each of these has a corresponding probability.
Thus, each production can be considered to be represented by a probability distribution
over the possible outcomes. Note the identity of the SCFG representation of the predicted
structure to that shown for the tree representation of the covariance model in Figure 5.14.
The use of SCFGs in RNA secondary structure production analysis is in fact very similar to
that of the covariance model, with the grammatical productions resembling the nodes in
the ordered binary tree. As with hidden Markov models, the probability distribution of
each production must be derived by training with known sequences. The algorithms used
for training the SCFG and for aligning a sequence with the SCFG are somewhat different
from those used with hidden Markov models, and the time and memory requirements are
greater (Sakakibara et al. 1994: Durbin et al 1998).
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One goal in RNA research has been to design methods to identify sequences in genomes
that encode small RNA molecules. Larger, highly conserved molecules can simply be iden-
tified based on their sequence similarity with already-known sequences. For smaller
sequences with more sequence variation, this method does not work. A number of meth-
ods for finding small RNA genes have been described and are available on the Web (Table
5.1). A major problem with these methods in searches of large genomes is that a small false-
positive rate becomes quite unacceptable because there are so many false positives to check
out. -

One of the first methods used to find tRNA genes was to search for sequences that are self-
complementary and can fold into a hairpin like the three found in tRNAs (Staden 1980).

L
-

Figure 5.16. A set of transformation rules for generating an RNA sequence and the secondary structure
of the sequence from the RNA alphabet (ACGU). (A) The set of production rules for producing the
sequence and the secondary structure. These rules reveal which bases are paired and which are not paired.
(B) Derivation of the sequence. (C) A parse tree showing another method for displaying the derivation
of the sequence in B. (D) Secondary structure from applying the rules. (Redrawn, with permission of
Oxford University Press, from Sakakibara et al. 1994.)




A. Productions

P={Sy— Sy, S; — G Sg,
S;— CS,G, Sy — G,
S, —= AS;U, S; —= AS;,U,
Sz S4 Sq. S1o—> G541 C,
S;— USsA, Sy — AS;,U,
Ss— CSgG,  Syp— USy,
Se— ASy, Si3—> C }

B. Derivation

Sg — Sy — CS,G — CAS;UG — CAS,S,UG
CAUS;ASQUG —» CAUCSGAS,UG
CAUCAS,;GASQUG —> CAUCAGSZGAS UG
CAUCAGGGAS,UG —= CAUCAGGGAAS,UUG
CAUCAGGGAAGS,4CUUG
CAUCAGGGAAGAS,UCUUG
CAUCAGGGAAGAUS,,UCUUG
CAUCAGGGAAGAUCUCUUG.
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Figure 5.17. Probabilistic model of snoRNAs. The numbered boxes and ovals represent conserved
sequence and structural features that have been modeled by training on snoRNAs. Secondary struc-
tural features of Stem were modeled with an SCFG. Boxes with ungapped hidden Markov models, the
guide sequence with a hidden Markov model, and gapped regions (spacers) are shown by ovals. The
guide sequence interacts with methylation sites on rRNA and is targeted in each search to a comple-
mentary sequence near one of those sites. The alignment of this model produces a log odds score that
provides an indication of the reliability of the match. The transition probabilities are 1, except where
the model bifurcates to allow identification of two types of target sequences. The model is highly spe-
cific and seldom identifies incorrect matches in random sequences. (Reprinted, with permission, from
Lowe and Eddy 1999 [copyright AAAS, Washington, D.C.].)

Fichant and Burks (1991) described a program, tRNAscan, that searches a genomic sequence
with a sliding window searching simultaneously for matches to a set of invariant bases and
conserved self-complementary regions in tRNAs with an accuracy of 97.5%. Pavesi et al.
(1994) derived a method for finding the RNA polymerase III transcriptional control regions
of tRNA genes using a scoring matrix derived from known control regions that is also very
accurate. Finally, Lowe and Eddy (1997) have devised a search algorithm tRNAscan-SE that
uses a combination of three methods to find tRNA genes in genomic sequences—tRNAscan,
the Pavesi algorithm, and the COVELS program based on sequence covariance analysis
(Eddy and Durbin 1994). This method is reportedly 99-100% accurate with an extremely
low rate of false positives.

The probabilistic model shown in Figure 5.17 was used to identify small nucleolar (sno)
RNAs in the yeast genome that methylate ribosomal RNA. The model is not used to search
genomic sequences directly. Instead, a list of candidate sequences is first found by search-
ing for patterns that match the sequences in the model (Lowe and Eddy 1999). The prob-
ability model was a hybrid combination of HMMs and SCFGs trained on snoRNAs. These
RNAs vary sufficiently in sequence and structure that they are not found by straight-
forward similarity searches. The RNAs found were shown to be snoRNAs by insertional
mutagenesis.

In summary, methods for predicting the structure of RNA molecules include (1) an anal-
ysis-of all possible combinations of potential double-stranded regions by energy mini-
mization methods and (2) identification of base covariation that maintains secondary and
tertiary structure of an RNA molecule during evolution. Energy minimization methods
have been so well refined that a series of energetically feasible models and the most ther-
modynamically probable structural models may be computed. Covariation analysis by C.
Woese led to his building of detailed structural models for rRNAs. By examining the evo-
lutionary variation in these structures, he was able to predict three domains of life—the
Bacteria, the Eukarya, and a newly identified Archaea. Although a large amount of hori-
zontal transfer among evolutionary lineages of other genes has added a great deal of noise
to the evolutionary signal, the rRNA-based prediction is supported by other types of
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genomic analyses. In addition to these uses of rRNA structural analysis, excellent proba-
bilistic models of two small RNA molecules, tRNA and snoRNA, have been built, and these
models may be used to search reliably through genomic sequences for genes that encode
these RNA molecules. The successful analysis of these types of RNA molecules should be
readily extensible to other classes of RNA molecules.
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