CHAPTERII

Multiple Sequence Alignment

139



140 = CHAPTER 4

INTRODUCTION

O NE OF THE MOST IMPORTANT CONTRIBUTIONS of molecular biology to evolutionary anal-
ysis is the discovery that the DNA sequences of different organisms are often related. Sim-
ilar genes are conserved across widely divergent species, often performing a similar or even
identical function, and at other times, mutating or rearranging to perform an altered func-
tion through the forces of natural selection. Thus, many genes are represented in highly
conserved forms in organisms. Through simultaneous alignment of the sequences of these
genes, sequence patterns that have been subject to alteration may be analyzed.

Because the potential for learning about the structure and function of molecules by
multiple sequence alignment (msa) is so great, computational methods have received a
great deal of attention. In msa, sequences are aligned optimally by bringing the greatest
number of similar characters into register in the same column of the alignment, just as
described in Chapter 3 for the alignment of two sequences. Computationally, msa presents
several difficult challenges. First, finding an optimal alignment of more than two sequences
that includes matches, mismatches, and gaps, and that takes into account the degree of
variation in all of the sequences at the same time poses a very difficult challenge. The
dynamic programming algorithm used for optimal alignment of pairs of sequences can be
extended to three sequences, but for more than three sequences, only a small number of
relatively short sequences may be analyzed. Thus, approximate methods are used, includ-
ing (1) a progressive global alignment of the sequences starting with an alignment of the
most alike sequences and then building an alignment by adding more sequences, (2) iter-
ative methods that make an initial alignment of groups of sequences and then revise the
alignment to achieve a more reasonable result, (3) alignments based on locally conserved
patterns found in the same order in the sequences, and (4) use of statistical methods and
probabilistic models of the sequences. A second computational challenge is identifying a
reasonable method of obtaining a cumulative score for the substitutions in the column of
an msa. Finally, the placement and scoring of gaps in the various sequences of an msa pre-
sents an additional challenge.

The msa of a set of sequences may also be viewed as an evolutionary history of the
sequences. If the sequences in the msa align very well, they are likely to be recently derived
from a common ancestor sequence. Conversely, a group of poorly aligned sequences share
a more complex and distant evolutionary relationship. The task of aligning a set of
sequences, some more closely and others less closely related, is identical to that of discov-
ering the evolutionary relationships among the sequences.

As with aligning a pair of sequences, the difficulty in aligning a group of sequences varies
considerably with sequence similarity. On the one hand, if the amount of sequence varia-
tion is minimal, it is quite straightforward to align the sequences, even without the assis-
tance of a computer program. On the other hand, if the amount of sequence variation is
great, it may be very difficult to find an optimal alignment of the sequences because so
many combinations of substitutions, insertions, and deletions, each predicting a different
alignment, are possible.

The availability of a subset of the many multiple sequence alignment programs is shown
in Table 4.1. A flowchart illustrating the considerations to be made in choosing an align-
ment method is shown on page 144.

When dealing with a sequence of unknown function, the presence of similar domains in
several similar sequences implies a similar biochemical function or structural fold that may
become the basis of further experimental investigation. A group of similar sequences may
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Web sites and program sources for multiple sequence alignment

Name

Source

Reference

Global alignments including progressive

CLUSTALW or CLUSTALX (latter has
graphical interface)
MSA

PRALINE

Iterative and other methods
DIALIGN segment alignment
MultAlin

PRRP progressive global alignment
(randomly or doubly nested)
SAGA genetic algorithm

Local alignments of proteins

Aligned Segment Statistical Evaluation
Tool (Asset)

BLOCKS Web site

eMOTIF Web server

GIBBS, the Gibbs sampler statistical
method

HMMER hidden Markov model software

MACAW, a workbench for multiple
alignment construction and analysis

MEME Web site, expectation
maximization method

Profile analysis at UCSD*¢
SAM hidden Markov model Web site

FTP to ftp.ebi.ac.uk/pub/software>¢

http://www.psc.edu/®

http://www.ibc.wustl.edu/ibc/msa.html®

FTP to fastlink.nih.gov/pub/msa

http://mathbio.nimr.mrc.ac.uk/~jhering/
praline

http://www.gsf.de/biodv/dialign.html

http://protein.toulouse.inra.fr/multalin.
html

ftp.genome.ad.jp/pub/genome/saitama-
cc

http://igs-server.cnrs-mrs.fr/~
cnotred/Projects_home_page/saga_
home_page.html

FTP to ncbinlm.nih.gov/pub/neuwald/
asset

http://blocks.thcre.org/blocks/

http://dna.Stanford. EDU/emotif/

FTP to ncbi.nlm.nih.gov/pub/neuwald/
gibbs9_95/

http://hmmer.wustl.edu/

FTP to ncbi.nlm.nih.gov/pub/macaw

http://meme.sdsc.edu/meme/website/
http://www.sdsc.edu/projects/profile/

http://www.cse.ucsc.edu/research/comp
bio/sam.html

Thompson et al. (1994a, 1997); Higgins
et al. (1996)

Lipman et al. (1989);
Gupta et al. (1995)

Heringa (1999)

Morgenstern et al. (1996)
Corpet (1988)

Gotoh (1996)

Notredame and Higgins (1996)

Neuwald and Green (1994)

Henikoff and Henikoff (1991, 1992)

Nevill-Manning et al. (1998)

Lawrence et al. (1993); Liu et al. (1995);
Neuwald et al. (1995)

Eddy (1998)

Schuler et al. (1991)

Bailey and Elkan (1995);
Grundy et al. (1996, 1997); Bailey
and Gribskov (1998)

Gribskov and Veretnik (1996)

Krogh et al. (1994); Hughey and Krogh
(1996)

? Lists of additional Web sites for msa are maintained at: http://www.ebi.ac.uk/biocat/, http://www.hgmp.mrc.ac.uk/Regis-

tered/Menu/prot-mult.html, http://www.hum-molgen.de/BioLinks/Biocomp.html, http://biocenter.helsinki.fi/bi/rnd/biocomp/.
Reviews on the performance of msa software are given in McClure et al. (1994; progressive alignment methods), Gotoh (1996) and
Thompson et al. (1999), a review of Web sites is given in Briffeuil et al. (1998) and a review on iterative algorithms is given in Hiro-
sawa et al. (1995) and Gotoh (1999). The performance of msa programs is commonly assessed by comparing the computed msa with
a structural alignment of the proteins and by other objective methods (Notredame et al. 1998). Many of these programs are computa-
tionally complex and must be set up on a local site.

®The Biomedical Supercomputing facility at the University of Pittsburgh Supercomputing Facility provides accounts (see
http://www.psc.edu/biomed/seqanal/grants.html) that provide access to several different versions of MSA and profile analysis. MSA 50
150 will align no more than 50 sequences each less than 150 residues long, MSA 25 500 will align no more than 25 sequences each less
than 200 residues long, and MSA10 1000 will align no more than 10 sequences each less than 1000 long.

¢ The MSA server at the University of Washington will take up to 8 sequences, each less than 500 long.

4 CLUSTALW is also available as freeware that runs on PCs and Macintosh computers from the same FTP site.

¢ Profile generating programs are available by FTP from ftp.sdsc.edu/pub/sdsc/biology and are included in the Genetics Computer
Group suite of programs (http://www.gcg.com/), although the most recent features of Gribskov and Veretnik (1996) are not included.

define a protein family that may share a common biochemical function or evolutionary
origin. Similar proteins have been organized into databases of protein families that are
described in Chapter 9.
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GENOME SEQU

One application of multiple sequence alignment algorithms is in genome sequencing pro-
jects discussed in Chapter 2. Instead of cloning and arranging a very large number of frag-
ments of a large DNA molecule, and then moving along the molecule and sequencing the
fragments in order, random fragments of the large molecule are sequenced, and those that
overlap are found by a msa program. This approach enables automated assembly of large
sequences. Bacterial genomes have been quite readily sequenced by this method, and it has
also been used to assemble portions of the Drosophila and human genomes at Celera
Genomics (Weber and Myers 1997 and see Chapter 10).

The requirements for a msa program for genome projects differ in several respects from
those for general sequence analysis. First, the sequences are fragments of the same large
sequence molecule, and the sequences of overlapping fragments should be the same except
for sequence copying and reading errors, which may introduce the equivalent of substitu-
tions and insertions/deletions between the compared fragments. Thus, there should be one
correct alignment that corresponds to that of the genome sequence instead of a range of
possibilities. Second, the sequences may be from one DNA strand or the other and hence
the complements of each sequence must also be compared. Third, sequence fragments will
usually overlap, but by an unknown amount, and, in some cases, one sequence may be
included within another. Finally, all of the overlapping pairs of sequence fragments must
be assembled into a large, composite genome sequence, taking into account any redundant
or inconsistent information. Interested readers may wish to consult a description of the
type of methodology (Myers 1995 and see Chapter 10) and a comparison of the methods,
including several commercial packages that are useful for managing the sequence data
from laboratory sequencing projects (Miller and Powell 1994). The Institutue of Genome
Research (http://www.tigr.org/) has also developed and made available software and meth-
ods for genome assembly and analysis.

Just as the alignment of a pair of nucleic acid or protein sequences can reveal whether or
not there is an evolutionary relationship between the sequences, so can the alignment of
three or more sequences reveal relationships among multiple sequences. Multiple sequence
alignment of a set of sequences can provide information as to the most alike regions in the
set. In proteins, such regions may represent conserved functional or structural domains.

If the structure of one or more members of the alignment is known, it may be possible
to predict which amino acids occupy the same spatial relationship in other proteins in the
alignment. In nucleic acids, such alignments also reveal structural and functional relation-
ships. For example, aligned promoters of a set of similarly regulated genes may reveal con-
sensus binding sites for regulatory proteins. Methods for finding such sites in nucleic acid
sequences are discussed in Chapter 8.

Another use for consensus information retrieved from a multiple sequence alignment is
for the prediction of specific probes for other members of the same group or family of sim-
ilar sequences in the same or other organisms. There are both computer and molecular
biology applications. Once a consensus pattern has been found, database searching pro-
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grams (Chapter 7) may be used to find other sequences with a similar pattern. In the lab-
oratory, a reasonable consensus of such patterns may be used to design polymerase chain
reaction (PCR) primers for amplification of related sequences.

Once the msa has been found, the number or types of changes in the aligned sequence
residues may be used for a phylogenetic analysis. The alignment provides a prediction as
to which sequence characters correspond. Each column in the alignment predicts the
mutations that occurred at one site during the evolution of the sequence family, as illus-
trated in Figure 4.1. Within the column are original characters that were present early, as
well as other derived characters that appeared later in evolutionary time. In some cases, the
position is so important for function that mutational changes are not observed. It is these
conserved positions that are useful for producing an alignment. In other cases, the position
is less important, and substitutions are observed. Deletions and insertions may also be
present in some regions of the alignment. Thus, starting with the alignment, one can hope
to dissect the order of appearance of the sequences during evolution.

seqA N o F L S
seqB N o F - 8
seqC N K Y L S
seqD N o Y L S
NYLS NKYLS NFS NFLS
+K -L
YioF

Figure 4.1. The close relationship between msa and evolutionary tree construction. Shown is a short
section of one msa of four protein sequences including conserved and substituted positions, an
insertion (of K) and a deletion (of L). Below is a hypothetical evolutionary tree that could have gen-
erated these sequence changes. Each outer “branch” in the tree represents one of the sequences. The
outer branches are also referred to as “leaves.” The deepest, oldest branch is that of sequence D, fol-
lowed by A, then by B and C. The optimal alignment of several sequences can thereby be thought of
as minimizing the number of mutational steps in an evolutionary tree for which the sequences are
the outer branches or leaves. The mathematical solution to this problem was first outlined by
Sankoff (1975). Fast multiple sequence alignment programs that are tree-based have since been
developed (Ravi and Kececioglu 1998). However, such an approach depends on knowing the evolu-
tionary tree to perform an alignment, and often this is not the case. Usually, pair-wise alignments
are generated first and then used to predict the tree. In this example, the alignment could be
explained by several different trees, including the one shown, following one of several types of anal-
yses described in Chapter 6. The sequences then become the outer leaves of the tree, and the inner
branches are constructed by this analysis.
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METHODS
Choose Yes Perform
three or global
more alignment of
sequences.! sequences.?

Translate
into protein
sequences.
— ]
Predict Make a
gene profile
structure. or PSSM
representation
of the
alignment.
Analyze for Analyze promoter
patterns, regions, intron-exon Produce a
repeats, etc., boundaries, etc., as hidden |
as described » - described in Chapter 8. Markov
in Chapters : model. || Yes
2 and 10. l Yes
Y
Analyze for secondary Search for
structure as described blocks.6
in Chapter 5.

1. The sequence chosen for analysis may already be known to be similar on the basis of pair-wise align-
ments (Chapter 2), but sequences related by other criteria may also be used. Complex features of the
sequences, including repeated or low-complexity regions that interfere with alignments, can be ana-
lyzed as described in Chapters 2 and 7. The flowchart describes the production of four classes of mul-
tiple sequence alignment.

a. A global alignment includes the entire range of each sequence in the alignment, and is usually pro-
. duced by extensions to the dynamic programming global alignment algorithm that is used for
aligning pairs of sequences, but other methods are also used.

b. A sequence block is an alignment of common patterns in protein sequences that includes matches
and mismatches in each column found by using pattern-finding algorithms, but no gaps (inser-
tions and deletions) are present.

c. An alignment of common patterns in protein sequences that includes matches, mismatches, inser-
tions, and deletions may be used to make a type of scoring matrix called a profile.

d. A hidden Markov model is a probabilistic model of a global alignment of protein sequences or of
a conserved local region (similar to a sequence profile) in those sequences that includes matches,
mismatches, insertions, and deletions. The model is “trained” to represent the set of sequences.
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Methods for finding common patterns in DNA sequences are discussed in Chapter 8.

2. Examples of global alignment, as well as other programs from which to choose, are given in the glob-
al alignments and iterative and other methods sections of Table 4.1.

3. cDNA sequences of the same gene from a group of organisms may be multiply aligned by a global
method so that synonymous (i.e., change the amino acid) and nonsynonymous (i.e., do not change
the amino acid) sequences may be analyzed, as described in Chapter 6 (see also note 2).

4. A convincing alignment should include a series of columns in which a majority of the sequences have
the same amino acid or an amino acid that is a conservative substitution for that amino acid, with rel-
atively few examples of other substitutions or gaps in these columns. These columns of alike amino
acids should be found throughout the alignment, often clustered into domains. There may also be
variable regions in the alignment that represent sequences that diverged more during the evolution of
the protein family.

5. This decision rests on whether or not there are enough sequences on which to build a hidden Markov
model of the entire alignment or of a well-defined region in the alignment (a profile hidden Markov
model). For sequences that are related but show considerable variations in many columns, as many as
100 sequences may be needed to produce a hidden Markov model of the alignment. This number is
reduced to approximately 25-50 if there is less variation among the sequences. A scoring matrix rep-
resenting the sequence variation found in each column of the alignment may also be made. These
matrices may accommodate gaps in the alignment (a profile or HMM profile) or may not include gaps
(position-specific scoring matrix).

6. For finding patterns common to the sequences, pattern-searching algorithms and statistical methods
are used. The former search for a set of matched sequence characters that are present in the sequences.
The latter perform an exhaustive analysis of sequence “windows” in the sequences to find the most

alike amino acid patterns by the expectation maximization (EM) or Gibbs sampling algorithms. These
methods are described in the text.

MULTIPLE SEQUENCE ALIGNMENT AS AN EXTENSION OF SEQUENCE PAIR

The dynamic programming algorithm described in Chapter 2 provides an optimal align-
ment of two sequences. In the program MSA (Lipman et al. 1989), application of the glob-
al alignment algorithm has been extended to provide an optimal alignment of a small
number of sequences greater than two. Gupta et al. (1995) have shown, however, that MSA
rarely produces a provable optimal alignment. The number of sequences that can be
aligned is limited because the number of computational steps and the amount of memory
required grow exponentially with the number of sequences to be analyzed. This limitation
means that the program has somewhat limited application to a small number of sequences.

Recall that the dynamic programming method of sequence alignment between two
sequences builds a scoring matrix where each position provides the best alignment up to
that point in the sequence comparison. The number of comparisons that must be made to
fill this matrix without using any short cuts and excluding gaps is the product of the length
of the two sequences. Imagine extending this analysis to three or more sequences. For three
sequences, instead of the two-dimensional matrix for two sequences, think of the lattice of
a cube that is to be filled with calculated dynamic programming scores. Scoring positions
on three surfaces of the cube will represent the alignment values between a pair of the
sequences, ignoring the third sequence, as illustrated in Figure 4.2. In MSA, positions
inside the lattice of the cube are given values based on the sum of the initial scores of the
three pairs of sequences.
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For three protein sequences each 300 amino acids in length and excluding gaps, the
number of comparisons to be made by dynamic programming is equal to 300> = 2.7 X
107, whereas only 300> = 9 X 10* is required for two sequences of this length. This num-
ber is sufficiently small that alignment of three sequences by this method is practical. For
alignment of more than three sequences, one has to imagine filling an N-dimensional space
or hypercube. The number of steps and memory required for a 300-amino-acid sequence
(300", where N is the number of sequences) then becomes too large for most practical pur-
poses, and it is necessary to find a way to reduce the number of comparisons that must be
made without compromising the attempt to find an optimal alignment. Fortunately, Car-
rillo and Lipman (1988) found such a method, called the sum of pairs, or SP method. Since
the publication of the MSA program, Gupta et al. (1995) have substantially reduced the
memory requirements and number of steps required. The enhanced version of MSA is
available by anonymous FTP from fastlink.nih.gov/pub/msa.

The basic idea is that a multiple sequence alignment imposes an alignment on each of
the pairs of sequences. The heavy arrow in Figure 4.2 represents the path followed in the
cube to find a msa for three sequences, but the msa can be projected on to the sides of the
cube, thus defining an alignment for each pair of sequences. The alignments found for each
pair of sequences likewise impose bounds on the location of the msa within the cube, and
thus defines the number of positions within the cube that have to be evaluated. Pair-wise
alignments are first computed between each pair of sequences. Next, a trial msa is pro-
duced by first predicting a phylogenetic tree for the sequences (Saitou and Nei 1987; see
Chapter 6 for the neighbor-joining method of tree construction), and the sequences are

sequence B

sequence A

Figure 4.2. Alignment of three sequences by dynamic programming. Arrows on the surfaces of the
cube indicate the direction for filling in the scoring matrix for pairs of sequences, A with B, etc., per-
formed as previously described. The alignment of all three sequences requires filling in the lattice of
the cube space with optimal alignment scores following the same algorithm. The best score at each
interior position requires a consideration of all possible moves within the cube up to that point in
the alignment. The trace-back matrix will align positions in all three sequences including gaps.
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then multiply aligned in the order of their relationship on the tree. This method is used by
other programs described below (e.g., PILEUP, CLUSTALW) and provides a heuristic
alignment that is not guaranteed to be optimal. However, the alignment serves to provide
a limit to the space within the cube within which optimal alignments are likely to be found.
In Figure 4.3, the green area on the left surface of the cube is bounded by the optimal align-
ment of sequences B and C and a projection of the heuristic alignment for all three
sequences. The orange and blue areas are similarly defined for other sequence pairs. The
dark gray volume within the cube is bounded by projections from each of the three surface
areas. For more sequences, a similar type of analysis of bounds may be performed in the
corresponding higher-order space.

In practice, MSA calculates the multiple alignment score within the cube lattice by
adding the scores of the corresponding pair-wise alignments in the msa. This measure is
known as the SP measure (for sum of pairs), and the optimal alignment is based on obtain-
ing the best SP score. These scores may or may not be weighted so as to reduce the influ-
ence of more closely related sequences in the msa. The Dayhoff PAM250 matrix and an
associated gap penalty are used by MSA for aligning protein sequences. MSA uses a con-
stant penalty for any size of gap and scores gaps according to the scheme illustrated in Fig-
ure 4.4 (Altschul 1989; Lipman et al. 1989). MSA calculates a value € for each pair of
sequences that provides an idea of how much of a role the alignment of those two
sequences plays in the msa. € for a given sequence pair is the difference between the score
of the alignment of that pair in the msa and the score of the optimal pair-wise alignment.
The bigger the value of €, the more divergent the msa from the pair-wise alignment and the
smaller the contribution of that alignment to the msa. For example, if an extra copy of one

Figure 4.3. Bounds within which an optimal alignment will be found by MSA for three sequences.
For MSA to find an optimal alignment among three sequences by the DP algorithm, it is only nec-
cessary to calculate optimal alignment scores within the gray volume. This volume is bounded on
the one side by the optimal alignments found for each pair of sequences, and on the other by a
heuristic multiple alignment of the sequences. The colored areas on each cube surface are two-
dimensional projections of the gray volume.
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Natural gap cost  Quasi-natural gap cost

sequence 1 X — — =X
seqguence 2 X X - X X 3 4
sequence 3 X X X X X

Figure 4.4. Method of scoring gap penalties by the msa program MSA. x indicates aligned residues,
which may be a match or a mismatch, and - indicates a gap. In this example, each gap cost is 1,
regardless of length. The “natural” gap cost is the sum of the number of gaps in all pair-wise com-
binations (sequences 1 and 2, 1 and 3, and 2 and 3). Note that the alignment of a gap of three in
sequence 1 with a gap of length one in sequence 2 scores as gap of 1 because the gap in sequence 1
is longer. The quasi-natural gap cost is the natural cost for the gap plus an additional value for any
gap that begins and ends within another. In this example, there is an additional penalty score for the
presence of a single gap in sequence 2 that falls within a larger gap in sequence 1. The inclusion of
this extra cost for a gap has little effect on the alignments produced but provides an enormous reduc-
tion in the amount of information that must be maintained in the DP scoring matrix (Altschul
1989), thus making possible the simultaneous alignment of more sequences by MSA.

of the sequences is added to the alignment project, then € for sequence pairs that do not
include that sequence will increase, indicating a lesser role because the contributions of
that pair have been out-voted by the alike sequences (Altschul et al. 1989). Weighting the
sequence pairs is designed to get around the common difficulty that some pairs in most
sets of sequences are similar. Another score 3 is the sum of the €s and gives an indication
of the degree of divergence among the sequences—closely related sequences will have low
es and ds and distantly related sequences will have high €s and 8s.

The MSA program avoids the bias in an alignment due to alike sequences by weighting
the pair-wise scores before they are added to give the SP score. These weights are deter-
mined by using the predicted tree of the sequences discussed above. The pair-wise scores
between all sequence pairs are adjusted to reduce the influence of the more unlike sequence
pairs that occupy more distant “leaves” on the evolutionary tree (i.e., by sequences that are
joined by more branches) based on the argument that these sequence pairs provide less
useful information for computing the msa. This scheme is different from that used by
other msa programs (see below), which generally increase the weight of scores from more
distant sequences because these sequences represent greater divergence in the evolutionary
tree (see Vingron and Sibbald 1993).

In using MSA, several additional practical considerations should be considered
(described on MSA Web sites given in Table 4.1): (1) MSA is a heavy user of machine
resources and is limited to a small number of sequences of relatively short lengths. (2) In
the UNIX command line mode of the program, there are options that allow users to spec-
ify gap costs, force the alignment of certain residues, specify maximum values for e, and
tune the program in other ways. (3) When the output shows that some € are greater than
the respective maximum ¢, a better alignment usually can be found by increasing the max-
imum € in question. However, increasing € also increases the computational time. (4) If
the program bogs down, try dividing the problem into several smaller ones.

Below is an example from http://www.psc.edu of using MSA to align a group of phos-
pholipase a2 proteins. Note that the program uses the FASTA sequence format. The fol-
lowing steps are used:

1. Calculate all pair-wise alignment scores (alignment costs).
2. Use the scores (costs) to predict a tree.
3. Calculate pair weights based on the tree.
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As discussed above, the SP method provides a way to score the msa by summing the scores
of all possible combinations of amino acid pairs in a column of a msa. The method
assumes a model for evolutionary change in which any of the sequences could be the ances-
tor of the others, as illustrated in Figure 4.5. This figure also illustrates a difficulty with the
SP method when a substitution table of log odds scores such as BLOSUMS62 is used for
protein sequences (see Durbin et al. 1998, pp. 139-140). Shown is the effect of adding a
small number of amino acid subsitutions to a column that initially has all matching amino
acids. Scores in the msa column decrease rapidly as the number of mismatched residue
pairs increases. For a larger number of sequences than five with all N, or with one or two
C substitutions, these decreases should be greater because there will be more N-N matched
pairs relative to mismatched N-C pairs. However, the reverse is true with the SP method
of scoring. For n sequences, the number of combinations of pairs in a column is

Sequence Column A ColumnB ColumnC
1 [\ T [\ P N
2 [\ D N, N
3 Ll [\ P N, N
4 L. | P \ C
5 L. N, Coviviiiieenn, C
N
/*\
Pl A NS
/’ I\ \\
7’ 1\ ~,
,/’ / \ S
N L
LY ] \ g
L ] \ Ll
VR X
L I SO U |
N N \ 7
LN AP N N ]
\I Ay
| )
N N
Column A Column B Column C

No. of N-N matched pairs (each scores 6):

10 6 4

No. of N-C matched pairs (each scores —3):

0 4 6

BLOSUM®62 score :
60 24 6

Figure 4.5. The SP model for scoring a msa. This model represents one method for optimizing the
msa by maximizing the number of matched pairs (or minimizing the cost or number of mismatched
pairs) summed over all columns in the msa. Shown first are three columns of a five-sequence msa
with all matched (A), four matched and one mismatched (B), or three matched and two mismatched
(C) sequence characters. The SP method of calculating the cumulative scores for columns of a msa
is then illustrated by a graph with the five sequences as vertices and representing the ten possible
sequence pair-wise sequence comparisons. Solid lines represent a matched pair and dotted lines a
mismatched pair. Shown are the BLOSUMSG62 scores for each column calculated by the SP method.
(Adapted from Altschul 1989.)
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Figure 4.6. Alternative methods for scoring a column in the msa (Altschul 1989b). The variations in column C of Fig. 4.5 are
shown modeled by a phylogenetic tree (A) and a simplified phylogenetic tree called a star phylogeny (B) where one of the
sequences is treated as the ancestor of all the others (instead of treating them as all equally possible ancestors as in the original
sum of pairs scoring method).

n(n — 1)/2. If all are amino acid N, as in column A, then the BLOSUMBS62 score for the col-
umn is 6 X n(n — 1)/2. If there is one C in the column, as in column B, then n — 1 matched
N-N pairs will be replaced by n—1 mismatched N-C pairs, giving a score of 9(n — 1) less.
The score for one C in the column divided by that for zero Cs is 9(n — 1)/[6n(n — 1)/2]
= 3/n. For three sequences, the relative difference is 1, whereas for six sequences, the rela-
tive difference is 2. As more sequences are present in the column, the relative difference
increases, not in agreement with expectation. Hence, the SP method is not providing a rea-
sonable result when this type of scoring matrix is used. Two other methods for scoring a
msa (Altschul 1989) have been described and are illustrated in Figure 4.6. The first is a tree-
based method. Because a phylogenetic tree describing the relationships among the
sequences is found by the MSA program, the sum of the lengths of the tree branches can
be calculated using the substitutions in the column of the msa. Alternatively, a simplified
tree with one of the sequences as the ancestor of all of the others (a star phylogeny) can also
be used (see Chapter 6). msa programs using these methods have not been implemented.
Other scoring methods include information content (see p. 195) and a graph-based
method called the trace method (Kececioglu 1993). A novel branch-and-cut algorithm for
msa has been developed based on the trace method (Kececioglu et al. 2000). Other meth-
ods of scoring and producing an alignment guided by a tree are described below.

The MSA program described above for obtaining an optimal alignment of multiple
sequences is limited to three sequences or to a small number (six to eight) of relatively
short sequences. Progressive alignment methods use the dynamic programming method to
build a msa starting with the most related sequences and then progressively adding less-
related sequences or groups of sequences to the initial alignment (Waterman and Perlwitz
1984; Feng and Doolittle 1987, 1996; Thompson et al. 1994a; Higgins et al. 1996). Rela-
tionships among the sequences are modeled by an evolutionary tree in which the outer
branches or leaves are the sequences (Fig. 4.7). The tree is based on pair-wise comparisons
of the sequences using one of the phylogenetic methods described in Chapter 6. Progeni-
tor sequences represented by the inner branches of the tree are derived by alignment of the
outermost sequences. These inner branches will have uncertainties where positions in the



CLUSTALW

MULTIPLE SEQUENCE ALIGNMENT =& 153

NYLS NKYLS NFS NFLS

NK/-YLS

N K/-Y/F L/-8

Figure 4.7. Progressive sequence alignment. Sequences are represented as the outermost branches
(leaves) on an evolutionary tree. The most closely related sequences are first aligned by dynamic pro-
gramming, providing a representation of ancestor sequences in deeper branches with uncertainties
where amino acids have been substituted or positioned opposite a gap. These sequences are the same
as those shown in EVMSA. The challenge to the msa method is to utilize an appropriate combina-
tion of sequence weighting, scoring matrix, and gap penalties so that the correct series of evolution-
ary changes may be found.

outermost sequences are dissimilar, as illustrated in Figure 4.7. Two examples of programs
that use progressive methods are CLUSTALW and the Genetics Computer Group program
PILEUP.

CLUSTAL has been around for more than 10 years, and the authors have done much to
support and improve the program (Higgins and Sharp 1988; Thompson et al. 1994a; Hig-
gins et al. 1996). CLUSTALW is a more recent version of CLUSTAL with the W standing
for “weighting” to represent the ability of the program to provide weights to the sequence
and program parameters, and CLUSTALX provides a graphic interface (see Table 4.1).
These changes provide more realistic alignments that should reflect the evolutionary
changes in the aligned sequences and the more appropriate distribution of gaps between
conserved domains.

CLUSTAL performs a global-multiple sequence alignment by a different method than
MSA, although the initial heuristic alignment obtained by MSA is calculated the same way.
The steps include: (1) Perform pair-wise alignments of all of the sequences; (2) use the
alignment scores to produce a phylogenetic tree (for an explanation of the neighbor-join-
ing method that is used, see Chapter 6); and (3) align the sequences sequentially, guided
by the phylogenetic relationships indicated by the tree. Thus, the most closely related
sequences are aligned first, and then additional sequences and groups of sequences are
added, guided by the initial alignments to produce a msa showing in each column the
sequence variations among the sequences. The initial alignments used to produce the guide
tree may be obtained by a fast k-tuple or pattern-finding approach similar to FASTA that
is useful for many sequences, or a slower, full dynamic programming method may be used.
An enhanced dynamic programming alignment algorithm (Myers and Miller 1988; see
book Web site) is used to obtain optimal alignment scores. For producing a phylogenetic
tree, genetic distances between the sequences are required. The genetic distance is the
number of mismatched positions in an alignment divided by the total number of matched
positions (positions opposite a gap are not scored).

As with MSA, sequence contributions to the msa are weighted according to their rela-
tionships on the predicted evolutionary tree. A rooted tree with known branch lengths of
which the sequences are outer branches (leaves) is examined (see Chapter 6). Weights are
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based on the distance of each sequence from the root, as illustrated in Figure 4.8. The align-
ment scores between two positions in the msa are then calculated using the resulting
weights as multiplication factors.

The scoring of gaps in a msa has to be performed in a different manner from scoring
gaps in a pair-wise alignment. As more sequences are added to a profile of an existing msa,
gaps accumulate and influence the alignment of further sequences (Thompson et al. 1994b;
Taylor 1996). CLUSTALW calculates gaps in a novel way designed to place them between
conserved domains. When Pascarella and Argos (1992; see book Web site) aligned
sequences of structurally related proteins, the gaps were preferentially found between sec-
ondary structural elements. These authors also prepared a table of the observed frequency

A. Calculation of sequence weights

o Weighting factor
— . A 02+03/2=0.35
0.3
| 01 B 0.1+0.3/2=0.25
0.5 C 05

B. Use of sequence weights
Column in alignment 1

Sequence A (weighta)  ......... Kioronnen

Sequence B (weightb) . loveveens

Column in alignment 2
Sequence C (weightc)  ......... Locorrnen.
Sequence D (weightd)  ......... Voo

Score for matching these two column in an msa =

[axcxscore (KL) +
a x dx score (K\V) +
b x ¢ x score (I,L) +
bxdxscore(,V)]/4

Figure 4.8. Weighting scheme used by CLUSTALW (Higgins et al. 1996). (A) Sequences that arise
from a unique branch deep in the tree receive a weighting factor equal to the distance from the root.
Other sequences that arise from branches shared with other sequences receive a weighting factor that
is less than the sum of the branch lengths from the root. For example, the length of a branch com-
mon to two sequences will only contribute one-half of that length to each sequence. Once the spe-
cific weighting factors for each sequence have been calculated, they are normalized so that the largest
weight is 1. As CLUSTALW aligns sequences or groups of sequences, these fractional weights are
used as multiplication factors in the calculation of alignment scores. (B) Ilustration of using
sequence weights for aligning two columns in two separate alignments. Note that this sequence
weighting scheme is the opposite to that used by MSA, because the more distant a sequence from the
others, the higher the weight given. For a comparison of additional weighting schemes, see Vingron
and Sibbald (1993).
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of gaps next to each amino acid in these regions. CLUSTALW uses the information in this
table and also attempts to locate what may be the corresponding domains by appropriate
gap placement in the msa. Like other alignment programs, CLUSTAL uses a penalty for
opening a gap in a sequence alignment and an additional penalty for extending the gap by
one residue. These penalties are user-defined (defaults are available). Gaps found in the
initial alignments remain fixed. New gaps introduced as more sequences are added also
receive this same gap penalty, even when they occur within an existing gap, but the gap
penalties for an alignment are then modified according to the average match value in the
substitution matrix, the percent identity between the sequences, and the sequence lengths
(Higgins et al. 1996). These changes are attempts to compensate for the scoring matrix,
expected number of gaps (alignment with more identities should have fewer gaps), and dif-
ferences in sequence length (should limit placement of gaps if one sequence shorter).
Tables of gaps are then calculated for each group of sequences to be aligned to confine
them to less conserved regions in the alignment. Gap penalties are decreased where gaps
already occur (another method for achieving this same result is to enhance the scores of
more closely matching regions on the alignment as described in Taylor 1996), increased in
regions adjacent to already gapped regions, decreased within stretches of hydrophilic
regions (amino acids DEGKNQPRS), and increased or decreased according to the table in
Pascarella and Argos (1992). These rules are most useful when a correct alignment of some
of the sequences is already known. The CLUSTALW algorithm and the results of using the
above sequence weighting gap adjustment method are illustrated in Figure 4.9.
CLUSTALW also has options for adding one or more additional sequences with weights
or an alignment to a existing alignment (Higgins et al. 1996). Once an alignment has been
made, a phylogenetic tree may be made by the neighbor-joining method, with corrections
for possible multiple changes at each counted position in the alignment (see Chapter 6).
The predicted trees may also be displayed by various programs described in Chapter 6.

PILEUP is the msa program that is a part of the Genetics Computer Group package of
sequence analysis programs, owned since 1997 by Oxford Communications, and is widely
used due to the popularity and availability of this package. PILEUP uses a method for msa
that is very similar to CLUSTALW. The sequences are aligned pair-wise using the Needle-
man-Wunsch dynamic programming algorithm, and the scores are used to produce a tree
by the unweighted pair-group method using arithmetic averages (UPGMA; Sneath and
Sokal 1973 and see Chapter 6). The resulting tree is then used to guide the alignment of the
most closely related sequences and groups of sequences. The resulting alignment is a glob-
al alignment produced by the Needleman-Wunsch algorithm. Standard scoring matrices
and gap opening/extension penalties are used. Unfortunately, there have not been any
recent enhancements of this program such as gap modifications or sequence weighting
comparable to those introduced for CLUSTALW. As with other progressive alignment msa
programs, PILEUP does not guarantee an optimal alignment.

Problems with Progressive Alignment

The major problem with progressive alignment programs such as CLUSTAL and PILEUP
is the dependence of the ultimate msa on the initial pair-wise sequence alignments. The
very first sequences to be aligned are the most closely related on the sequence tree. If these
sequences align very well, there will be few errors in the initial alignments. However, the
more distantly related these sequences, the more errors will be made, and these errors will
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Figure 4.9. A msa of seven globins by CLUSTALW. The protein identifiers are from the SwissProt database. The amino acid
subsitution matrix was the Dayhoff PAM250 matrix, and gap penalties were varied to emphasize conserved ungapped regions.
The approximate and known locations of seven a-helices in the structure of this group are shown in boxes. (Reprinted, with
permission, from Higgins et al. 1996 [copyright Academic Press].)

be propagated to the msa. There is no simple way to circumvent this problem. A second
problem with the progressive alignment method is the choice of suitable scoring matrices
and gap penalties that apply to the set of sequences (Higgins et al. 1996).

For the difficult task of aligning more distantly related sequences, using Bayesian meth-
ods such as hidden Markov models (HMMs) may be useful. For more closely related
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sequences, CLUSTALW is designed to provide an adequate alignment of a large number of
sequences and provide a very good indication of the domain structure of those sequences.

The major problem with the progressive alignment method described above is that errors
in the initial alignments of the most closely related sequences are propagated to the msa.
This problem is more acute when the starting alignments are between more distantly relat-
ed sequences. Tterative methods attempt to correct for this problem by repeatedly realign-
ing subgroups of the sequences and then by aligning these subgroups into a global align-
ment of all of the sequences. The objective is to improve the overall alignment score, such
as a sum of pairs score. Selection of these groups may be based on the ordering of the
sequences on a phylogenetic tree predicted in a manner similar to that of progressive align-
ment, separation of one or two of the sequences from the rest, or a random selection of the
groups. These methods are compared in Hirosawa et al. (1995).

MultAlin (Corpet 1988) recalculates pair-wise scores during the production of a pro-
gressive alignment and uses these scores to recalculate the tree, which is then used to refine
the alignment in an effort to improve the score. The program PRRP (Table 4.1) uses iter-
ative methods to produce an alignment. An initial pair-wise alignment is made to predict
a tree, the tree is used to produce weights for making alignments in the same manner as
MSA except that the sequences are analyzed for the presence of aligned regions that include
gaps rather than being globally aligned, and these regions are iteratively recalculated to
improve the alignment score. The best scoring alignment is then used in a new cycle of cal-
culations to predict a new tree, new weights, and new alignments, as illustrated in Figure
4.10. The process is repeated until there is no further increase in the alignment score
(Gotoh 1994, 1995, 1996).

The program DIALIGN (see Table 4.1) finds an alignment by a different iterative
method. Pairs of sequences are aligned to locate aligned regions that do not include gaps,
much like continuous diagonals in a dot matrix plot. Diagonals of various lengths are iden-
tified. A consistent collection of weighted diagonals that provides an alignment which is a
maximum sum of weights is then found.

Additional methods that use iterative procedures are described below.

Genetic Algorithm

The genetic algorithm is a general type of machine-learning algorithm that has no direct
relationship to biology and that was invented by computer scientists. The method has been
recently adapted for msa by Notredame and Higgins (1996) in a computer program pack-
age called SAGA (Sequence Alignment by Genetic Algorithm; see Table 4.1). Zhang and
Wong (1997) have developed a similar program. The method is of considerable interest
because the algorithm can find high-scoring alignments as good as those found by other
methods. Similar genetic algorithms have been used for RNA sequence alignment
(Notredame et al. 1997) and for prediction of RNA secondary structure (Shapiro and
Navetta 1994). Although the method is relatively new and not used extensively, it likely
represents the first of a series of sequence analysis programs that produce alignments by
attempted simulation of the evolutionary changes in sequences,

The basic idea behind this method is to try to generate many different msas by rear-
rangements that simulate gap insertion and recombination events during replication in
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Figure 4.10. The iterative procedures used by PRRP to compute a multiple sequence alignment.
(Reprinted, with permission, from Gotoh 1996 [copyright Academic Press].)

order to generate a higher and higher score for the msa. The alignments are not guaran-
teed to be optimal or to be the highest scoring that is achievable (optimal alignment).
Although SAGA can generate alignments for many sequences, the program is slow for
more than about 20 sequences.

A similar approach for obtaining a higher-scoring msa by rearranging an existing align-
ment uses a probability approach called simulated annealing (Kim et al. 1994). The pro-
gram MSASA (Multiple Sequence Alignment by Simulated Annealing) starts with a heuris-
tic msa and then changes the alignment by following an algorithm designed to identify
changes that increase the alignment score.

The success of the genetic algorithm may be attributed to the steps used to rearrange
sequences, many of which might be expected to have occurred during the evolution of the
protein family. The steps in the algorithm are as follows:

1. The sequences to be aligned (up to ~20 in number) are written in rows, as on a page,
except that they are made to overlap by a random amount of sequence, up to 50
residues long for sequences about 200 in length. The ends are then padded with gaps. A
typical population of 100 of these msas is made, although other numbers may be set.

XAXXXXXXXXX -~~~
T T XXXX XXX XXX X
R 2.9.9.9.9.9.9.0.9 Sy
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Shown is an initial msa for the genetic algorithm (1 of ~100 in number).

. The 100 initial msas are scored by the sum of pairs method, except that both natural and
quasi-natural gap-scoring schemes (Fig. 4.4) are used. Recall that the best SSP score for
a msa is the minimum one and the one that is closest to the sum of the pair-wise
sequence alignment. Standard amino acid scoring matrices and gap opening and exten-
sion penalties are used.

. These initial msas are now replicated to give another generation of msas. The half with
the lowest SSP scores are sent to the next generation unchanged. The remaining half for
the next generation are selectively chosen by lot, like picking marbles from a bag, except
that the chance for a particular choice is inversely proportional to the msa score (the
lower the score, the better the msa, therefore gives that one a greater chance of replicat-
ing). These latter one-half of the choices for the next generation are now subject to
mutation, as described in step 4 below, to produce the children of the next generation.
All members of the next-generation msas undergo recombination to make new child
msas derived from the two parents, as described in step 5 below. The relative probabil-
ities of these separate events are governed by program parameters. These parameters are
also adjusted dynamically as the program is running to favor those processes that have
been most useful for improving msa scores.

. In the mutation process, the sequence is not changed (else it would no longer be an
alignment), but gaps are inserted and rearranged in an attempt to create a better-scor-
ing msa. In the gap insertion process, the sequences in a given msa are divided into two
groups based on an estimated phylogenetic tree, and gaps of random length are insert-
ed into random positions in the alignment. Alternatively, in a “hill-climbing” version of
the procedure, the position is so chosen as to provide the best possible score following
the change.

XXXXXXXXXX XXX~ 7 XXXXXXX
XXXXXXXXXX XXX~ 7 XXXXXXX
XXXXX XXX XX SeesD XXXXXXXXX ==X
XXX XXX XXX X XXXXXXXXX ™ = X
XXXX XXX XXX XXXXXXXXX ™~ X

Shown above are random gap insertions into phylogenetically related sequences. The
first two and last three sequences comprise the two related groups in this example. x
indicates any sequence character.

Another mutational process is to move common blocks of sequence (overlapping
ungapped regions) delineated by a gap, or blocks of gaps (overlapping gaps). Some of
the possible moves are illustrated below. These moves may also be tailored to improve
the alignment score.

XXX ™ 7 XXXXX

XX = = XXXXXX

XXX ™ " XXXXX

XXXXX ™= XXX

XXXXXXXXXX XAXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
XX 7 7 XXXXXX X7 = XXXXXXX XXX = = XXXXX XX XX = XXXX
XXXXXXXXXX XXXXXXX XXX XXXXXXXXXX XAXXXXXXXXX
Starting block Whole block Split block Split block
move horizontally vertically
(guided by

phylogenetic grouping)
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5. Recombination among next-generation parent msas is accomplished by one of t
mechanisms. The first is not homology-driven. One msa is cut vertically through, a
the other msa is cut in a staggered manner that does not lose any sequence after the fr:
ments are spliced. The higher scoring of the two reciprocal recombinants is kept. T
second, illustrated below, is recombination between msas driven by conserved sequer
positions. It is driven by homology expressed as a vertical column of the same resid
and is very like standard homologous recombination.

XXGXXXXDXX
XXGX - XxXDxx
XXGXX - XxDxX
XXGXXXXD XX

Parent A
alignment

XXGXX - xDxX
XXGXXxXxxDxx
XXGXXXXDXX
XXGX - xxDxx

Parent B
alignment

XXGXX-XDxx
XXGXXXXDxX
XXGXXXXDXX
XXGX - xxDxx

Child
alignment

6. The next generation, an overlapping one of the previous one-half of the best-scor
parental msas and the mutated children, is now evaluated as in step 2, and the cycle
steps 25 is typically repeated as much as 100 times, although as many as 1000 gene
tions can be run. The best-scoring msa is then obtained.

7. The entire process of producing a set of msas for replication and mutation is repea
several times to obtain several possible msas, and the best scoring is chosen.

Hidden Markov Models of Multiple Sequence Alignment

The HMM is a statistical model that considers all possible combinations of matches,
matches, and gaps to generate an alignment of a set of sequences. A localized region of si
ilarity, including insertions and deletions, may also be modeled by an HMM. Analysis
sequences by an HMM is discussed on page 185 along with other statistical methods.

The msa method often used, especially for 10 or more sequences, is to first determ
sequence similarity between all pairs of sequences in the set. On the basis of these simil
ities, various methods are used to cluster the sequences into the most related groups or i
a phylogenetic tree.

In the group approach, a consensus is produced for each group and then used to m
further alignments between groups. Two examples of programs using the group appro

~ are the program PIMA (Smith and Smith 1992), which uses several novel alignment te

niques, and the program MULTAL described by Taylor (1990, 1996; see Table 4.1).

The tree method uses the distance method of phylogenetic analysis to arrange
sequences. The two closest sequences are then aligned, and the resulting consensus ali
ment is aligned with the next best sequence or cluster of sequences, and so on, until
alignment is obtained that includes all of the sequences. The programs PILEUP :
CLUSTALW discussed above are examples. The ALIGN set of programs (Feng and Doc
tle 1996) and the MS-DOS program by Corpet (1988) use this method. Additional ¢
grams for msa are also described in Barton (1994), Kim et al. (1994), and Morgensters
al. (1996).

Another program (Vingron and Argos 1991) aligns all possible pairs of sequences to
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ate a set of dot matrices, and the matrices are then filtered sequentially to find motifs that
provide a starting point for sequence alignment. A set of programs for interactive msa by
dot matrix analysis and other alignment techniques has also been developed (Boguski et al.
1992).

The program TREEALIGN takes the approach that multiple sequence alignments
should be done in a fashion that simultaneously minimizes the number of changes needed
during evolution to generate the observed sequence variation (Hein 1990). TREEALIGN
(also named ALIGN in the program versions) has a method for performing the alignment
and the most parsimonious tree construction at the same time. The initial steps are simi-
lar to other multiple sequence alignment methods, except for the use of a distance scale:
i.e., the sequences are aligned pair-wise and the resulting distance scores are used sequen-
tially to produce a tree, which is rearranged as more sequences are added. The sequences
are then realigned so that the same tree can be produced by maximum parsimony. Final-
ly, the tree is rearranged to maximize parsimony. The advantage to this method is the
increased use of phylogenetic analysis to improve the multiple sequence alignment.

Multiple sequence alignment programs based on the methods discussed above report a
global alignment of the sequences, including all parts of all sequences. A portion of the
alignment that is highly conserved may then be identified and a type of scoring matrix
called a profile may be produced. A profile includes scores for amino acid substitutions and
gaps in each column of the conserved region so that an alignment of the region to a new
sequence can be determined. Alternatively, the alignment may be scanned for regions that
include only substituted regions without gaps, called blocks, and these blocks may then be
used in sequence alignments.

There is also a third method for finding a localized region of sequence similarity in a set
of sequences without first having to produce an alignment. In this method, the sequences
are analyzed by pattern-searching or statistical methods. All of these methods for finding
localized sequence similarity are discussed below.

Profiles are found by performing the global msa of a group of sequences and then remov-
ing the more highly conserved regions in the alignment into a smaller msa. A scoring matrix
for the msa, called a profile, is then made. The profile is composed of columns much like a
mini-msa and may include matches, mismatches, insertions, and deletions. A tutorial on
preparing profiles by the first method, prepared by M. Gribskov, is at Web address
http://www.sdsc.edu/projects/profile/profile_tutorial.html, and the Web site at
http://www.sdsc.edu/projects/profile/ will perform a motif analysis on the University of Cal-
ifornia at San Diego Supercomputer Center. The program Profilemake can be used to pro-
duce a profile from a msa (Gribskov et al. 1987, 1990; Gribskov and Veretnik 1996). A
version of the Profilesearch program, which performs a database search for matches
to a profile, is available at the University of Pittsburgh Supercomputer Center
(http://www.psc.edu/general/software/packages/profiless/profiless.html). A special grant
application may be needed to use this facility. Profile-generating programs are available by
FTP from ftp.sdsc.edu/pub/sdsc/biology and are included in the Genetics Computer Group
suite of programs (http://www.gcg.com/), although the more recent features (Gribskov and
Veretnik 1996) are not included in GCG, v. 9.1.
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Once produced, the profile is used to search a target sequence for possible matches to
the profile using the scores in the table to evaluate the likelihood at each position. For
example, the table value for a profile that is 25 amino acids long will have 25 rows of 20
scores, each score in a row for matching one of the amino acids at the corresponding posi-
tion in the profile. If a sequence 100 amino acids in length is to be searched, each 25-
amino-acid-long stretch of sequence will be examined, 1-25, 2-26, . . . . 76—100. The first
25-amino-acid-long stretch will be evaluated using the profile scores for the amino acids
in that sequence, then the next 25-long stretch, and so on. The highest-scoring sections will
be the most similar to the profile.

The disadvantage of this method of profile extraction from an msa is that the profile
produced is only as representative of the variation in the family of sequences as the msa
itself. If several sequences in the msa are similar, the msa and the derived profile will be
biased in favor of those sequences. Methods have been devised for partially circumventing
this problem with the profile (Gribskov and Veretnik 1996), but the difficulty with the msa
itself is not easily reconciled, as discussed at the beginning of this section. Sequence weight-
ing is based on the production of a simple phylogenetic tree by distance methods; more
closely related sequences then receive a reduced weight in the profile. Another problem is
that some amino acids may not be represented in a particular column because not enough
sequences have been included. Athough absence of an amino acid may mean that the
amino acid may not occur at that position in the protein family, adding counts to such
positions generally increases the usefulness of the profile. This feature is built into the pro-
file method discussed below.

An example of the generation of a profile and the matrix representation of this profile
for a set of heat shock proteins is illustrated in Figure 4.11. The profile is similar to the log
odds form of the amino acid substitution table, such as the PAM250 and BLOSUM62

Figure 4.11.

the text.

ConsA B C D
I 8 3-2 5
T 13 19 -5 24
L 5 5-5 3
s 17 14 17 13
T 15 322 0
T 8 -112 -2
c 17 024 -1
v 11 018 -1
¢ 10 -8 15 ~11
v 7 7-3 8

Pattern identification by the profile method. A set of heat shock 70 (hsp70) proteins from a diverse group of
organisms were aligned by the Genetics Computer Group msa program PILEUP. A profile was then made from one region
in the alignment with the Genetics Computer Group program Profilemake. The profile represents the specific motif pattern
found for the chosen location shown for this set of hsp70 proteins. The first column gives the consensus amino acid at each
position in the profile. Thus, the consensus pattern is ITLSTTCVCV. This profile is used to search a target sequence for
matches to the profile. The table values are a log odds score of giving the probability of finding the amino acid in the target
sequence at that position in the profile divided by the probability of aligning the two amino acids by random chance. If a gap
must be placed in the target sequence to align the sequence with the profile, then the penalties for opening a gap and extend-
ing the gap, respectively, are subtracted. The profile itself may include gaps, in which case the penalty is reduced, as seen for
example in the row 3 of the profile table. The method of producing the substitution scores shown in the table is described in

S T V W Y Z Gap Len

2 22 21 -18 -6 4 100 100

-7 -4 14 11 10 -1 9 29 3 -28 -14 15 100 100
0
34

b
©
I
-
[ee]
=
Lte)
~

4 13 4 -4 14 12 8 -5 0 -10 10 10 -1 5 2 22 22
10 -12 29 -5 -5 6 -14 -9 12 10 0 -2 19 -8 =15 4 100 100
-1 =512 -2 7 -3 -8-6 5 7 -8 -7 16 29 9 -22 6 -4 100 100

0 5 6 -419 -4 8 5-1 2 -8 -8 7 2219 -15 4 -3 100 100
-3 11 8 -1 7 -10 1-2 1-3 -8-14 8 5 -5 14 -7 100 100

-2 2 14 -10 26 -4 9 7.3 7 -7 -7 21 10 31 -19 -5 =5 100 100
-11 6 8 -711 -10 4 3 -7 0 -11 -4 11 5 15 -22 14 -11 100 100
8 -311 120 -1 1410 4 2 8 -5 0 5 26 -24 -6 8 100 100
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matrices used for sequence alignments. The matrix is 23 columns wide, one column for
each of the 20 amino acids, plus one column for an unknown amino acid z and two
columns for a gap opening and extension penalty. There is one row for each column in the
msa. The consensus sequence, derived from the most common amino acid in each column
of the msa, is listed down the left-hand column. The scores on each row reflect the num-
ber of occurrences of each amino acid in the aligned sequences. For example, in the first
row, I, T, and V were found, with [ being the majority amino acid. The highest positive
score on each row (underlined) is in the column corresponding to the consensus amino
acid, the most negative score for an amino acid not expected at that position. These values
are derived from the log odds amino acid substitution matrix that was used to produce the
alignment, such as the log odds form of the Dayhoff PAM250 matrix. Two methods are
used to produce profile tables, the average method and the evolutionary method. The evo-
lutionary method seems somewhat better for finding family members.

In the average method, the profile matrix values are weighted by the proportion of each
amino acid in each column of the msa. For example, if column 1 in the msa has 5 Ile (I),
3 Thr (T), and 2 Val (V), then the frequency of each amino acid in this column is 0.5 I,
0.3 T, and 0.2 V. These amino acids are considered to have arisen with equal probability
from any of the 20 amino acids as ancestors. In the example in Figure 4.11, the I, T, and
V in column 1 could have arisen from any of the 20 amino acids by mutation. Suppose
that they arose from an Ile (I). The profile values in the Ile (I) column of the correspond-
ing row in the profile matrix would then use the amino acid scoring matrix values for I-],
I-T, and I-V, which are log odds scores of 5, 0, and 4 in the Dayhoff PAM250 matrix. Then
the profile value for the I column is the frequency-weighted value, or 0.5 X 5 + 0.3 X 0
+ 0.2 X 4 =33,

The profile table also includes penalties for matching a gap in the target sequence,
shown in the two right columns. All of these table values are multiplied by a constant for
convenience so that only the value of a score with one sequence relative to the score with
another sequence matters. Once a profile table has been obtained, the table may be used in
database searches for additional sequences with the same pattern (program Profilesearch)
or as a scoring matrix for aligning sequences (program Profilegap). If several profiles char-
acteristic of a protein family can be identified, the chance of a positive identification of
additional family members is greatly increased (Bailey and Gribskov 1998; also see
http://www.sdsc.edu/MEME).

The evolutionary method for producing a profile table is based on the Dayhoff model of
protein evolution (Chapter 2) (Gribskov and Veretnik 1996). The amino acids in each col-
umn of the msa are assumed to be evolving at a different rate, as reflected in the amount
of amino acid variation that is observed. As with the average model, the object is to con-
sider each of the 20 amino acids as a possible ancestor of the pattern of each column. In
the evolutionary model, the evolutionary distance in PAM units that would be required to
give the observed amino acid distribution in each column is determined. Recall that each
PAM unit represents an overall probability of 1% change in a sequence position. For exam-
ple, in the original Dayhoff PAM1 matrix for an evolutionary distance of 1 PAM unit (very
roughly 10 my), the probability of an I not changing is 0.9872, and the probabilities for
changing to a T or a V are 0.0011 and 0.0057, respectively. All of the probabilities of chang-
ing I to any other amino acid add up to 1.0000, for a combined probability of change of
1% for 1. For an evolutionary distance of n PAM, the PAM1 matrix is multiplied by itself
n times to give the expected changes at that distance. At a distance of 250 PAMs, the above
three probabilities of an I not changing or of changing to a T or V are 0.10, 0.06, and 0.15,
respectively, representing a much greater degree of change than for a shorter time, as might
be expected (Dayhoff 1978).
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Do not confuse these
probabilities of one
amino acid changing
to another in the orig-
inal Dayoff PAM250
matrix with scores
from the log odds form
of the PAM250
matrix, which have
been used up to now.
The log odds scores are
derived from the origi-
nal Dayhoff matrix by
dividing each proba-
bility of change with
the probability of a
chance matching of
the amino acids in a
sequence alignment;
ie, that the one
amino acid is not an
ancestor of the other.
These ratios are then
converted to loga-
rithms.

Thus, for the example of the msa column 1 with 5 Ile (I), 3 Thr (T), and 2 Val (V), the
object is to find what amount of PAM distance from each of the 20 amino acids as possi-
ble ancestors will generate this much diversity. This amount can be found by a formula giv-
ing the amount of information (entropy) of the observed column variation given the
expected variation in the evolutionary model,

where £, is the observed proportion of each amino acid a in the msa column and p,, is the
expected frequency of the amino acid when derived from a given ancestor amino acid. For
a given column in the msa, H is calculated for each 20 ancestor amino acids and for a large
number of evolutionary distances (PAM1, PAM2, PAM4, . . . . ). The distance that gives
the minimum value for H for each column-possible ancestor combination is the best esti-
mate of the distance that generates the column diversity from that ancestor. This analysis
provides 20 possible models (M, for a = 1,2,3, . .. 20) as to how the amino acid frequen-
cies in a column (F) may have originated. The next step in the evolutionary profile con-
struction determines the extent to which each M, predicts F by the now-familiar Bayes
conditional probability analysis.

where the prior distribution P (M,) is the given by the background amino acid frequencies
and

i.e., the product of the expected amino acid frequencies in M, raised to the power of
the fraction observed for each amino acid in the msa column, as defined above. From
P (M, | F), the weights for each of the 20 possible distributions that give rise to the msa col-
umn diversity are calculated as follows:

where W, is the weight given to M, and P (Miandom | F) 1s calculated as above using the
background amino acid distribution.
The log odds scores for the profile (Profile;) are given by:

where W,; is the weight of an ancestral amino acid a at row i in the profile, pa;; is the fre-
quency of amino acid j in the PAM amino acid distribution that best matches at row i, and
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Prandom j 18 the background frequency of amino acid j. An example of a profile matrix for
the ATP-dependent RNA helicase (“DEAD” box family) from the M. Gribskov laboratory
is given in Figure 4.12.

The usefulness of the evolutionary profile is demonstrated by the following: A profile for
the 4Fe-4S ferredoxin family was prepared from six sequences. This profile was then used
to search the SwissProt database for family members. Success was measured by the so-
called receiver operating characteristic test (ROC) plot. The fraction of scores equal to or
greater than a certain value is plotted for the true positive matches (a correct family mem-
ber identified) on the y axis and for the true negatives (unrelated sequences) on the x axis.
The area under the curve and the x axis gives the probability of correct identification. The
ROCsy is the area under the curve when it is truncated to the first 50 incorrect sequences,
and can be used as a standard for success in a database search (Gribskov and Veretnik
1996). For the ferredoxin family search, the ROCs;, 95.6 * 0.6% of the known family
members, was identified in a search of SwissProt by an evolutionary profile, whereas 93.0
* 2.0% was identified by the average profile method (Gribskov and Veretnik 1996). The
success rate was increased 0.4-0.6% by using 12 training sequences and 2-3% by using 134
training sequences.

Block Analysis

Like profiles, blocks represent a conserved region in the msa. Blocks differ from profiles in
lacking insert and delete positions in the sequences. Instead, every column includes only
matches and mismatches. Like profiles, blocks may be made by searching for a section of
an msa alignment that is highly conserved. However, aligned regions may also be found by
searching each sequence in turn for similar patterns of the same length. These patterns may
include a region with one or a few matching characters followed by a short spacer region
of unmatched characters and then by another set of a few matching characters, and so on,
until the sequences start to be different. These patterns are all of the same length, and when
they are aligned, the matching sequence characters will appear in columns. The first align-
ments of this type were performed by computer programs that searched for patterns in
sequences (Henikoff and Henikoff 1991; Neuwald and Green 1994). Several blocks locat-
ed in different regions in a set of sequences may be used to produce a msa (Zhang et al.
1994), and blocks may be constructed from a set of aligned sequence pairs (Miller et al.
1994). Statistical and Bayesian statistical methods are also used to locate the most alike
regions of sequences (Lawrence et al. 1993; Lawrence and Reilly 1990). Web sites that per-
form some of these types of analyses are discussed below and also given in Table 4.1. Final-
ly, the information content of these tables can be displayed by a sequence logo (see p. 195).
Note that few of these types of analyses presently provide a method for phylogenetic esti-
mates of the sequence relationships so that sequence weighting can be used to make the
changes more reflective of the phylogenetic histories among the sequences. Additionally,
except where noted, these methods do not use substitution matrices such as the PAM and
BLOSUM matrices to score matches. Rather, they are based on finding exact matches that
have the same spacing in at least some of the input sequences, and that may be repeated in
a given sequence.

Extraction of Blocks from a Global or Local Multiple Sequence Alignment

A global msa of related protein sequences usually includes regions that have been aligned
without gaps in any of the sequences. These ungapped patterns may be extracted
from these aligned regions and used to produce blocks. Blocks found in this manner are
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rhle_ecoli
dbp2_schpo
dbp2_yeast
dbpa_ecoli
rmé62_drome
p68_human
rhlb_ecoli
yn2l_caeel
yhm5_yeast
me3l_drome
drsl_yeast
if4a_rabit
if41_human
vasa_drome
srmb_ecoli
DEAD ecoli
if4a_orysa
DEAD_klepn
pl10_mouse
p54_human
if4a_drome
dedl_yeast
mslé_yeast
pr28_yeast
if4n_human
an3_xenla
dbpl_yeast
ifda_yeast

spb4_yeast
ifda_caeel
pr05_yeast
if42_mouse
dhhl_yeast
db73_drome
yk04_yeast
ybz2_yeast
yhw9_yeast
glhl_caeel

A. The multiple sequence alignment.

GVDVLVATPG RLLDLEHQNA
GVEICIATPG RLLDMLDSNK
GSEIVIATPG RLIDMLEIGK
APHIIVATPG RLLDHLQKGT
GCEIVIATPG RLIDFLSAGS
GVEICIATPG RLIDFLECGK
GVDILIGTTG RLIDYAKQNH
RPHIIVATPG RLVDHLENTK
KPHIIIATPG RLMDHLENTK
RVQLIIATPG RILDLMDEKRV
RPDIVIATPG RFIDHIRNSA
APHIIVGTPG RVFDMLNRRY
APHIIVGTPG RVFDMLNRRY
GCHVVIATPG RLLDFVDRTF
NQDIVVATTG RLLOYIKEEN
GPQIVVGTPG RLLDHLKRGT
GVHVVVGTPG RVFDMLRRQS
GPQIVVGTPG RLLDHLKRGT
GCHLLVATPG RLVDMMERGK
TVHVVIATPG RILDLIKEKGV
GCHVVVGTPG RVYDMINRKL
GCDLLVATPG RLNDLLERGK
RPNIVIATPG RLIDVLEKYS
GCDILVATPG RLIDSLENHL
GQHVVAGTPG RVFDMIRRRS
GCHLLVATPG RLVDMMERGK
GCDLLVATPG RLNDLLERGK
DAQIVVGTPG RVFDNIQRRR
RPQILIGTPG RVLDFLQMPA
GIHVVVGTPG RVGDMINRNA
GTEIVVATPG RFIDILTLND
APHIVVGTPG RVFDMLNRRY
TVHILVGTPG RVLDLASRRV
KADIVVTTPG RLVDHLHATK
GCNFIIGTPG RVLDHLQNTK
SGQIVIATPG RFLELLEKDN
KPHFIIATPG RLAHHIMSSG
GATIIVGTVG RIRHFCEEGT

e« -VELDQV EILVLDEADR MLDMGFIHDI
«...TNLRRV TYLVLDEADR MLDMGFEPQI
++++TNLERV TYLVLDEADR MLDMGFEPQI
««+.VSLDAL NTLVMDEADR MLDMGFSDAI
««..TNLKERC TYLVLDEADR MLDMGFEPQI
«++.TNLRRT TYLVLDEADR MLDMGFEPQI
... INLGAI QVVVLDEADR MYDLGFIKDI
.. .GFNLEAL KFLIMDEADR ILNMDFEVEL
« « «GFSLRKL KFLVMDEADR LLDMEFGPVL
e+ ADMSHC RILVLDEADK LLSLDFQGML
. . .SFNVDSV EILVMDEADR MLEEGFQDEL
«+..LSPKYI KMFVLDEADE MLSRGFEKDQI
....LSPKYI KMFVLDEADE MLSRGFEDQI
.« .« ITFEDT RFVVLDEADR MLDMGFSEDM
«...FDCRAV ETLILDEADR MLDMGFAQDI
« e+« .LDLSKL SGLVLDEADE MLRMGFIEDV
«...LRPDYI KMFVLDEADE MLSRGFRDQI
«+«.LDLSKL SGLVLDEADE MLRMGFIEDV
«+++ IGLDFC KYLVLDEADR MLDMGFEPQI
+«..AKVDHV QMIVLDEADK LLSQDFVQIM
«es.-RTQYI KLFVLDEADE MLSRGFKDQI
«.«..ISLANV KYLVLDEADR MLDMGFEPQI
.« .NKFFRFV DYKVLDEADR LLEIGFRDDL
«+..LVMKQV ETLVLDEADK MYDLGFEDQV
««+.LRTRATI KMLVLDEADE MLNRGFKEQI
++«.IGLDFC KYLVLDEADR MLDMGFEPQI
«.«.VSLANI KYLVLDEADR MLDMGFEPQI
+++FRTDKI EKMFILDEADE MLSSGFKEQIL
.+« VKTSAC SMVVMDEADR LLDMSFIKDT
«+..LDTSRI EKMFVLDEADE MLSRGFKDOI
.GKLLSTKRI TFVVMDEADR LFDLGFEPQI
s+ LSPKWI EKMFVLDEADE MLSRGFEKDQI
<« ADLSDC SLFIMDEADK MLSRDFKTII
.« .GFCLKSL KFLVIDEADR IMDAVFQNWL
VIKEQLSQSL RYIVLDEGDK LMELGFDETI
.TLIKRFSKV NTLILDEADR LLQDGHFDEF
DDTVGGLMRA KYLVLDEADI LLTSTFADHL
+...IKLDKC RFFVLDEADR MIDAMGFGTD

Figure 4.12. msa and the derived evolutionary profile.
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only as good as the msa from which they are derived. Using the BLOCKS
(http://www.blocks.thcrc.org/blocks/process_blocks.html), blocks of width 10-55 are
extracted from a protein msa of up to 400 sequences (Henikoff and Henikoff 1991, 1992).
The program accepts FASTA, CLUSTAL, or MSF formats, or manually reformatted msas.
Several types of analyses may be performed with such extracted blocks. The BLOCKS serv-
er primarily generates blocks from unaligned sequences. The eMOTIFs server at
http://dna.stanford.edu/emotif/ (Nevill-Manning et al. 1998) similarly extracts motifs
from msas in several msa formats and provides a formatter for additional msa formats.
These types of analyses are discussed below in greater detail.

Pattern Searching

This type of analysis was performed on groups of related proteins, and the amino acid pat-
terns that were located may be found in the Prosite catalog (Bairoch 1991). This catalog
groups proteins that have similar biochemical functions on the basis of amino acid pat-
terns such as those in the active site. Subsequently, these families were searched for amino
acid patterns by the MOTIF program (Smith et al. 1990), which finds patterns of the type
aal d1 aa2 d2 aa3, where aal and aa2 are conserved amino acids and d1 and d2 are stretch-
es of intervening sequence up to 24 amino acids long. These initial patterns are then orga-
nized into blocks between 3 and 60 amino acids long by the Henikoff PROTOMAT pro-
gram (Henikoff and Henikoff 1991, 1992). The BLOCKS database can be accessed at
http://www.blocks.therc.org/, and the server may also be used to produce new blocks by
the original pattern-finding method or other methods described below.

Although used successfully for making the BLOCKS database, the MOTIF program is
limited in the pattern sizes that can be found. The MOTIF program distinguishes true
motifs from random background patterns by requiring that motifs occur in a number of
the input sequences and tend not to be internally repeated in any one sequence. As the
length of the motif increases, there are many possible combinations of patterns of a given
length where only a few characters match, e.g., >10° possible patterns for a 15-amino-acid-
long pattern with only five matches. The MOTIF program always provides a motif, even
for random sequences, thus making it difficult to decide how significant the found motif
really is. This problem has been circumvented by combining the analysis performed by
MOTIF with that of the Gibbs sampler (discussed on p. 177), which is based on sound sta-
tistical principles. A rigorous searching algorithm called Aligned Segment Statistical Eval-
uation Tool (ASSET) has been devised (Neuwald and Green 1994) that can find patterns
in sequence up to 50 amino acids long, group them, and provide a measure of the statisti-
cal significance of the patterns. These patterns may also include certain pairs, the 26 posi-
tive scoring pairs in the BLOSUMBS62 scoring matrix. Consideration of all BLOSUM pairs is
not possible because this would greatly increase the complexity of the analysis.

The efficiency of ASSET is achieved by a combination of an efficient pattern search
strategy called the depth-first method, which assures searching for the same patterns only
once, and the use of formulas for efficiently organizing the patterns. Low-complexity
regions with high proportions of the same residue and use of sequences, some of which are
more similar than the others, can interfere with the ability of the method to find a range of
patterns. ASSET removes low-complexity regions and redundant sequences from consid-
eration. The program was easily able to find subtle motifs in the DNA methylase, reverse
transcriptase, and tRNA ligase families, and previously identified by the MOTIF program.
In addition, however, ASSET gave these motifs an expect score, the probability that these
are random matches of unrelated sequences, of <0.001. The program also found motifs in
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families with only a fraction of the sequences sharing a motif (the acyltransferase family)
and in a set of distantly related sequences sharing the helix-turn-helix motif. Finally, the
program found several repeat sequences in a prenyltransferase and ankyrin-like repeats in
an E. coli protein. This source code of the program is available by anonymous FTP from
ncbi.nlm.nih.gov/pub/neuwald/asset. The European Bioinformatics Institute has a Web

page for another complex pattern-finding program (PRATT) at http://www2.ebi.ac.
uk/pratt/ (Jonassen et al. 1995).

Blocks Produced by the BLOCKS Server from Unaligned Sequences

As described above, the BLOCKS server can extract a conserved, ungapped region from a
msa to produce a sequence block. This same server can also find blocks in a set of
unaligned, input sequences and maintains a large database of blocks based on an analysis
of proteins in the Prosite catalog. Blocks are found by the Protomat program (Henikoff
and Henikoff 1991). Blocks are found in two steps: First, the program MOTIF (Smith et al.
1990) described on the previous page is used to locate spaced patterns. The second step
takes the best and most consistent patterns found in step 1 and uses the program
MOTOMAT to merge overlapping triplets and extend them, orders the resulting blocks,
and chooses those that are in the largest subset of sequences. Since 1993, the Gibbs sam-
pler (see below) has been used as an additional tool for finding the initial set of short pat-
terns also by specifying that the sampler search for short motifs. This program is based on
a statistical analysis of the sequences and can identify the most significant common pat-
terns in a set of sequences.

An example of BlockMaker output using an example from Lawrence et al. (1993) is
shown below. The program first searches for blocks using either the MOTIFES or Gibbs
sampler program to identify patterns, then the Protomat program to consolidate the pat-
terns into meaningful blocks. The results of both types of analyses are reported.

A. Motif analysis

LipocalA, width = 15 LipocalB, width = 11
BBP_PIEBR 16 NFDWSNYHGKWWEVA ( 70) 101 VLSTDNKNYII
ICYA_MANSE 17 DFDLSAFAGAWHEIA ( 73) 105 VLATDYKNYAI
LACB_BOVIN 25 GLDIQKVAGTWYSLA ( 70) 110 VLDTDYKKYLL
MUP2_MOUSE 27 NFNVEKINGEWHTII ( 101) 143 DLSSDIKERFA
RETB_BOVIN 14 NFDKARFAGTWYAMA ( 77) 106 IIDTDYETFAV

B. Gibbs sampler analysis

LipocalA, width = 15 LipocalB, width = 11
BBP__PIEBR 16 NFDWSNYHGKWWEVA ( 70) 101 VLSTDNKNYII
ICYA_MANSE 17 DFDLSAFAGAWHEIA ( 73) 105 VLATDYKNYAI
LACB_BOVIN 25 GLDIQKVAGTWYSLA ( 170} 110 VLDTDYKKYLL
MUP2_MOUSE 27 NFNVEKINGEWHTII ( 68) 110 IPKTDYDNFLM
RETB_BOVIN 14 NFDKARFAGTWYAMA ( 77) 106 IIDTDYETFAV
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In the above example, two blocks identified as Lipocal A and B are reported using bot
the MOTIF and Gibbs sampler programs for step 1, the initial pattern-finding step. Tt
MOTIF program is based on a heuristic method that will always find motifs, even in rar
dom sequences, whereas the Gibbs sampler discriminates found motifs based on soun
statistical methods. These blocks are identical to those determined from analysis of thre:
dimensional structures. Note that MOTIF aligned MUP2_MOUSE incorrectly in the

a MFRRKAFLHWYTGEGMDEMEF TEAESNMNDPVAEYQQY
MFKRKAF LHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFKRKAF LHWYTGEGMDEMEF TEVRANMNDLVAEYQQY
MFKRKAFLHWYTSEGMDELEFSEAESNMNDLVSEYQQY
MFKRKGFLHWYTGEGMEPVEFSEAQSDLEDL | LEYQQY
MFRRKAF LHWF TGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRKAF LHWYTGEGMDEMEFSEAEGNTNDLVSEYQQY
MFRRKAF LHWYTGEGMDEMEF TEAESNMNDLMSEYQQY
MFRRKAF LHWYTGEGMDEMEF TEAESNMNDLVAEYQQY
MFRRKAFLHWYTGEGMDEMEF TEAESNMNDLVHEYQQY
MFRRKAF LHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRKAF LHWYTGEGMDEMEF TEAESNMNELVSEYQQY
MFRRKAFLHWYTLEGMEELEFTEAESNMNDLVYEYQQY
MFRRKAFLHWYTNEGMD | TEFAEAESNMNDLVSEYQQY
MFRRKAF LHWYTSEGMDEMEF TEAESNMNDLVSEYQQY
MFRRKRFLHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRNAF LHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRQAF LHWYTSEGMDEMEF TEAESNMNDLVSEYQQY
MFSRKAF LHWYTGEGMEEGDFAEADNNVSDLLSEYQQY

MFGKRAFVHHYVGEGMEENEF TDARQDLYELEVDYANL
MFKKRAFVHWYVGEGMEEGEFTEARENIAVLERDFEEV
MFVKRAFVHWYVGEGMEEGEFAEARDDLLALEKDYESY
MYAKRAFVHWYVGEGMEEGEFAEAREDLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEARED | AALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDLAALEKDFEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDLLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDMAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEVREDLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFTEAREDLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFTEAREDLAALERDY1EV
MYAKRAFVHWYVGEGMEEVEFSEAREDLAALEKDYEEY
MYAKRAFVHWYVSEGMEEGEFAEAREDLAALEKDYDEV
MYSKRAFVHWYVGEGMEEGEFSEAREDLAALEKDYEEY
MYSKRAFVHWYVGEGMEEGEFSEAREDLAALERDYEEV

b MF.K. FVH.F..EGMQ..QFPQ...Q...... QF. ..
YR L Y N NAN N NY
W bow E EGE E EW
D DSD D D
T
C MF.KR.FLHWFT.EGMQ..QFPE...Q..DLI.DYQQY
R Y N NA N L
W E EG E M
D DS D Y%
T

Figure 4.13. Aligned block of 34 tubulin proteins. (a) The sequences are divided into two groups
based on the occurrence of R or L in the fourth position and Y in the last position. (b) Specific sub-
stitution groups found in the columns of the block. If a group cannot be found, then the position is
ambiguous and a dot is printed at the position. (¢) If only the first group of sequences is used, a more
specific motif may be found because sequences in this group are more closely related to each other.
(Reprinted, with permission, from Nevill-Manning et al. 1998 [copyright National Academy of Sci-
ences).)
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block. The Gibbs sampler results may differ when the same sequences are submitted
repeatedly with a different initial alignment (see below).

The eMOTIF Method of Motif Analysis

Another somewhat different but extemely useful method of identifying motifs in protein
sequences has been described (Nevill-Manning et al. 1998). From the BLOCKS database
(derived from msa of proteins in the Prosite catalog) and the HSSP database (derived from
msa of proteins based on predicted structural similarities), a set of amino acid substitution
groups characteristic of each column in all of the alignments was found. These patterns
reflect the higher log odds scores in the amino acid substitution matrices. A statistical anal-
ysis was performed to identify amino acids that are found together in the same msa col-
umn as opposed to amino acids that are found in different columns at the 0.01 level of sig-
nificance. Thirty and 51 substitution groups that met this criterion were found in the
BLOCKS and HSSP msas, respectively. For example, the chemically aromatic group of
amino acids F, W, and Y were found to define a group often located in the same column
of the msa.

From the msa for a particular group of proteins, each column is examined to see
whether these groups are represented in the column, as illustrated in Figure 4.13. In col-
umn 1, M is always present, and because M is one group, M is used in column 1 of the
motif, as shown in part b. Similarly for column 2, Y and F, which are members of the group
FYW, are found, and hence this group is used as column 2 in the motif. The final motif
shown in b describes the variation in all the sequences. Instead, a motif may be made for
only the first group of 19 sequences, and is shown in ¢. This second motif (c) has less vari-
ability and greater specificity for the first 19 sequences and thus would be more likely to
find those sequences in a database search (i.e., it is a more sensitive motif for those
sequences) than motif b.

The probability of each motif is estimated from the frequencies of the individual amino
acids in the SwissProt database. The probability of the motif b above is given by the
product of the probability sums in each column, or p(Motif) = pM) X 1 X
[p(F)+p(W)+p(»)] X [p(Y)+p(R)] x. .. This value has been found to provide a good esti-
mate of false positives, or of the selectivity of the motif, in a database search. Both the sen-
sitivity and selectivity of a given motif must be taken into account in using the motif for a
database search. Ideally, a motif can find all of the sequences used to generate the motif but
none other. In practice, eMOTIF produces a large set of motifs, some more and some less
sensitive for the set of aligned sequences. The more sensitive ones, which are also the most
selective based on the value of p(Motif), are then chosen. Some are useful for specifying
subfamilies of a protein superfamily. A database of such motifs called Identify is a useful
resource for discovering the function of a gene (Nevill-Manning et al. 1998;
http://dna.stanford.edu/emotif/).

Expectation Maximization Algorithm

This algorithm has been used to identify both conserved domains in unaligned proteins
and protein-binding sites in unaligned DNA sequences (Lawrence and Reilly 1990),
including sites that may include gaps (Cardon and Stormo 1992). Given are a set of
sequences that are expected to have a common sequence pattern and may not be easily rec-
ognizable by eye. An initial guess is made as to the location and size of the site of interest
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in each of the sequences, and these parts of the sequence are aligned. The alignment pro-
vides an estimate of the base or amino acid composition of each column in the site. The
EM algorithm then consists of two steps, which are repeated consecutively. In step 1, the
expectation step, the column-by-column composition of the site already available is used
to estimate the probability of finding the site at any position in each of the sequences.
These probabilities are used in turn to provide new information as to the expected base or
amino acid distribution for each column in the site. In step 2, the maximization step, the
new counts of bases or amino acids for each position in the site found in step 1 are substi-
tuted for the previous set. Step 1 is then repeated using these new counts. The cycle is
repeated until the algorithm converges on a solution and does not change with further
cycles. At that time, the best location of the site in each sequence and the best estimate of
the residue composition of each column in the site will be available.

As an example, suppose that there are 10 DNA sequences having very little similarity
with each other, each about 100 nucleotides long and thought to contain a binding site
near the middle 20 residues, based on biochemical and genetic evidence. As we will later
see when examining the EM program MEME, the size and number of binding sites, the
location in each sequence, and whether or not the site is present in each sequence do not
necessarily have to be known. For the present example, the following steps would be used
by the EM algorithm to find the most probable location of the binding sites in each of the
10 sequences.

Columns defined
by a preliminary
alignment of the
sequences
provide initial
estimates of
frequencies of
amino acids in
each motif
column

Columns not in motif provide
background frequencies
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Multiple EM for Motif Elicitation (MEME)

A Web resource for performing local msas by the above expectation maximization method
is the program Multiple EM for Motif Elicitation (MEME) developed at the University of
California at San Diego Supercomputing Center. The Web page for two versions of
MEME, ParaMEME, a Web program that searches for blocks by an EM algorithm
(described below), and a similar program MetaMEME (which searches for profiles using
HMMs, described below) is found at http://www.sdsc.edu/MEME/meme/website/
meme.html. The Motif Alignment and Search Tool (MAST) for searching through
databases for matches to motifs may also be found at http://www.sdsc.edu/MEME/
meme/website/mast.html.

MEME will locate one or more ungapped patterns in a single DNA or protein sequence
or in a series of DNA or protein sequences. A search is conducted for a range of possible
motif widths, and the most likely width for each profile is chosen on the basis of the log-
likelihood score after one iteration of the EM algorithm. The EM algorithm then iterates
to find the best EM estimate for that width. Three types of possible motif models may be
chosen. The OOPS model is for one expected occurrence of a motif per sequence, the
ZOOPS model is for zero or one occurrence per sequence, and the TCM model is for a
motif to appear any number of times in a sequence. These models are reflected in the
choices on the Web page (Fig. 4.14). The current version of MEME can use prior knowl-
edge about a motif being present in all or only some of the sequences, the length of the
motif and whether it is a palindrome (DNA sequences), and the expected patterns in indi-
vidual motif positions (Dirichlet mixtures, see section on HMMs, p. 189) that provide
information as to which amino acids are likely to be interchangeable in a motif (Bailey and
Elkan 1995). Once a motif has been found, the motif and its position are effectively erased
to prevent finding the same one twice. An example of the output from a ParaMEME anal-
ysis is given in Figure 4.15.

The Gibbs Sampler

Another statistical method for finding motifs in sequences is the Gibbs sampler. The
method is similar in principle to the EM method described above, but the algorithm is dif-
ferent. Like the EM method, given a set of sequences, the Gibbs sampler searches for the
statistically most probable motifs and can find the optimal width and number of these
motifs in each sequence (Lawrence et al. 1993; Liu et al. 1995; Neuwald et al. 1995). The
source code of the program code is available by anonymous FTP from
ncbi.nlm.nih.gov/pub/neuwald/gibbs9-95. A combinatorial approach of the Gibbs sam-
pler and MOTIF may be used to make blocks at the BLOCKS Web site (http://
www.blocks.fherc.org/). The expected number of blocks in the search is one block for
approximately each 40 residues of sequence. The Gibbs sampler is also an option of the
msa block-alignment and editing program MACAW (Schuler et al. 1991), which runs on
MS-DOS, Macintosh, and other computer platforms and is available by anonymous FTP
from ncbi.nlm.nih.gov/pub/schuler/macaw.
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MEME -- Multiple EM for Motif Elicitation: Version 2.2

Motif discovery tool

Data Submission Form - Advanced Version

Basic MEME
Your data will be processed on the Cray-T3E supercomputer at the San Diego Supercomputer Center and the results will be sent to you by e-mail.

Please enter the e-mail address where you would like your results sent:

[Optional] Please enter a brief description of your sequences.

Please enter the sequences which you believe share one or more motifs. The sequences may contain no more than 100,000 characters total in any of a large
number of formats. Please enter either:

1. the name of a file containing the sequences here: |
2. or the actual sequences here:

MEME can choose the width of each motif favoring short or wide

How do you think the occurrences of a motifs. Wide is recommended if there are fewer than 10 occurrences of
single motif are distributed among the How different motifs would you any motif in your sequences. Choosing a number will cause all motifs

reported to have that width. Select the width you want with the select
button below, or enter a width in the text window. Legal choices are
"short", "wide" or any number from 2 to 300. (If you enter something in
the text window, it will override what is shown on the select button.)

r

sequences? like to look for?
€ One per sequence

@ Zero or one per sequence
(2 Any number of repetitions

Brief output format:
ADVANCED OPTIONS
Shuffle letters in input sequences:
DNA-ONLY OPTIONS
DNA palindromes: ignore allow force
complementary strand, 5' to 3' (inverse complement)
Additional strands/directions to search: main strand, 3' to 5'
complementary strand, 3' to §'
Strength of the prior (enter a positive number):
Click here for more information on MEME.
Return to MEME SYSTEM introduction.
You might be interested in trying other motif-making programs such as BLOCK MAKER at the Fred Hutchinson Cancer Research Center .

Please send comments and questions to:  thailey@sdsc.edu .

Figure 4.14. The MEME Web page. The MEME program finds ungapped motifs (blocks) in unaligned protein or DNA sequences.
As indicated, the program can be directed to search for the size and expected number of motifs or can predict motifs based on a
statistical analysis based on the EM algorithm described in the text.




A. Summary line

MOTIF 1 width=9 sites = 29.5

B. Letter-probability matrix

Simplified A ::1::::8:
motif letter- C iz
probability D :g:::i:::
matrix E ::rrzeor:

C. Information content of the profile

Information bits 6.2
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D. The multilevel consensus sequence

Multilevel VDVLVNNAG
consensus L
sequence

Figure 4.15. Results produced by a MEME analysis of sequences for motifs. The output diagrams are discussed in the text.
(A) Summary line giving the number of the next motif found in order of statistical significance, width, and expected number
of occurrences in the given sequences. (B) Simplified motif letter-probability matrix showing the frequency of each amino
acid in each column of the matrix. The columns are the columns of the motif. For easier reading, the numbers shown are fre-
quencies rounded to the nearest one-tenth and multiplied by 10, and zeros are shown as colons. (C) The information content
of the profile is given in a diagram. Basically, the diagram shows the degree of amino acid variation in each column of the pro-
file: the lower the value, the greater the variation. The scale is logarithmic to the base 2 (bits). The total of all columns is also
shown. The subject of information content is discussed in greater detail below under position-specific scoring matrices. (D)
The multilevel consensus sequence shows all letters in each column of the motif that occur with a frequency of >0.2. Con-
tinued.
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E. The next motif

Motif 1 in BLOCKS format

BL MOTIF 1; width=9; segs =33

2BHD_STREX ( 81)
3BHD_COMTE ( 81)
ADH_DROME ( 86)
AP27_MOUSE ( 77)
BA72_EUBSP ( 86)
BDH_HUMAN (  138)
BPHB_PSEPS ( 79)
BUCD_KLETE ( 80)
DHES_HUMAN ( 84)
DHGB_BACME ( 87)
DHMA_FLASH ( 198)
ENTA_ECOLI ( 73)
FIXR_BRAJA ( 112
GUTD_ECOLI ( 82)
HDE_CANTR ( 396)
HDHA_ECOLI ( 89)
NODG_RHIME ( 81)
RIDH_KLEAE ( 89)
YINL_LISMO ( 83)
YRTP_BACSU ( 84)
CSGA_MTXXA ( 13)
DHB2_HUMAN (  161)
DHB3_HUMAN (125
DHCA_HUMAN ( 83)
FVT1_HUMAN (115
HMTR_LEIMA ( 103)
MAS1_AGRRA (320
PCR_PEA (165
YURA_MYXXA ( 90)

/

Figure 4.15. Continued. (E) Possible examples of the motif in the training set are shown. This list is based on using a posi-
tion-dependent scoring matrix (log-odds matrix) to search each sequence. The threshold score for displaying a site is chosen
such that the expected number of incorrect assignments will equal the expected number of missed but correct assignments.

Positions before and after the motif are also shown. Continued.

VDGLVNNAG
LNVLVNNAG
VDVLINGAG
VDLLVNNAA
LDVMINNAG
MWGLVNNAG
IDTLIPNAG
FNVIVNNAG
VDVLVCNAG
LDVMINNAG
VDVTGNNTG
LDALVNAAG
LHALVNNAG
VDLLVYSAG
IDILVNNAG
VDILVNNAG
VDILVNNAG
LDIFHANAG
VDAIFLNAG
IDILINNAG
VDVLINNAG
LWAVINNAG
IGILVNNVG
LDVLVNNAG
VDMLVNCAG
CDVLVNNAS
IDGLVNNAG
LDVLINNAA
LDLVVANAG

]
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]
)
)
]
]
)
)
]
]
]
)
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]
]
]
)
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F. Possible examples of motif 1 in the training set

Sequence name Start Score Site

2BHD_STREX 81 28.80 VAYAREEFGS VDGLVNNAG ISTGMFLETE
3BHD_COMTE 81 25.99 MAAVQRRLGT LNVLVNNAG ILLPGDMETG
ADH_DROME 86 22.33 LKTIFAQLKT VDVLINGAG ILDDHQIERT
AP27_MOUSE 77 2436 TEKALGGIGP VDLLVNNAA LVIMQPFLEV
BA72_EUBSP 86 26.39 VGQVAQKYGR LDVMINNAG ITSNNVFSRV
BDH_HUMAN 138 23.46 PFEPEGPEKG MWGLVNNAG ISTFGEVEFT
BPHB_PSEPS 79 18.60 ASRCVARFGK IDTLIPNAG  IWDYSTALVD
BUDC_KLETE 80 20.97 VEQARKALGG FNVIVNNAG IAPSTPIESI
DHES_HUMAN 84 25.67 AARERVTEGR VDVLVCNAG LGLLGPLEAL
DHGB_BACME 87 26.39 VQSAIKEFGK LDVMINNAG MENPVSSHEM
DHMA_FLAS1 198 16.36 ILVNMIAPGP VDVTGNNTG YSEPRLAEQV
ENTA_ECOLI 73 2190 CQRLLAETER LDALVNAAG ILRMGATDQL
FIXR_BRAJA 112 23.67 EVKKRLAGAP LHALVNNAG VSPKTPTGDR
GUTD_ECOLI 82 17.17 SRGVDEIFGR VDLLVYSAG IAKAAFISDF
HDE_CANTR 92 20.90 VETAVKNFGT VHVINNAG  ILRDASMKKM
HDE_CANTR 396 29.32 IKNVIDKYGT IDILVNNAG  ILRDRSFAKN
HDHA_ECOLI 89 30.18 ADFAISKLGK VDILVNNAG GGGPKPFDMP
NODG_RHIME 81 30.18 GQRAEADLEG VDILVNNAG ITKDGLFLHM
RIDH_KLEAE 89 16.02 LQGILQLTGR LDIFHANAG AYIGGPVAEG
YINL_LISMO 83 14.65 VELAIERYGK VDAIFLNAG IMPNSPLSAL
YRTP_BACSU 84 27.41 VAQVKEQLGD IDILINNAG  ISKFGGFLDL
CSGA_MYXXA 13 28.94 AFATNVCTGP VDVLINNAG VSGLWCALGD
DHB2_HUMAN 161 19.62 KVAAMLQDRG LWAVINNAG VLGFPTDGEL
DHB3_HUMAN 125 18.63 HIKEKLAGLE IGILVNNVG  MLPNLLPSHF
DHCA_HUMAN 83 30.23 RDFLRKEYGG LDVLVNNAG IAFKVADPTP
FVT1_HUMAN 115 24.21 IKQAQEKLGP VDMLVNCAG MAVSGKFEDL
HMTR_LEIMA 103 24.02 VAACYTHWGR CDVLVNNAS SFYPTPLLRN
MAS1_AGRRA 320 27.93 VTAAVEKFGR IDGLVNNAG YGEPVNLDKH
PCR_PEA , 165 23.97 VDNFRRSEMP LDVLINNAA  VYFPTAKEPS
YURA_MYXXA 90 18.59 IRALDAEAGG LDLVVANAG VGGTTNAKRL

Figure 4.15. Continued. (F) The next motif is given in the format used for the BLOCKS database (http://www.
blocks.there.org/blocks). The predicted locations of this motif in each sequence and the probability that the motif starts at that
location are shown. The sites reported depend on the motif search model used: (1) OOPS, the most probable location in each
sequence is given; (2) ZOOPS, the most probable location in each sequence is reported but only probabilities greater than 0.5
(a significant level for Bayesian statistics); TCM, all positions in each sequence with probabilities > 0.5 are shown. Continued.




182 = CHAPTER 4

G. Position-specific scoring matrix
Log-odds matrix: alength = 20 w = 9 n = 9732 bayes = 8.36118

-2.725 0.818 -5.204 -4.530 -0.082 -4.432 3515 1560 -4218 1.814 0701 -4.126 -3.146 -3.848 .
-3441 -3.841 -4.023 -1.204 -4.313 -2.305 -0.889 -4.226 -4.009 -4.571 -3.882 -0.220 -4.682 -3547 .
-0.768 -2.342 -4.756 -4.189 -2.319 0376 -3.154 1.757 -3870 0288 0918 -3.149 -4229 -3492 .
3379 -2.600 0% 4331 .0586 -5.089 -3.668 -0.081 -4.008 3.045 1.107 -4.393 -4287 -3.383 .
1,373 -1.895 -3.823 -3.574 -1.086 -1.952 -0.466 1.480 -3.565 -2.234 -1.834 -3.701 -3.612 -3.536 -
-1.879 -0.980 -2.231 -4.187 -3.807 -3.562 -0.892 -3.306 -3.238 -2.753 -3.337 4.193 -2.276 -2.750 -
-2.460 0912 -2.2524.176  -3.833 -2.301 -0.968 -3.339 -3.262 -4.056 -3.364 4.217 -4.026 -2.768 -
-3.475 1137 -3.874 -3.535 -3.304 -2.080 2.080 -2.826 -3.544 -3.127 -2.263 -3.502 -4.599 -3.533 -

-0.693 -3.833 -3.137 -3.879 -4.963 3.663 -3.647 -3.364 -3.716 -5.287 -4.212 -2.849 -4.518 -4.155 .
H. Motif letter-frequency matrix

Letter-probability matrix: alength =20 w =9 n =9732

0.011063 0.032022 0.001403 0.002682 0.038055 0.003212 0.001962 0.165990 0.003143 0.322510 0.037503 0.011063
0.006738 0.001268 0.841023 0.027061 0.002026 0.013178 0.012108 0.003008 0.003632 0.003860 0.001564 0.011063
0.124630 0.003583 0.001915 0.003418 0.008070 0.089951 0.002520 0.190255 0.004000 0.112000 0.043590 0.011063
0.007032 0.002996 0.001544 0.003098 0.026845 0.002037 0.001765 0.053213 0.003415 0.756853 0.049683 0.011063
0.028238 0.004883 0.003655 0.005236 0.018977 0.017917 0.016240 0.156947 0.004942 0.019499 0.006470 0.011063
0.019895 0.009211 0.011023 0.003422 0.002878 0.005871 0.012089 0.005691 0.00619¢ 0.013606 0.002282 0.011063
0.013301 0.009656 0.010865 0.003449 0.002827 0.013217 0.011467 0.005564 0.006098 0.004800 0.002240 0.011063
0.813801 0.008259 0.003529 0.005378 0.00407¢ 0.016396 0.005304 0.007937 0.005014 0.010499 0.004806 0.011063
0.045249 0.001275 0.005879 0.004237 0.001291 0.878064 0.001790 0.005467 0.004450 0.002354 0.001244 0.011063

Figure 4.15. Continued. (G) Position-specific scoring matrix. This matrix is a log-odds matrix calculated by taking the log
(base 2) of the ratio of the observed to expected counts for each amino acid in each column of the profile. Columns and rows
in the matrix correspond to the amino acids in each column and positions of the motif, respectively. The counts for each col-
umn may have additional pseudocounts added to compensate for zero occurrences of an amino acid in a column or for a
small number of sequences, as discussed below for this type of matrix. (H) Motif letter-frequency matrix is given, showing the
frequency of amino acid found in each column of the profile. Columns and rows correspond to the amino acids in each col-
umn and rows to columns in the motif, respectively. Shown also are the numbers of types of residues, the width of the motif,
and number of characters in the sequences. Only portions of the output are shown.

To understand the algorithm, consider a simple example using the Gibbs sampler algo-
rithm to locate a single 20-residue-long motif in 10 sequences, each 200 residues long, as
was done above to illustrate the EM algorithm. The method iterates through two steps. In
the first step, the predictive update step, a random start position for the motif is chosen for
all sequences but for one that is chosen at random or in a specified order. So let us choose
sequence 1 as the outlier and use the other 9 to find an initial guess of the motif. These
other 9 sequences are aligned with random overlaps. The following figure illustrates how
this initial motif is located (an x equals 20 sequence positions, M indicates the random
location of the motif chosen for each sequence, and — the 20 initially aligned motif posi-
tions).

The objective is to find the most probable pattern common to all of the sequences by
sliding them back and forth until the ratio of the motif probability to the background prob-
ability is a maximum. This is accomplished by first using the initial alignment shown above
to estimate the residue frequencies in each column of the motif, and the sequence residues
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Steps of the Gibbs sampler algorithm.

A. Estimate the amino acid frequencies in the motif columns of all but

1 sequence. Also obtain background

XXXMXXXXXX XXX MXXXXXX
XXXXXXMXXX XXXXXXMXXX
XXXXXMXXXX XXXXXMXXXX
T XMXXXXXXXX XMXXXXXXXX
XXXXXXXXXM XXXXXXXXXM
MXXXXXXXXX . MXXXXXXXXX
XXXXMXXXXX XXXXMXXXXX
XMXXXXXXXX XMXXXXXXXX
XXXXXXXXMX XXXXXXXXMX
Random start Location of motif in each
positions chosen sequence provides first

estimate of motif composition

B. Use the estimates from A to calculate the ratio of probability of
motif to background score at each position in the left out sequence.
This ratio for each possible location in the sequence is the weight

of the position.

HAXXXXKAXXKK p 6. 9.6.8.0.0.5.9.5 9 pi0.0.0.6.9.0.56.4.4 HHEHHRKHXKX poo.60.6.0.6.4.64
M -> M -> M -> M -> M ->

C. <choose a new location for the motif in the left out sequence by a

random selection using the weights to bias the choice.
HEXKKXKMRR Estimated location of the motif in left out sequence

D. Repeat steps A to C >100 times.

that are not included in the motif to estimate the background residue frequencies. For
example, if these sequences are DNA sequences and the first column of the estimated motif
in the 10 sequences includes 3 Gs, then the value for f; coumn1 = 3/9 = 0.33. Similarly, let
1+, columnz = 1/9 = 0.11 for illustration. These frequencies are determined for each of the 20
columns in our example. Similarly, if there are 240 Gs among the 10 X 80 = 800 sequence
positions not within the estimated motif, then f, vackgrouna = 240/800 = 0.30. Also let
f+, background = 180/800 = 0.225. If the first two positions in sequence 1 are G and T in that
order, then the probability of the motif starting at position 1, Q, is calculated as 0.33 X
0.11 X ... ... X flast base, column20- 1 he background probability of this first possible motif,
Py, is also calculated as 0.30 X 0.225 X . . . .. X flast base, background-
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Note the difference
between the Gibbs
sampler method and
the EM method, which
calculates the proba-
bility of the entire
sequence using the
motif column frequen-
cies within the motif
and the background
frequencies elsewhere.

The ratio Q,/P; is designated as weight A, for motif position 1 in sequence 1. A;s are
then calculated for all other 100 — 20 + 1 = 81 possible locations of the 20-residue-long
motif in sequence 1. These weights are then normalized by dividing each weight by their
sum to give a probability for each motif position. From this probability distribution, a ran-
dom start position is chosen for position 1. In so doing, the chance of choosing a particu-
lar position is proportional to the weight of that position so that a higher scoring position
is more likely to be chosen. (You can think of a bag with 81 kinds of balls, with the num-
ber of each ball proportional to the weight or probability of that kind. Drawing a random
ball will favor the more prevalent ones.) This position in the left-out sequence is then used
as an estimate of the location for the motif in sequence 1. The procedure is then repeated.
Select the next sequence to be scanned, align the motifs in the other 9 sequences with
sequence 1 now using the estimated location found above, and so on. This process is
repeated until the residue frequencies in each column of the motif do not change. For dif-
ferent starting alignments, the number of iterations needed may range from several hun-
dred to several thousand.

As the above cycles are repeated, the more accurate the initial estimate of the motif in
the aligned sequences, the more accurate the pattern location in the outlier sequence. The
second step in the algorithm tends to move the sequence alignments in a direction that
favors a better score but also has a random element to search for other possible better loca-
tions. When correct start positions have been selected in several sequences by chance, the
compositions of the motif columns begin to reflect a pattern that the algorithm can search
for in the other sequences, and the method converges on the optimal motif and the prob-
ability distribution of the motif location in each sequence.

Several additional procedures are used to improve the performance of the algorithm.

1. For a correct Bayesian statistical analysis, the amino acid counts in the motif and the
background in the outlier sequence are estimated and added to the counts in the
remaining aligned sequences. This step is the equivalent of combining prior and
updated information to improve the estimation of the motif. These counts may be esti-
mated by Dirichlet mixtures (see discussion of HMMs, p. 189), which give frequencies
expected based on prior information from amino acid distributions (Liu et al. 1995).
The missing background counts for each residue b; are estimated by the formula b; =
f: x, B where B is chosen based on experience with the method as VN, the number of
sequences in the motif, and f; is the frequency of residue i in the sequences (Lawrence
et al. 1993).

2. Another feature is a procedure to prevent the algorithm from getting locked in a sub-
optimal solution. In the HMM method (see below), noise is introduced for this pur-
pose. In the Gibbs sampler, after a certain number of iterations, the current alignments
are shifted a certain number of positions to the right and left, and the scores from these
shifted positions are found. A probability distribution of these scores is then used as a
basis for choosing a new random alignment.

3. The results of a range of motif widths can be investigated. The major difficulty in
exploring motif width is to arrive at a criterion for comparing the resulting scores. One
suitable measure is to optimize the average information (see below) per free parameter
in the motif, a value that can be calculated (Lawrence et al. 1993; Liu et al. 1995). The
number of free parameters for proteins is 20 — 1 = 19, and for DNA, 4 — 1 = 3, times
the model width.

4. The method can be readily extended to search for multiple motifs in the same set of
sequences.

5. The method has been extended to seek a pattern in only a fraction of the input
sequences.
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The Gibbs sampler was used to align 30 helix-turn-helix DNA-binding domains show-
ing very little sequence similarity. The information per parameter criterion was used to
find the best motif width. Multiple motifs were found in lipocalins, a family with quite dis-
similar motif sequences separated by variable spacer regions, and also in protein iso-
prenyltransferase subunits, which have very large numbers of repeats of several kinds
(Lawrence et al. 1993). Thus, the method is widely applicable for discovering complex and
variable motifs in proteins.

Hidden Markov Models

The HMM is a statistical model that considers all possible combinations of matches, mis-
matches, and gaps to generate an alignment of a set of sequences (Fig. 4.16). A model of a
sequence family is first produced and initialized with prior information about the
sequences. A set of 20—100 sequences or more is then used as data to train the model. The
trained model may then be used to produce the most probable msa as posterior informa-
tion. Alternatively, the model may be used to search sequence databases to identify addi-
tional members of a sequence family. A different HMM is produced for each set of
sequences. HMMs have been previously used very successfully for speech recognition, and
an excellent review of the methodology is available (Rabiner 1989). In addition to their use
in producing multiple sequence alignments (Baldi et al. 1994; Krogh et al. 1994; Eddy 1995,
1996), HMMs have also been used in sequence analysis to produce an HMM that repre-
sents a sequence profile (a profile HMM), to analyze sequence composition and patterns
(Churchill 1989), to locate genes by predicting open reading frames (Chapter 8), and to
produce protein structure predictions (Chapter 9). Pfam, a database of profiles that repre-
sent protein families, is based on profile HMMs (Sonhammer et al. 1997).

HMMs often provide a msa as good as, if not better than, other methods. The approach
also has a number of other strong features: It is well grounded in probability theory, no
sequence ordering is required, insertion/deletion penalties are not needed, and experi-
mentally derived information can be used. Two disadvantages to using HMMs are that at
least 20 sequences and sometimes many more are required to accommodate the evolu-
tionary history (see Mitchison and Durbin 1995). The HMM can be used to improve an
existing heuristic alignment. The two HMM programs in common use are Sequence Align-
ment and Modeling Software System, or SAM (Krogh et al. 1994; Hughey and Krogh
1996), and HMMER (see Eddy 1998). The software is available at http://www.cse.ucsd.edu/
research/compbio/sam.html and http://hmmer.wustl.edu/. The algorithms used for pro-
ducing HMMs are extensively discussed in Durbin et al. (1998). A comparison of HMMs
with other methods is given at the end of this section.

The HMM representation of a section of multiple sequence alignment that includes
deletions and insertions was devised by Krogh et al. (1994) and is shown in Figure 4.6. This
HMM generates sequences with various combinations of matches, mismatches, insertions,
and deletions, and gives these a probability, depending on the values of the various param-
eters in the model. The object is to adjust the parameters so that the model represents the
observed variation in a group of related protein sequences. A model trained in this man-
ner will provide a statistically probable msa of the sequences.

As illustrated in Figure 4.6, the object is to calculate the best HMM for a group of
sequences by optimizing the transition probabilities between states and the amino acid
compositions of each match state in the model. The sequences do not have to be aligned
to use the method. Once a reasonable model length reflecting the expected length of the
sequence alignment is chosen, the model is adjusted incrementally to predict the
sequences. Several methods for training the model in this fashion have been described
(Baldi et al. 1994; Krogh et al. 1994; Eddy et al. 1995; Eddy 1996; Hughey and Krogh 1996;
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A. Sequence alignment

N « F L S
N « F L S
N K Y L T
Q + W - T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

. match state ’insert state . delete state — transition probability

Figure 4.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al.
1994). This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expect-
ed in proteins. The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related
proteins. (A) A section of a multiple sequences alignment. The illustration shows the columns generated in a multiple
sequence alignment. Each column may include matches and mismatches (red positions), insertions (green positions), and
deletions (purple position). (B) The HMM. Each column in the model represents the possibility of a match, insert, or delete
in each column of the alignment in A. The HMM is a probabilistic representation of a section of a msa. Sequences can be gen-
erated from the HMM by starting at the beginning state labeled BEG and then by following any one of many pathways from
one type of sequence variation to another (states) along the state transition arrows and terminating in the ending state labeled
END. Any sequence can be generated by the model and each pathway has a probability associated with it. Each square match
state stores an amino acid distribution such that the probability of finding an amino acid depends on the frequency of that
amino acid within that match state. Each diamond-shaped insert state produces random amino acid letters for insertions
between aligned columns and each circular delete state produces a deletion in the alignment with probability 1. For example,
one of many ways of generating the sequence N K Y L T in the above profile is by the sequence
BEG—->M1—=11-M2—-M3-—->M4-—END. Each transition has an associated probability, and the sum of the probabilities of
transitions leaving each state is 1, The average value of a transition would thus be 0.33, since there are three transitions from
most states (there are only two from M4 and D4, hence the average from them is 0.5). For example, if a match state contains
a uniform distribution across the 20 amino acids, the probability of any amino acid is 0.05. Using these average values of 0.33
or 0.5 for the transition values and 0.05 for the probability of each amino acid in each state, the probability of the above
sequence N K'Y L T is the product of all of the transition probabilities in the path BEG5M1—11->M2—>M3—M4—END,
and the probability that each state will produce the corresponding amino acid in the sequences, or 0.33 X 0.05 X 0.33 X 0.05
X 0.33 X 0.05 X 0.33 X 0.05 X 0.33 X 0.05 X 0.5 = 6.1 X 107", Since these probabilities are very small numbers, amino
acid distributions and transition probabilities are converted to log odds scores, as done in other statistical methods (see pp.
176-177), and the logarithms are added to give the overall probability score. The secret of the HMM is to adjust the transi-
tion values and the distributions in each state by training the model with the sequences. The training involves finding every
possible pathway through the model that can produce the sequences, counting the number of times each transition is used

Continued,
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Durbin et al. 1998). For example, an EM algorithm from speech recognition methods
known as the Baum-Welch algorithm is used as follows:

1. The model is initialized with estimates of transition probabilities and amino acid com-
position for each match and insert date. If an initial alignment of the sequences is
known, or some other kinds of data suggest which sequence positions are the same, then
these data may be used in the model. For other cases, the initial distribution of amino
acids to be used in each state is described below. The initial transition probabilities gen-
erally favor transitions from one match state to the next rather than favoring insert and
delete states, which build more uncertainty into a sequence motif,

2. All possible paths through the model for generating each sequence in turn are exam-
ined. There are many possible such paths for each sequence. This procedure would nor-
mally require a huge amount of time computationally. Fortunately, an algorithm, the
forward-backward algorithm, reduces the number of computations to the number of
steps in the model times the total length of the training sequences. This calculation pro-
vides a probability of the sequence, given all possible paths through the model, and,
from this value, the probability of any particular path may be found. Another algo-
rithm, the Baum-Welch algorithm, then counts the number of times a particular state-
to-state transition is used and a particular amino acid is required by a particular match
state to generate the corresponding sequence position.

3. A new version of the HMM is produced that uses the results found in step 2 to gener-
ate new transition probabilities and match-insert state compositions.

4. Steps 3 and 4 are repeated up to 10 more times until the parameters do not change sig-
nificantly.

5. The trained model is used to provide the most likely path for each sequence, as
described in Figure 4.16. The algorithm used for this purpose, the Viterbi algorithm,
does not have to go through all of the possible alignments of a given sequence to the
HMM to find the most probable alignment, but instead can find the alignment by a
dynamic programming technique very much like that used for the alignment of two
sequences, discussed in Chapter 3. The collection of paths for the sequences provides a
msa of the sequences with the corresponding match, insert, and delete states for each
sequence. The columns in the msa are defined by the match states in the HMM such
that amino acids from a particular match state are placed in the same column. For
columns that do not correspond to a match state, a gap is added.

6. The HMM may be used to search a sequence database for additional sequences that
share the same sequence variation. In this case, the sum of the probabilities of all possi-
ble sequence alignments to the model is obtained. This probability is calculated by the
forward component of the forward-backward algorithm described above. This analysis

and which amino acids were required by each match and insert state to produce the sequences. This training procedure leaves
amemory of the sequences in the model. As a consequence, the model will be able to give a better prediction of the sequences.
Once the model has been adequately trained, of all the possible paths through the model that can generate the sequence
NKYLT, the most probable should be the match-insert-3 match combination (as opposed to any other combination of
matches, inserts, and deletions). Likewise, the other sequences in the alignment would also be predicted with highest proba-
bility as they appear in the alignment; i.e., the last sequence would be predicted with highest probability by the path match-
match-delete-match. In this fashion, the trained HMM provides a multiple sequence alignment, such as shown in A. For each
sequence, the objective is to infer the sequence of states in the model that generate the sequences. The generated sequence is
a Markov chain because the next state is dependent on the current one. Because the actual sequence information is hidden
within the model, the model is described as a hidden Markov model.
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gives a type of distance score of the sequence from the model, thus providing an indi-
cation of how well a new sequence fits the model and whether the sequence may be
related to the sequences used to train the model. In later derivations of HMMs, the
score was divided by the length of the sequence because it was found to be length-
dependent. A z score giving the number of standard deviations of the sequence length-
corrected score from the mean length-corrected score is therefore used (Durbin et al.
1998).

Recall that for the Bayes block aligner, the initial or prior conditions were amino acid
substitution matrices, block numbers, and alignments of the sequences. The sequences
were then used as new data to examine the model by producing scores for every possible
combination of prior conditions. By using Bayes’ rule, these data provided posterior prob-
ability distributions for all combinations of prior information. Similarly, the prior condi-
tions of the HMM are the initial values given to the transition values and amino acid com-
positions. The sequences then provide new data for improving the model. Finally, the
model provides a posterior probability distribution for the sequences and the maximum
posterior probability for each sequence represented by a particular path through the
model. This path provides the alignment of the sequence in the msa; i.e., the sequence plus
matches, inserts, and deletes, as described in Figure 4.16.

The success of the HMM method depends on having appropriate initial or prior condi-
tions, i.e., a good prior model for the sequences and a sufficient number of sequences to
train the model. The prior model should attempt to capture, for example, the expected
amino acid frequencies found in various types of structural and functional domains in pro-
teins. As the distributions are modified by adding amino acid counts from the training
sequences, new distributions should begin to reflect common patterns as one moves
through the model and along the sequences. It is important that the model reflect not only
the patterns in the training sequences, but also pattern variations that might be present in
other members of the same protein family. Otherwise, the model will only recognize the
training sequences but not other family members. Thus, some smoothing of the amino
acid frequencies is desirable, but not to the extent of suppressing highly conserved pattern
information from the training sequences. Such problems are avoided by using a method
called regularization to avoid overfitting the data to the model. Basically, the method
involves using a carefully designed amino acid distribution as the prior condition and then
modifying this distribution in a manner that uses training information in a complemen-
tary manner.

Rather than using simple amino acid composition as a prior condition for the match
states in the HMM, amino acid patterns that capture some of the important features of
protein structure and function have been used with considerable success (Sjolander et al.
1996). Other prior conditions include using Dayhoff PAM or BLOSUM amino acid sub-
stitution matrices modified by adding additional counts (pseudocounts) to smooth the
distributions (Tatusov et al. 1994; Eddy 1996; Henikoff and Henikoff 1996; Sonnhammer
et al. 1997; and see Chapter 2). Sjolander et al. (1996) have prepared particularly useful
amino acid distributions called Dirichlet mixtures to use as prior information in the match
states of the HMM. These mixtures provide amino acid compositions that have proven to
be useful for the detection of weak but significant sequence similarity. As an example, the
amino acid frequencies that are characteristic of a particular set of nine blocks in the
BLOCKS database have been determined. These blocks represent amino acid frequencies
that are favored in certain chemical environments such as aromatic, neutral, and polar
residues and are useful for detecting such environments in test sequences. The nine-com-
ponent system has been used successfully for producing an HMM for globin sequences
(Hughey and Krogh 1996). To use these frequencies as prior information, they are treated
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as possible posterior distributions that could have generated the given amino acid fre-
quencies as posterior probabilities. The probability of a particular amino acid distribution
given a known frequency distribution, i.e., 100 A, 67 G, 5 C, etc., where pA is the proba-
bility of A given by the frequency of A, pG the probability of G, etc., and 7 is the total num-
ber of amino acids given by the multinomial distribution

The prior distribution for the multinomial distribution is the Dirichlet distribution
(Carlin and Louis 1996), whose formulation is similar to that given in Equation 6 with a
similar set of parameters but with factorial and powers reduced by 1. The idea behind using
this particular distribution is that if additional sequence data with a related pattern are
added, then by the Bayesian procedure of multiplying prior probabilities with the likeli-
hood of the new data to obtain the posterior distribution, the probability of finding the
correct frequency of amino acids is favored statistically. Because the amino acid frequen-
cies in the test sequences could be any one of several alternatives, a prior distribution that
reflects these several choices is necessary. There is a method for weighting the prior distri-
butions expected for several different multinomial distributions into a combined frequen-
cy distribution, the Dirichlet mixture. Calculation of these mixtures is a complex mathe-
matical procedure (Sjolander et al. 1996). Dirichlet mixtures recommended for use in
aligning proteins by the HMM method have been described previously (Karplus 1995) and
are available from http://www.cse.ucsc.edu/research/compbio/. After the prior amino acid
frequencies are in place in the match states of the model, these are modified by training the
HMM with the sequences, as described in steps 2 and 3 above. For each match state in the
model, a new frequency for each amino acid is calculated by dividing the sum of all new
and prior counts for that amino acid by the new total of all amino acids. In this fashion,
the new HMM (step 4 above) reflects a combination of expected distributions averaged
over patterns in the Dirichlet mixture and patterns exhibited in the training sequences. A
similar method is used to refashion the transition probabilities in the HMM during train-
ing following manual insertion of initial values.

Another consideration in using HMMs is the number of sequences. If a good prior
model such as the above Dirichlet distribution is used, it should be possible to train the
HMM with as few as 20 sequences (SAM manual; Eddy 1996; Hughey and Krogh 1996). In
general, the smaller the sequence number, the more important the prior conditions. If the
number of sequences is >50, the initial conditions play a lesser role because the training
step is more effective. As with any msa method, the more sequence diversity, the more
challenging the task of aligning sequences with HMMs. HMMs are also more effective if
methods to inject statistical noise into the model are used during the training procedure.
As the model is refashioned to fit the sequence data, it sometimes goes into a form that
provides locally optimal instead of globally optimal alignments of the sequences. One of
several noise injection methods (Baldi et al. 1994; Krogh et al. 1994; Eddy et al. 1995; Eddy
1996; Hughey and Krogh 1996) may be used in the training procedure. One method called
simulated annealing is used by SAM (Hughey and Krogh 1996). A user-defined number of
sequences are generated from the model at each cycle and the counts so generated are
added to those from the training sequences. The noise generated in this way is reduced as
the cycle number is increased. Finally, the HMM program SAM has a built-in feature of
model surgery during training. If a match state is used by fewer than half of the sequences,
it is deleted. These same sequences then have to use an insert state in the revised model.
Similarly, if an insert state is used by more than half of the sequences, a number of addi-
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tional match states equal to the average number of insertions is added, and the model has
to be revised accordingly. These fractions may be varied in SAM to test the effect on the
type of HMM model produced (Hughey and Krogh 1996).

In trying to produce an HMM for a set of related sequences, the recommended proce-
dure is to produce several models by varying the prior conditions. Using regularization by
adding prior Dirichlet mixtures to the match states produces models that are more repre-
sentative of the protein family from which the training sequences are derived. Varying the
noise and model surgery levels is another way to vary the training procedure and the HMM
model. The best HMM model is the one that predicts a family of related sequences with the
lowest and most narrow distribution of NLL scores. An example of a portion of an HMM
trained on a set of globin sequences is shown in Figure 4.17.

Motif-based Hidden Markov Models

The program Meta-MEME uses the HMM method to find motifs (conserved sequence
domains) in a set of related protein sequences and the spacer regions between them
(Grundy et al. 1997) and is built in part on the HMM program HMMER (Eddy et al. 1995).
A similar method was originally used to analyze prokaryotic promoters with two conserved
patterns separated by a variable spacer region (Cardon and Stormo 1992). A Meta-MEME
analysis may be performed at http://www.sdsc.edu/MEME using the University of Califor-
nia at San Diego Supercomputing Center. The use of hidden Markov models for produc-
ing a global msa is described in the above section. A problem with HMMs is that the train-
ing set has to be quite large (50 or more sequences) to produce a useful model for the
sequences. For a smaller number of sequences, it is possible to obtain a model if suitable
prior data are used, and an amino acid frequency that is a mixture of frequencies charac-
teristic of certain structural domains (the Dirichlet mixture) is used as prior information
of the match states of the model. This mixture is a reasonable guess of combinations of
amino acid patterns that are likely to be found. A difficulty in training the HMM residues
is that many different parameters must be found (the amino acid distributions, the num-
ber and positions of insert and delete states, and the state transition frequencies add up to
thousands of parameters) to obtain a suitable model, and the purpose of the prior and
training data is to find a suitable estimate for all of these parameters. When trying to make
an alignment of short sequence fragments to produce a profile HMM, this problem is
worsened because the amount of data for training the model is even further reduced.

Two methods are used by Meta-MEME to circumvent this problem. First, another pat-
tern-finding algorithm, the EM algorithm (discussed on p. 173), is used to locate ungapped
regions that match in the majority of the sequences. Second, a simplified HMM with a
much reduced number of parameters is produced. The model includes a series of match
states that model the patterns located by MEME with transition probabilities of 1 between
them and a single insert state between each of these patterns, as illustrated in Figure 4.18.
As a result, fewer parameters need to be used, mostly for the amino acid frequencies in the
match states.

The most probable order and spacing of the patterns is next found. Another program
(Motif Alignment and Search Tool, or MAST; Bailey and Gribskov 1997) is used for this
purpose. MAST searches a sequence database for the patterns and reports the database
sequences that have the statistically most significant matches. The order and spacing of the
patterns found in the highest-scoring database sequences are then used by Meta-MEME as
a basis for designing the number of match and insert states and the transition probabilities
for the insert states. The match states are filled with modified Dirichlet mixtures (Baylor
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Figure 4.17. HMM trained for recognition of globin sequences. Circles in the top row are delete states that include the posi-
tion in the alignment; the diamonds in the second row are insert states showing the average length of the insertion, and the
rectangles in the bottom row show the amino acid distribution in the match states: V is common at match position 1, L at 2,
and so on. The width of each transition line joining these various states indicates the extent of use of that path in the training
procedure, and dotted lines indicate a rarely used path. The most used paths are between the match states, but about one-half
of the sequences use the delete states at model positions 56-60. Thus, for most of the sequences, the msa or profile will show
the first two columns aligned with a V followed by an L, but at 56-60, about one-half of the sequences will have a 5-amino-
acid deletion. (Reprinted, with permission, from Krogh et al. 1994 [copyright Academic Press].)

and Gribskov 1996), and the model is trained by the motif models found by MEME. For
the 4Fe-4S ferredoxins, a measure of the success of the HMM for database search, the
ROCs score (see p. 165), was approximately 0.6-0.8 for 4 to 8 training sequences, com-
pared to 0.95-0.96 using an evolutionary profile of 6 to 12 sequences. However, this fam-
ily was one of the most difficult ones to model, and other families produced an ROCsg of
0.9 or better when trained by 20 or more sequences.
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Motif 1 Motif 2

Figure 4.18. The HMM used by Meta-MEME to estimate motifs in sequences. (Reprinted, with
permission of Oxford University Press, from Grundy et al. 1997.)

Analysis of msas for conserved blocks of sequence leads to production of the position-spe-
cific scoring matrix, or PSSM. An example of a PSSM produced by the MEME Web site is
shown in Figure 4.15G. The PSSM may be used to search a sequence to obtain the most
probable location or locations of the motif represented by the PSSM. Alternatively, the
PSSM may be used to search an entire database to identify additional sequences that also
have the same motif. Consequently, it is important to make the PSSM as representative of
the expected sites as possible. The quality and quantity of information provided by the
PSSM also varies for each column in the motif, and this variation profoundly influences
the matches found with sequences. This situation can be accurately described by informa-
tion theory, and the results can be displayed by a colored graph called a sequence logo (see
Fig. 4.19).

The PSSM is constructed by a simple logarithmic transformation of a matrix giving the
frequency of each amino acid in the motif. Two considerations arise in trying to tune the
PSSM so that it adequately represents the training sequences. First, if the number of
sequences with the found motif is large and reasonably diverse, the sequences represent a
good statistical sampling of all sequences that are ever likely to be found with that same
motif. If a given column in 20 sequences has only isoleucine, it is not very likely that a dif-
ferent amino acid will be found in other sequences with that motif because the residue is
probably important for function. In contrast, another column in the motif from the 20
sequences may have several amino acids, and some amino acids may not be represented at
all. Even more variation may be expected at that position in other sequences, although the
more abundant amino acids already found in that column would probably be favored.
Thus, if a good sampling of sequences is available, the number of sequences is sufficiently
large, and the motif structure is not too complex, it should, in principle, be possible to
obtain frequencies highly representative of the same motif in other sequences also
(Henikoff and Henikoff 1996; Sjolander et al. 1996).

However, the number of sequences for producing the motif may be small, highly diverse,
or complex, giving rise to a second level of consideration. If the data set is small, then unless
the motif has almost identical amino acids in each column, the column frequencies in the
motif may not be highly representative of all other occurrences of the motif. In such cases,
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it is desirable to improve the estimates of the amino acid frequencies by adding extra amino
acid counts, called pseudocounts, to obtain a more reasonable distribution of amino acid
frequencies in the column. Knowing how many counts to add is a difficult but fortunately
solvable problem. On the one hand, if too many pseudocounts are added in comparison to
real sequence counts, the pseudocounts will become the dominant influence in the amino
acid frequencies, and searches using the motif will not work. On the other hand, if there are
relatively few real counts, many amino acid variations may not be present because of the
small sample of sequences. The resulting matrix would then only be useful for finding the
sequences used to produce the motif. In such a case, the pseudocounts will broaden the evo-
lutionary reach of the profile to variations in other sequences. Even in this case, the pseu-
docounts should not drown out but serve to augment the influence of the real counts. In
summary, relatively few pseudocounts should be added when there is a good sampling of
sequences, and more should be added when the data are more sparse.

The goal of adding pseudocounts is to obtain an improved estimate of the probability
Pea that amino acid a is in column ¢ in all occurrences of the blocks, and not just the ones
in the present sample. The current estimate of p,, is f,, the frequency of counts in the data.
A simplified Bayesian prediction improves the estimate of p,, by adding prior information
in the form of pseudocounts (Henikoff and Henikoff 1996):

where 1., and b, are the real counts and pseudocounts, respectively, of amino acid a in col-
umn ¢, N and B, are the total number of real counts and pseudocounts, respectively, in the
column, and f., = n,, /N.. It is obvious that as b,, becomes larger, the pseudocounts will
have a greater infuence on p.,. Furthermore, not only the types of pseudocounts but also the
total number added to the column (B,) will influence p,,. Finally, fractions such as p, are
used to produce the log odds form of the motif matrix, the PSSM, which is the most suit-
able representation of the data for sequence comparisons. A count and probability of zero
for an amino acid a in a given column, which is quite common in blocks, may not be con-
verted to logarithms. Addition of a small number of b, will correct this problem without
producing a major change in the PSSM values. An equation similar to Equation 7 is used in
the Gibbs sampler (p. 177), except that the number of sequences is N — 1.

Pseudocounts are added based on simple formulas or on the previous variations seen in
aligned sequences. The amino acid substitution matrices, including the Dayhoff PAM and
BLOSUM matrices, provide one source of information on amino acid variation. Another
source is the Dirichlet mixtures derived as a posterior probability distribution from the
amino acid substitutions observed in the BLOCKS database (see HMMs; Sjélander et al.
1996).

One simple formula that has worked well in some studies is to make B in Equation 7
equal to YN, where N is the number of sequences, and to allot these counts to the amino
acids in proportion to their frequencies in the sequences (Lawrence et al. 1993; Tatusov et
al. 1997). As N increases, the influence of pseudocounts will decrease because VN will
increase more slowly. The main difficulties with this method are that it does not take into
account known substitutions of amino acids in alignments and the observed amino acid
variations from one column in the motif to the next, and it does not add enough pseudo-
counts when the number of sequences is small.

The information in scoring matrices may be used to produce an average sequence pro-
file, as illustrated in Figure 4.12. Rather than count amino acids, the scoring table values
are averaged between each possible 20 amino acids and those amino acids found in the col-
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umn of the scoring matrix. Zero counts in a column are not a problem because amino
acids not present are not used in the calculations. Because these averaging methods do not
take into account the number of sequences in the block, they do not have the desirable
effect of a reduced influence when there is a large number of sequences.

Another method of using the information from amino acid substitution matrices is to
base pseudocounts on these matrices. Recall the log odds form of the matrices is derived
by taking the logarithm of the frequency of substitution gy, of amino acid i for amino acid
a divided by the frequency of occurrence of amino acid g, p,. Then, b., may be estimated
from the total number of pseudocounts in the column by (Henikoff and Henikoff 1996),

b, in column c can also be made to depend on the observed data in that column (Tatusov
et al. 1997), which is given by multiplying B. by the following conditional probabilities.

where n,; is the real count of amino acid  in column c.

The total number of pseudocounts in each column needs also to be estimated. As
described above, one estimate is to make B, for each column equal to VN, where N is the
number of sequences, but this method does not take into account the differences between
columns and, for a small number of sequences, the total number of pseudocounts is not
sufficient. Allowing B, to be a constant that can exceed N, overcomes this limitation but
still does not take into account variations in amino acid frequencies between columns,
such that a column with conserved amino acids should receive fewer pseudocounts. Using
the number of different amino acids in column ¢, R, , as an indicator, B, has been estimat-
ed by the formula (Henikoff and Henikoff 1996)

where m is a positive number derived from trial database searches and m =< m X B, < min
( m X N, m/20) (the latter term meaning the minimum of the two given values). By this
formula and a given value of m, when N, < m X 20, the total number of pseudocounts B,
is greater, and when N, > m X 20, B, is smaller than the total number of real counts, N,
regardless of the value of R.. The number of pseudocounts is also reduced when R, =1.In
a test search of the SwissProt and Prosite catalogs with various values of 11, a value of 5-6
for m produced the most efficient PSSMs for finding known family members. Of the sev-
eral methods for making PSSMs discussed above, the one with pseudocounts derived by
Equations 9 and 10 was most successful. This search was performed with PSSMs derived
from blocks with amino acid counts also weighted to account for redundancy (Henikoff
and Henikoff 1996). However, pseudocounts added from Dirichlet mixtures, which also
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vary in each column of the scoring matrix, are also very effective (Henikoff and Henikoff
1996; Tatusov et al. 1997).

Once pseudocounts have been added to real counts of amino acids in each column of
the motif, the PSSM may be calculated. The PSSM has one column (or row) for each posi-
tion in the motif and one row (or column) for each amino acid, and the entries are log
odds entries. Each entry is derived by taking the logarithm to the base 2 (bit units, but
sometimes also natural logarithms in nat units are used) of the total of the real counts plus
pseudocounts for each amino acid, divided by the probability of that amino acid (b ! N.).
An example of a PSSM produced by MEME is shown in Figure 4.15G.

As a sequence is searched with the PSSM, the value of the first amino acid in the
sequence is looked up in the first column of the PSSM, then the value of the second amino
acid in the matrix, and so on, until the length scanned is the same as the motif width rep-
resented by the matrix. All the log odds scores are added to produce a summed score for
start position 1 in the sequence. The process is repeated starting at the second position in
the sequence, and so on, until there is not enough sequence left. The highest log odds scor-
ing sequence positions have the closest match statistically to the PSSM. Adding logarithms
in this manner is the equivalent of mutiplying the probabilities of the amino acids at each
sequence position. To convert each summed log odds score (S) to a likelihood or odds
score of the sequence matching the PSSM, use the formula odds score = 25, These odds
scores may be summed and each individual score divided by the sum to normalize them
and to thereby produce a probability of the motif at each sequence location.

The above description and example are of using a PSSM to define motifs in protein fam-
ilies. PSSM are also used to define DNA sequence patterns that define regulatory sites, such
as promoters or exon—intron junctions in genomic sequences. These topics are discussed
in Chapter 8.

Information Content of the PSSM

The usefulness of a PSSM in distinguishing real sequence patterns from background may
be measured. The unit of measure is the information content in bits. The PSSM described
above gives the log odds score for finding a particular matching amino acid in a target
sequence corresponding to each motif position. Variations in the scores found in each col-
umn of the table are an indication of the amino acid variation in the original training
sequences that were used to produce the motif. In some columns, only one amino acid may
have been present, whereas in others several may have been present. The columns with
highly conserved positions have more information than do the variable columns and will
be more definitive for locating matches in target sequences. There is a formal method
known as information theory for describing the amount of information in each column
that is useful for evaluating each PSSM. The information content of a given amino acid
substitution matrix was previously introduced (p. 83) and is discussed in greater detail
here. T. Schneider has prepared a Web site that gives excellent tutorials and a review on the
topic of information theory, along with methods to produce sequence logos (Schneider
and Stephens 1990) at http://www-Immb.ncifcrf.gov/ ~toms/sequencelogo. html.

To illustrate the concepts of information and uncertainty (see above Web site), consid-
er 64 cups in a row with an object hidden under one of them. The goal is to find the object
with as few questions as possible. The solution is quite simple. First, ask whether the object
is hidden under the first or second half of the cups. If the answer is the first 32, then ask
which half of that 32, the first 16 or the second 16, and so on. The sequential questions
reduce the possibilities from 64-32-16-8-4-2-1, and six questions will therefore suffice to
locate the object. This number is also a measure of the amount of uncertainty in the data
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Sequence Logos

because this number of questions must be asked to find the object. After the first question
has been asked, uncertainty has been reduced by 1, so that only five questions then need to
be asked to find the object. The uncertainty is zero when the object is found.

A method to calculate uncertainty (the number of questions to be asked) may be derived
from the probability of finding the object under a given cup [p(object) = 1/64]. Uncer-
tainty is found by taking the negative logarithm to the base 2 of 1/64 [—log,(1/64) = 6
bits]. A situation similar to the hidden object example is found with amino acids in the
columns of a PSSM. Here, the interest is to find which amino acid belongs at a particular
column in the motif. When we have no information at all, since there are 20 possible choic-
es in all, the amount of uncertainty is log,20 = 4.32.

The data from the PSSM provide information that reduces this uncertainty. If only one
amino acid is observed in a column of the PSSM, the uncertainty is zero because there are
no other possibilities. If two amino acids are observed with equal frequency, there is still
uncertainty as to which one it is, and one question must be asked to find the answer, or
uncertainty = 1. The formula for finding the uncertainty in this example is the sum of the
fractional information provided by each amino acid, or — [0.5 X log,0.5 + 0.5 X log,0.5]
= 1. In general, the average amount of uncertainty (H.) in bits per symbol for column c of
the PSSM is given by

where p; is the frequency of amino acid i in column ¢ and is estimated by the frequency of
occurrence of each amino acid (b./N.) and logx(pic) is the log odds score for each amino
acid in column c¢. Uncertainty for the entire PSSM may then be calculated as

H is also known as the entropy of the PSSM position in information theory because the
higher the value, the greater the uncertainty. The lower the value of the uncertainty H for
the PSSM, the greater the ability of the PSSM to distinguish real occurrences of the motif
from random matches. Conversely, the higher the information content, calculated as
shown below, the more useful the PSSM.

Sequence logos are graphs that illustrate the amount of information in each column of a
motif. The logo is derived from sequence information in the PSSM described above. Con-
served patterns in both protein and DNA sequences can be represented by sequence logos.
A program for producing logos, along with several examples, is available from http://www-
Immb.ncifcrf.gov/~toms/sequencelogo.html. The Web site of S.E. Brenner at
http://www.bio.cam.ac.uk/seqlogo/ will produce sequence logos from an input alignment
using the Gibbs sampler method, and an implementation of an extension of the logo
method for structural RNA alignment (Gorodkin et al. 1997) is at http://www.cbs.dtu.dk/
gorodkin/appl/plogo.html. A logo representation for the BLOCKS database has been
implemented (Henikoff et al. 1995) and may be viewed when the information on a partic-
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ular block is retrieved from the BLOCKS Web server (http://www.blocks.thcrc.org/). An
example of a Block logo is shown in Figure 4.19. Another example of a simple graph of
information content is given in Figure 4.15C. In this case, the information for the entire
motif has been calculated by the MEME server by summing the values in each column to
a total value of 22 bits. Although logos are primarily used with ungapped motifs and
sequence patterns, logos of alignments that include gaps in some sequence positions may
also be made. If such is the case, then the height of the column with gaps is reduced by the

proportion of sequence positions that are not gaps.
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Figure 4.19. A sequence logo. The logo represents the amount of information in each column of a
motif corresponding to the values in PSSM of the motif discussed above. The horizontal scale rep-
resents sequential positions in the motif. The height of each column gives the decrease in uncertainty
provided by the information in that column. The higher the column, the more useful that position
for finding matches in sequences. In each column are shown symbols of the amino acids found at
the corresponding position in the motif, with the height of the amino acid proportional to the fre-
quency of that amino acid in the column, and the amino acids shown in decreasing order of abun-
dance from the top of the column. From each logo, the following information may thus be found:
The consensus may be read across the columns as the top amino acid in each column, the relative
frequency of each amino acid in each column of the motif is given by the size of the letters in each
column, and the total height of the column provides a measure of how useful that column is for
reducing the level of uncertainty in a sequence matching experiment. Note that the highest values
are for columns with less diversity.
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The height of each logo position is calculated as the amount by which uncertainty has
been decreased by the available data; in this case, the amino acid frequencies in each col-
umn of the motif. The relative heights of each amino acid within each column are calcu-
lated by determining how much each amino acid has contributed to that decrease. The
uncertainty at column ¢ is given by Equation 11. Because the maximum uncertainty at a
position/column when no information is available is log,20 = 4.32, as more information
about the motif is obtained by new data, the decrease in uncertainty (or increase in the
amount of information) R, is

where H, is given by Equation 11 and €, is a correction factor for a small sequence num-
ber n. R, is used as the total height of the logo column. The height of amino acid a at posi-
tion ¢ in the motif logo is then given by f,. X R..

The above description applies to protein sequences. Sequence logos are also produced
for DNA sequences. The methodology is very similar to the above except that there are
only four possible choices for each logo location. Hence, the maximum amount of uncer-
tainty is log,4 = 2. The above method assumes that the sequence pattern is less random
than the background or expected sequence variation, and this assumption limits the abili-
ty of the method to locate subtle patterns in sequences.

An improved method for finding more subtle patterns in sequences is called the relative
entropy method (Durbin et al. 1998). In this case, differences between the observed
frequencies and background frequencies are used (Gorodkin et al. 1997), and the decrease
in uncertainty from background to observed (or amount of information) in bits is given by

where b; is the background frequency of residue i in the organism and the maximum
uncertainty in column c¢ is given by —2.1; [pic log2(1/b;)]. When background frequencies
are taken into account, and the column frequency is less than the background frequency,
it is possible for the information given by a particular residue in a logo column to be neg-
ative. To accommodate this change, the corresponding sequence character is inverted in
the logo to indicate a less than expected frequency. There are also two ways used to illus-
trate the contribution of each character through the height of the symbol. The first method
is described above. The second method is to display symbol heights in proportion to the
ratio of the observed to the expected frequency, i.e., by the fraction (p;/b; ) / (Zan i pidbi)
for each symbol i. Gaps are included in the analysis by using pg,, = 1 and, as a result, will
always give a negative contribution to the information (Gorodkin et al. 1997).

Once a multiple sequence alignment has been obtained by the global msa program, it may
be necessary to edit the sequence manuaily to obtain a more reasonable or expected align-
ment. Several considerations must be kept in mind when choosing a sequence editor,
which should include as many of the following features as possible: (1) provision for dis-
playing the sequence on a color monitor with residue colors to aid in a clear visual repre-
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sentation of the alignment, (2) recognition of the multiple sequence format that was out-
put by the msa program and maintenance of the alignment in a suitable format when the
editing is completed, (3) provision of a suitable windows interface, allowing use of the
mouse to add, delete, or move sequence followed by an updated display of the alignment.
In addition, there are other types of editing that are commonly performed on msas such
as, for example, shading conserved residues in the alignment.

The large number of multiple sequence alignment formats that are in use were discussed
in Chapter 2. Two commonly encountered examples are the Genetics Computer Group’s
MSF format and the CLUSTALW ALN format. Because these formats follow a precise out-
line, one may be readily converted to another by computer programs. READSEQ by D.G.
Gilbert at Indiana University at Bloomington is one such program. This program will run
on almost any computer platform and may be obtained by anonymous FTP from
ftp.bio.indiana.edu/molbio/readseq. There is also a Web-based interface for READSEQ
from Baylor College of Medicine at http://dot.imgen.bcm.tmc.edu:9331/seq-util/seq-
utilLhtml/. A software package SEQIO, which provides C program modules for conversion
of sequence files from one format to another, is available by anonymous FTP from ftp.pas-
teur.fr/pub/GenSoft/unix/programming/seqio-1.2.tar.gz; documentation is available at
http://bioweb.pasteur.fr/docs/doc-gensoft/seqio/.

A short list of the many available programs that have or exceed the above-listed features
is discussed below. For a more comprehensive list, visit the catalog of software page at Web
address http://www.ebi.ac.uk/biocat/.

1. CINEMA (Colour Interactive Editor for Multiple Alignments) at http://www.biochem.
ucl.ac.uk/bsm/dbbrowser/CINEMA2.02/kit.htm! is a broadly functional program for
sequence editing and analysis, including dot matrix analysis. It features drag-and-drop
editing, sequence shifting to left or right, viewing of different parts of an alignment using
the split-screen option, multiple motif selection and manipulation, and a number of
added features such as viewing of protein structures. CINEMA was developed by A.W.R.
Payne, D.]J. Parry-Smith, A.D. Michie, and T.K. Attwood. CINEMA is an applet that runs
under a Web browser and therefore will run on almost any computer platform.

2. GDE (Genetic Data Environment) provides a general interface on UNIX machines for
sequence analysis, sequence alignment editing, and display (Smith et al. 1994) and is
available from several anonymous FTP sites including ftp.ebi.ac.uk/pub/software/unix.
GDE is described at http://bimas.dcrt.nih.gov/gde_sw.html, and http://www.tigr.org/
~jeisen/GDE/GDE.html. GDE features are incorporated into the Seqlab interface for
the GCG software, vers. 9. This interface requires communication with a host UNIX
machine running the Genetics Computer Group software. Interface with MS-DOS or
Macintosh is possible if the computer is equipped with the appropriate X-Windows
client software.

3. GeneDoc is an alignment editing and display editor by K. Nicholas and H. Nicholas of
the Pittsburgh Supercomputing Center for MSF-formatted msas. It can also import files
in other formats. GeneDoc can move residues by inserting or deleting gap, and features
drag-and-drop editing. As the alignment is edited, a new alignment score is calculated
by sum of pairs method or based on a phylogenetic tree. GeneDoc is available from
http://www.psc.edu/biomed/genedoc/ and runs under MS Windows.

4. MACAW is both a local multiple sequence alignment program and a sequence editing
tool (Schuler et al. 1991). Given a set of sequences, the program finds ungapped blocks
in the sequences and gives their statistical significance. Later versions of the program
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Figure 4.20. GeneDoc, a multiple sequence alignment editor with many useful features. Shown is an illustrative multiple
sequence alignment of three DNA repair genes similar to the S. cerevisiae Radl gene. The sequences were aligned with
CLUSTALW, and the FASTA-formatted alignment (Chapter 2) was imported into GeneDoc on a PC.

find blocks by one of three user-chosen methods: by searching for maximum segment
pairs or common patterns present in the sequences scored by a scoring matrix such as
PAM250 or BLOSUM matrices (the methods used by the BLAST algorithm), by using
the Gibbs sampling strategy, a statistical method, or by searching for user-provided pat-
terns provided in a particular format called a regular expression. Executable programs
that run under MS-DOS Windows, Macintosh, and other computer platforms are avail-
able by anonymous FTP from ncbi.nlm.nih.gov/pub/schuler/macaw.

Sequence Formatters

1. Boxshade is a formatting program by K. Hofmann for marking identical or similar
residues in msas with shaded boxes, and is available by anonymous FTP from
http://www.isrec.isb-sib.ch/sib-isrec/boxshade. The Web server at http://www.ch.emb-
net.org/software/BOX_form.html takes a multiple-alignment file in either the Genetics
Computer Group MSF format or CLUSTAL ALN format and can output a file in many
forms including Postscript/EPS and PICT for editing on Macintosh and MS-DOS
machines.

2. CLUSTALX is a sequence formatting tool that provides a Windows interface for a
CLUSTALW msa and is available for many computer platforms, including MS-DOS
and Macintosh machines by anonymous FTP from ftp-igbmc.u-strasbg.fr/pub/
ClustalX/ (Thompson et al. 1997).
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THE PREVIOUS TWO CHAPTERS DISCUSS the alignment of protein and nucleic acid sequences.
The methods used either align entire sequences or search for common patterns in the
sequences. In either case, the objective is to locate a set of sequence characters in the same
order in the sequences. Nucleic acid sequences that specify RNA molecules have to be com-
pared differently. Sequence variations in RNA sequences maintain base-pairing patterns
that give rise to double-stranded regions (secondary structure) in the molecule. Thus,
alignments of two sequences that specify the same RNA molecules will show covariation at
interacting base-pair positions, as illustrated in Figure 5.1. In addition to these covariable
positions, sequences of RNA-specifying genes may also have rows of similar sequence char-
acters that reflect the common ancestry of the genes.
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Figure 5.1. Complementary sequences in RNA molecules maintain RNA secondary structure.
Shown is a simple stem-and-loop structure formed by the RNA strand folding back on itself.
Molecule A depends on the presence of two complementary sequences CGA and UCG that are base-
paired in the structure. In B, two sequence changes, G = A and C — U, which maintain the same
structure, are present. Aligning RNA sequences required locating such regions of sequence covaria-
tion that are capable of maintaining base-pairing in the corresponding structure.

INTRODUCTION

As genomic sequences of organisms become available, it is important to be able to identi-
fy the various classes of genes, including the major class of genes that encodes RNA
molecules. There are a large number of Web sites listed in Table 5.1 that provide programs

Table 5.1.  RNA databases and RNA analysis Web sites

Site or resource

Web address

Reference

5S Ribosomal RNA data bank

5S rRNA database

Comparative RNA Web site

GenLang linguistic sequence
analyzer

Gobase for mitochondrial
sequences

http://rose.man.poznan.pl/5SData/

and mirrored at http://userpage.chemie.fu-berlin.

de/fb_chemie/ibc/agerdmann/5S_rRNA.html
http://www.bchs.uh.edu/~nzhou/temp/5snew.html
http://www.rna.icmb.utexas. edu/
http://www.cbil.upenn.edu/

http://alice.bch.umontreal.ca/genera/gobase/
gobase.html

Szymanski et al. (1999)

Shumyatsky and Reddy (1993)
see Web site
Dong and Searls (1994)

Korab-Laskowska et al. (1998)
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Site or resource Web address Reference

Intron analysis—Saccharomyces http://www.cse.ucsc.edu/research/compbio/ Spingola et al. (1999)
cerevisiae yeast_introns.html

tRNA genes, higher plant ftp://ftp.ebi.ac.uk/pub/databases/plmitrna/ Ceci et al. (1999)
mitochondria

MFOLD minimum energy RNA  http://bioinfo.math.rpi.edu/~zukerm/rna/ Zuker et al. (1991)
configuration

Nucleic acid database and http://ndbserver.rutgers.edu/ Berman et al. (1998)
structure resource

Pseudobase—pseudoknot http://wwwbio.leidenuniv.nl/~batenburg/pkb.html see Web page

database maintained by E. van
Batenburg, Leiden University

Ribonuclease P database Web site  http://jwbrown.mbio.ncsu.edu/RNaseP/ Brown (1999)
home.html
Ribosomal RNA database http://www.cme.msu.edu/RDP/ Maidak et al. (1999)
project (RDP 1I)
Ribosomal RNA mutation http://www.fandm.edu/Departments/Biology/ Triman and Adams (1997)
databases Databases/RNA.html
RiboWeb Project—3D http://www-smi.stanford.edu/projects/helix/ Chen et al. (1997)
models of E. coli 30S ribo3dmodels/index.html
ribosomal subunit and
16s rfRNA

RNA aptamer sequence database  http://speak.icmb.utexas.edu/ellington/aptamers.html  see Web site
(University of Texas)

RNA editing Web site, UCLA http://www.lifesci.ucla.edu/RNA/index.html Simpson et al. (1998)

RNA editing, uridine insertion/ http://www.lifesci.ucla.edu/RNA/trypanosome/ Simpson et al. (1998)
deletion

RNA modification database http://medlib.med.utah.edu/RNAmods/ Limbach et al. (1994);

Rozenski et al. (1999)

RNA secondary structures, http://www.rna.icmb.utexas.edu Gutell (1994); Schnare et al.
Group I introns, 16S rRNA, (1996 and references therein)
23S rRNA

RNA structure database http://www.rnabase.org/ see Web page

RNA world at IMB Jena http://www.imb-jena.de/RNA.html Siihnel (1997)

rRNA-Database of ribosomal http://rrna.uia.ac.be/ De Rijk et al. (1992, 1999)
subunit sequences

Signal recognition particle http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html Samuelsson and Zwieb (2000)
database

Small RNA database http://mbcr.bcm.tme.edu/smallRNA/smallrna.html see Web page

snoRNA database for http://rna.wustl.edu/snoRNAdb/ Lowe and Eddy (1999)
S. cerevisiae

tmRNA?* database http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html Wower and Zwieb (1999)

tmRNA® Web site http://www.indiana.edu/~tmrna/ Williams (1999)

tRNAscan-SE search server http://www.genetics.wustl.edu/eddy/tRNAscan-SE/ Lowe and Eddy (1997)

tRNA and tRNA gene http://www.uni-bayreuth.de/departments/ Sprinzl et al. (1998)
sequences - biochemie/sprinzl/trna/

u RNA database http://psyche.uthct.edu/dbs/uRNADB/uRNADB.html  Zwieb (1997)

Vienna RNA package for RNA http://www.tbi.univie.ac.at/~ivo/RNA/ Hofacker et al. (1998);
secondary structure prediction Wuchty et al. (1999)
and comparison

Viroid and viroid-like RNA http://www.callisto.si.usherb.ca/~jpperra Lafontaine et al. (1999)
sequences

*tmRNA adds a carboxy-terminal peptide tag to the incomplete protein product from a broken mRNA molecule and thereby tar-
gets the protein for proteolysis.
A list of RNA Web sites and databases is available at http://bioinfo.math.rpi.edu/~zukerm/ and at http://pundit.colorado.edu:8080;.
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and guest sites for RNA analysis or for access to databases of RNA molecules and
sequences. These molecules perform a variety of important biochemical functions, includ-
ing translation; RNA splicing, processing, and editing; and cellular localization. As with
proteins, RNA-specifying genes may be identified by using the unknown gene as a query
sequence for DNA sequence similarity searches, as described in Chapter 7. If a significant
match to the sequence of an RNA molecule of known structure and function is found, then
the query molecule should have a similar role. For some small molecules, the amount of
sequence variation necessitates the use of more complex search methods, described later in
this chapter.

A computational method for predicting the most likely regions of base-pairing in an
RNA molecule has been designed, just given the sequence, thus providing an ab initio
prediction of secondary structure. From the many possible choices of complementary
sequences that can potentially base-pair, the compatible sets that provide the most
energetically stable molecules are chosen. Structures with energies almost as stable
as the most stable one may also be produced, and regions whose predictions are the
most reliable can be identified from such an analysis. Sequence variations found in re-
lated sequences may also be used to predict which base pairs are likely to be found in
each of the molecules. One variation of RNA structure prediction methods will pre-
dict a set of sequences that are able to form a particular structure. Methods for pre-
dicting three-dimensional structures from sequence are also being developed (see
http://bioinfo.math.rpi.edu/~zuker/rna/).

Another type of RNA secondary structure prediction method takes into account con-
served patterns of base-pairing that are conserved during evolution of a given class of RNA
molecules. Sequence positions that base-pair are found to vary at the same time during
evolution of RNA molecules so that structural integrity is maintained. For example, if two
positions G and C form a base pair in a given type of molecule, then sequences that have
C and G reversed, or A and U or U and A at the corresponding positions, would be con-
sidered reasonable matches. These patterns of covariation in RNA molecules are a mani-
festation of secondary structure that lead to a structural prediction. The computational
challenge is to discover these covariable positions against the background of other
sequence changes.

Like protein secondary structure, RNA secondary structure can be conveniently viewed as
an intermediate step in the formation of a three-dimensional structure. RNA secondary
structure is composed primarily of double-stranded RNA regions formed by folding the
single-stranded molecule back on itself. To produce such double-stranded regions, a run
of bases downstream in the RNA sequence must be complementary to another upstream
run so that Watson—Crick base-pairing between the complementary nucleotides G/C and
A/U (analogous to the G/C and A/T base pairs in DNA) can occur. In addition, however,
G/U wobble pairs may be produced in these double-stranded regions. As in DNA, the G/C
base pairs contribute the greatest energetic stability to the molecule, with A/U base pairs
contributing less stability than G/C, and G/U wobble base pairs contributing the least.
From the RNA structures that have been solved, these base pairs and a number of addi-
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A. Single-stranded RNA B. Double-stranded RNA helix of
stacked base pairs
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Figure 5.2. Types of single- and double-stranded regions in RNA secondary structures. Single-
stranded RNA molecules fold back on themselves and produce double-stranded helices where com-
plementary sequences are present. A particular base may either not be paired, as in A, or paired with
another base, as in B. The double-stranded regions will most likely form where a series of bases in
the sequence can pair with a complementary set elsewhere in the sequence. The stacking energy of
the base pairs provides increased energetic stability. Combinations of double-stranded and single-
stranded regions produce the types of structures shown in C-F, with the single-stranded regions
destabilizing neighboring double-stranded regions. The loop 6f the stem and loop in C must gener-
ally be at least four bases long to avoid steric hindrance with base-pairing in the stem part of the
structure. The stem and loop reverses the chemical direction of the RNA molecule. Interior loops,
as in D, form when the bases in a double-stranded region cannot form base pairs, and may be asym-
metric with a different number of base pairs on each side of the loop, as shown in E, or symmetric
with the same number on each side. Junctions, as in F, may include two or more double-stranded
regions converging to form a closed structure. The RNA backbone is red, and both unpaired and
paired bases are blue. The types of loop structures can be represented mathematically, thereby
aiding in the prediction of secondary structure (Sankoff et al. 1983; Zuker and Sankoff 1984).

(Adapted from Burkhard et al. 1999b.)

tional ones (see Burkhard et al. 1999a,b) have been identified. RNA structure predictions
comprise base-paired and non-base-paired regions in various types of loop and junction
arrangements, as shown in Figure 5.2.

In addition to secondary structural interactions in RNA, there are also tertiary interac-
tions, illustrated by the examples in Figure 5.3. These kinds of structures are not pre-
dictable by secondary structure prediction programs. They can be found by careful covari-
ance analysis.
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Figure 5.3. Examples of known interactions of RNA secondary structural elements. (A) Pseudo-
knot. (B) Kissing hairpins. (C) Hairpin-bulge contact. (Adapted from Burkhard et al. 1999b.)

In predicting RNA secondary structure, some simplifying assumptions are usually made.
First, the most likely structure is similar to the energetically most stable structure. Second,
the energy associated with any position in the structure is only influenced by local sequence
and structure. Thus, the energy associated with a particular base pair in a double-stranded
region is assumed to be influenced only by the previous base pair and not by the base pairs
farther down the double-stranded region or anywhere else in the structure. These energies
can be reliably estimated by experimentation with small, synthetic RNA oligonucleotides
(Tinoco et al. 1971, 1973; Freier et al. 1986; Turner and Sugimoto 1988; SantaLucia 1998)
recently improved to include sequence dependence (Mathews et al. 1999). They are most
reliable when used for standard Watson—Crick base pairs and single G-U pairs surrounded
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Figure 5.4. Display of base pairs in an RNA secondary structure by a circle plot. The predicted min-
imum free-energy structure shown in B is represented by a plot of the predicted base pairs as arcs
connecting the bases in the sequence, which is drawn around the circumference of a circle, as shown
in A (see Nussinov and Jacobson 1980). Note that none of the lines cross, a representation that the
structure does not include any knots. (Reprinted from Nussinov and Jacobson 1980.)
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by Watson~Crick pairs. Finally, the structure is assumed to be formed by folding of the
chain back on itself in a manner that does not produce any knots. The best way of repre-
senting this requirement is to draw the sequence in a circular form. The paired bases are
then joined by arcs. If the total structure with all predicted base pairs is to be free of knots,
none of the arcs must cross (Fig. 5.4). Note, however, that if a pseudoknot (Fig. 5.3) is rep-
resented on such a diagram, the lines will cross.

The development of methods for predicting RNA secondary structure has been reviewed
by von Heijne (1987). Tinoco et al. (1971) first estimated the energy associated with
regions of secondary structure by extrapolation from studies with small molecules and
then attempted to predict which configurations of larger molecules were the most ener-
getically stable. Energy estimates included the stabilizing energy associated with stacking
base pairs in a double-stranded region and the destabilizing influence of regions that were
not paired. Pipas and McMahon (1975) developed computer programs that listed all pos-
sible helical regions in tRNA sequences; using modified Watson—Crick base-pairing rules,
they created all possible secondary structures by forming permutations of compatible heli-
cal regions, and evaluated each possible structure for total free energy. Studnicka et al.
(1978) designed a method for adding compatible double-stranded regions together to pro-
duce the energetically most favorable structure. Martinez (1984) made a list of possible
double-stranded regions, and these regions were then given weights in proportion to their
equilibrium constants, calculated by the Boltzmann function [ exp (—AG/RT) ], where
—AG is the free energy of the regions, R is the gas constant, and T is the temperature. The
RNA molecule is folded by a Monte Carlo method in which one initial region is chosen at
random from a weighted pool, similar to the method used in Gibbs sampling (see p. 177).

Imagine each possible double-stranded region being represented by a marble in a bag.
The number of each type of marble is weighted by the Boltzmann probability so that mar-
bles corresponding to more energetically stable regions are more likely to be chosen. Addi-
tional compatible regions are then added sequentially by further selections from the
weighted pool until no more can be added. This method generates a set of possible struc-
tures weighted by energy, but it does not take into account the destabilizing effect of
unpaired regions. The Boltzmann probability function is used in more recent applications
(described below) to find the most probable secondary structures (Hofacker et al. 1998;
Wuchty et al. 1999).

Nussinov and Jacobson (1980) were the first to design a precise and efficient algorithm
for predicting secondary structure. The algorithm generates two scoring matrices—one
M(ij) to keep track of the maximum number of base pairs that can be formed in any inter-
val i to j in the sequence and a second K{(i,j) to keep track of the base position k that is
paired with'j. From these matrices, a structure with the maximum possible number of base
pairs could be deduced by a trace-back procedure similar to that used in performing
sequence alignments by dynamic programming. Zuker and Stiegler (1981) used the
dynamic programming algorithm and energy rules for producing the most energetically
favorable structure. Their method assumes that the most energetic, and usually longest,
predicted dsRNA regions are present in the molecule. Because many double-stranded
regions are predictable for most RNA sequences, the number of predictions is reduced by
including known biochemical or structural information to indicate which bases should be
paired or not paired, by enforcing topological restraints and by requiring that the structure
be in an energetically stable configuration.
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MFOLD, written by Dr. Michael Zuker and colleagues, is commonly used to predict the
energetically most stable structures of an RNA molecule (Jaeger et al. 1989, 1990; Zuker
1989, 1994). MFOLD provides a set of possible structures within a given energy range and
provides an indication of their reliability. The program also uses covariance information
from phylogenetically related sequences (Zuker et al. 1991). MFOLD includes methods for
graphic display of the predicted molecules. This program is one of the most demanding on
computer resources that is currently used because the algorithm is of N’ complexity, where
N is the sequence length. For each doubling of sequence length, the time taken to compute
a structure increases eightfold. The program also requires a large amount of memory for
storing intermediate calculations of structure energies in multiple scoring matrices. As a
result, MFOLD is most often used to predict the structure of sequences less than 1000
nucleotides in length. This method is most reliable for small molecules and becomes less
reliable as the length of the molecule increases.

MFOLD and many other types of useful information on RNA are found at the Web site
of Dr. Michael Zuker, at http://bioinfo.math.rpi.edu/~zuker/rna/. Details of running
MFOLD are not given here because the user manual for MFOLD is widely available (Jaeger
et al. 1990). Recently, a new method called the partition function method for finding the
most probable secondary structural configuration of an RNA molecule and the most prob-
able base pairs has been reported by the Vienna RNA group (Wuchty et al. 1999) and is
discussed below (p. 219).

One advance in the prediction of RNA structure has come from the recognition that
certain RNA sequences form specific structures and that the presence of these sequences is
strongly predictive of such a structure. For example, the hairpin CUUCGG occurs in dif-
ferent genetic contexts and forms a very stable structure (Tuerk et al. 1988). Databases of
such RNA structures and RNA sequences can greatly assist in RNA structure prediction
(Table 5.1).

The genetic algorithm (see Chapter 4, p. 157) has also been used to predict secondary
structure (Shapiro and Navetta 1994); for aligning RNA sequences, taking into account both
sequence and secondary structure and including pseudoknots (Notredame et al. 1997); and
for simulation of RNA-folding pathways (Gultyaev et al. 1995). The program FOLDALIGN
uses a dynamic programming algorithm to align RNAs based on sequence and secondary
structure and locates the most significant motifs (Gorodkin et al. 1997). Chan et al. (1991)
have described another algorithm for the same purpose, and Chetouani et al. (1997) have
developed ESSA, a method for viewing and analyzing RNA secondary structure.

METHODS

SELF-COMPLEMENTARY REGIONS IN RNA SEQUENCES PREDICT SECONDARY

R

One of the simplest types of analyses that can be performed to find stretches of sequence
in RNA that are self-complementary is a dot matrix sequence comparison for self-comple-
mentary regions. For single-stranded RNA molecules, these repeats represent regions that
can potentially self-hybridize to form RNA double strands (von Heijne 1987; Rice et al.
1991). All types of RNA secondary structure analysis begin by the identification of these
regions, and, once identified, the compatible regions may be used to predict a minimum
free-energy structure. A more advanced type of dot matrix can be used to show the most
energetic parts of the molecule (see Fig. 5.8, below).
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Figure 5.5. Dot matrix analysis of the potato tuber spindle viroid for RNA secondary structure
using the MATRIX function of DNA Strider v. 1.2 on a Macintosh computer.

Self-complementary regions in RNA may be found by performing a dot matrix analysis
with the sequence to be analyzed listed in both the horizontal and vertical axes. In one
method for finding such regions, the sequence is listed in the 5'—3’ direction across the
top of the page and the sequence of the complementary strand is listed down the side of
the page, also in the 5'—3' direction. The matrix is then scored for identities. Self-com-
plementary regions appear as rows of dots going from upper left to lower right. For RNA,
these regions represent sequences that can potentially form A/U and G/C base pairs. G/U
base pairs will not usually be included in this simple type of analysis. As with matching
DNA sequences, there are many random matches between the four bases in RNA, and the
diagonals are difficult to visualize. A long window and a requirement for a large number
of matches within this window are used to filter out these random matches.

An example of the RNA secondary structure analysis using a DNA matrix option of
DNA Strider is shown in Figure 5.5. An analysis of the potato spindle tuber viroid is shown,
using a window of 15 and a required match of 11. Note the appearance of a diagonal run-
ning from the center of the matrix to the upper left, and a mirror image of this diagonal
running to the lower right. The presence of this diagonal indicates the occurrence of a large
self-complementary sequence such that the entire molecule can potentially fold into a hair-
pin structure. An alternative dot matrix method for finding RNA secondary structure is to
list the given RNA sequence across the top of the page and also down the side of the page
and then to score matches of complementary bases (G/C, A/U, and G /U). Diagonals indi-
cating complementary regions will go from upper right to lower left in this type of matrix.
This is the kind of matrix used to produce an energy matrix (see Fig. 5.8, below).
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MINIMUM FREE-ENERGY METHOD FOR RNA SECONDARY STRUCTURE
REDICTIO.

To predict RNA secondary structure, every base is first compared to every other base by a
type of analysis very similar to the dot matrix analysis. The sequence is listed across the top
and down the side of the page, and G/C, A/U, and G/U base pairs are scored (for an exam-
ple using a dot matrix method to find hairpins, see Fig. 5.5). Just as a diagonal in a two-
sequence comparison indicates a range of sequence similarity, a row of matches in the RNA
matrix indicates a succession of complementary nucleotides that can potentially form a
double-stranded region. The energy of each predicted structure is estimated by the near-
est-neighbor rule by summing the negative base-stacking energies for each pair of bases in
double-stranded regions and by adding the estimated positive energies of destabilizing
regions such as loops at the end of hairpins, bulges within hairpins, internal bulges, and
other unpaired regions. Representative examples of the energy values that are currently
used are given in Table 5.2. To evaluate all the different possible configurations and to find
the most energetically favorable, several types of scoring matrices are used. The comple-
mentary regions are evaluated by a dynamic programming algorithm to predict the most
energetically stable molecule. The method is similar to the dynamic programming method
used for sequence alignment (see Chapter 3).

To calculate the stacking energy of a row of base pairs in the molecule, the stacking ener-
gies similar to those shown in Table 5.2 are used. An illustrative example for evaluation of
energy in a double-stranded region is shown in Figure 5.6. The sequence is listed down the
side of the matrix, and a portion of the same sequence is also listed across the top of the
matrix; matching base pairs have been identified within the matrix. The object is to find a
diagonal row of matches that goes from upper right to lower left, and such a row is shown
in the example. In Figure 5.6, a match of four complementary bases in a row produces a
molecule of free energy —6.4 kcal/mole. In general, each matrix value is obtained by con-
sidering the minimum energy values obtained by all previous complementary pairs

Table 5.2. Predicted free-energy values (kcal/mole at 37°C) for base pairs and other features of
predicted RNA secondary structures

A. Stacking energies for base pairs

A/U C/G G/C U/A G/U U/G
A/U —0.9 —1.8 —2.3 —1.1 —1.1 -0.8
C/G —1.7 —2.9 —3.4 —-2.3 —2.1 -~1.4
G/C —2.1 —2.0 —2.9 —1.8 ~1.9 —1.2
U/A -0.9 —1.7 —-2.1 —-0.9 -1.0 —0.5
G/U -0.5 —1.2 —1.4 —-0.8 ~0.4 —0.2
U/G —1.0 —1.9 —2.1 -1.1 —1.5 —0.4

B. Destabilizing energies for loops

Number of bases 1 5 10 20 30
Internal - 5.3 6.6 7.0 7.4
Bulge 3.9 4.8 5.5 6.3 6.7
Hairpin - 4.4 5.3 6.1 6.5

(Upper) Stacking energy in double-stranded region when base pair listed in left column is followed by
base pair listed in top row. C/G followed by U/A is therefore the dinucleotide 5’ CU 3’ paired to 5’ AG 3’.
(Lower) Destabilizing energies associated with loops. Hairpin loops occur at the end of a double-stranded
region, internal loops are unpaired regions flanked by paired regions, and a bulge loop is a bulge of one
strand in an otherwise paired region (Fig. 5.2). An updated and more detailed list of energy parameters may
be found at the Web site of M. Zuker (http://bioinfo.math.rpi.edu/~zuker/rna/energy/).

From Turner and Sugimoto (1988); Serra and Turner (1995).



PREDICTION OF RNA SECONDARY STRUCTURE m 215

A. Base comparisons B. Free energy calculations
5! A C G u 3' 5' A C G U 3'
A A
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G C/G u/G G -1.8
u AU c/n G/U u
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Figure 5.6. Evaluation of secondary structure in RNA sequence by the method described in the text.
The sequence is listed down the first column of A and B in the 5'—3’ orientation, and the first four
bases of the sequence are also listed in the first row of the tables in the 5'—3' direction. Several
complementary base pairs between the first and last four bases that could lead to secondary struc-
ture are shown in A. The most 5" base is listed first in each pair. The diagonal set of base pairs A/U,
C/G, G/C, and U/G reveals the presence of a potential double-stranded region between the first and
last four bases. The free energy associated with such a row of base pairs is shown in B. A C/G base
pair following an A/U base pair has a base stacking energy of —1.8 kcal/mole (Turner and Sugimo-
to 1988). This value is placed in the corresponding position in B. Similarly, a C/G base pair followed
by a G/C provides energy of —3.4, and a G/C followed by a U/G, —1.2 kcal/mole. Hence, the ener-
gy accumulated after stacking of these additional two base pairs is —5.2 and —6.4. The energy of this
double-stranded structure will continue to decrease (become more stable) as more base pairs are
added, but will be increased if the structure is interrupted by noncomplementary base pairs.

decreased by the stacking energy of any additional complementary base pairs or increased
by the destabilizing energy associated with noncomplementary bases. The increase
depends on the type and length of loop that is introduced by the noncomplementary base
pair, whether internal loop, bulge loop, or hairpin loop, as shown in Table 5.2. This com-
parison of all possible matches and energy values is continued until all nucleotides have
been compared. The pattern followed in comparing bases within the RNA molecule is
illustrated in Figure 5.7.

SUBOPTIMAL STRUCTURE PREDICTIONS BY MFOLD AND THE USE

SRR

S e

Originally, the FOLD program of M. Zuker predicted only one structure having the mini-
mum free energy. However, changes in a single nucleotide can result in drastic changes in the
predicted structure. A later version, called MFOLD, has improved prediction of non-base-
paired interactions and predicts several structures having energies close to the minimum free
energy. These predictions accurately reflect structures of related RNA molecules derived from
comparative sequence analysis (Jaeger et al. 1989; Zuker 1989, 1994; Zuker et al. 1991; Zuker
and Jacobson 1995). To find these suboptimal structures, the dynamic programming method
was modified (Zuker 1989, 1991) to evaluate parts of a new scoring matrix in which the
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Figure 5.7. Method used in dynamic programming analysis for identifying the most energetically
favorable configuration of a linear RNA molecule. (A) The sequence of an RNA molecule of length
n bases is listed across the top of the page and down the side. The index of the sequence across the
top is j and that down the side is i. The search only includes the upper right part of the matrix shown
in gray and begins at the first diagonal line for matching base pairs. First positions i =1 and j=2
are compared for potential base-pairing, and if pairing can occur, an energy value is placed in an
energy matrix W at position 1,2. Then, i = 2 and j = 3 base are compared, and so on, until all base
combinations along the dashed diagonal have been made. Then, comparisons are made along the
next upper right diagonal. As each pair of bases is compared, an energy calculation is made that is
the optimal one up to that point in the comparison. In the simplest case, if i +1 pairs with j—1,and
i pairs with j, and if this structure is the most favorable up to that point, the energy of the i/j base
pair will be added to that of the i +1/j —1 base pair. Other cases are illustrated in B. The process of
obtaining the most stable energy value at each matrix position is repeated following the direction of
the arrows until the last position, i =1 and j =#, has been compared and the energy value placed at
this position in matrix W, the value entered in W(1,n), will be the energy of the most energetically
stable structure. The structure is then found by a trace-back procedure through the matrices simi-
lar to that used for sequence alignments. The method used is a combination of a search for all pos-
sible double-stranded regions and an energy calculation based on energy values similar to those in
Table 5.2. The search for the most energetic structure uses an algorithm (Zuker and Stiegler 1981)
similar to that for finding the structure with maximum base-pairing (Nussinov and Jacobson 1980).
These authors recognized that there are three possible ways, illustrated here by the colored arrows,
of choosing the best energy value at position 7, in an energy matrix W. The simplest calculation (red
arrow) is to use the energy value found up to position i—1, j—1 diagonally below i,j. If i and jcan
form a base pair (and if there are at least four bases between them in order to allow enough sequence
for a hairpin) and i+1 and j—1 also pair, then the stacking energy of i/j upon i+ 1/j—1 will reduce
the energy value at i+1, j— 1, producing a more stable structure, and the new value can be consid-
ered a candidate for the energy value entered at position 4. If i and j do not pair, then another
choice for the energy at i,j is to use the values at positions i, j—1 or i+1, j illustrated by the blue
arrows. i and j then become parts of loop structures. Finally, i and j may each be paired with two
other bases, i with k and j with k+1, where k is between i and j (i < k < ), illustrated by the struc-
ture shown in yellow and green, reflecting the location of the paired bases. The minimum free-ener-
gy value for all values of k must be considered to locate the best choice as a candidate value at i, J-
Finally, of the three possible choices for the minimum free-energy value at i,j indicated by the four
colored arrows, the best energy value is placed at position W(i,j). The procedure is repeated for all
values of i and j, as illustrated in A. Besides the main energy scoring matrix W, additional scoring
matrices are used to keep track of auxiliary information such as the best energy up to i,j where i and
j form a pair, and the influence of bulge loops, interior loops, and other destabilizing energies. An
essential second matrix is V(i), which keeps track of all substructures in the interval 4,j in which i
forms a base pair with j. Some values in the W matrix are derived from values in the V matrix and
vice versa (Zuker and Stiegler 1981).
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sequence is represented in two tandem copies on both the vertical and horizontal axes. The
regions from i =1 to n and j =1 to n are used to calculate an energy V(i,j) for the best struc-
ture that includes an 4, base pair and is called the included region. A second region, the
excluded region, is used to calculate the energy of the best structure that includes i, j but is not
derived from the structure at i+1,j —1 (Fig. 5.7). After certain corrections are made, the dif-
ference between the included and excluded values is the most energetic structure that includes
the base pair 4,j. All complementary base pairs can be sampled in this fashion to determine
which are present in a suboptimal structure that is within a certain range of the optimal one.

An energy dot plot is produced showing the locations of alternative base pairs that pro-
duce the most stable or suboptimally stable structures, as illustrated in Figure 5.8. The pro-
gram may be instructed to find structures within a certain percentage of the minimum free
energy. Parameter d provides a measure of similarity between two structures. When
MFOLD is established on a suitable local host machine, the window is interactive, and
clicking a part of the display will lead to program output of the corresponding structure.
The dot plot may be filtered so that only suboptimal regions with helices of a certain min-
imal length are shown. One of the predicted structures is shown in Figure 5.9.

A limitation of the Zuker method and other methods (Nakaya et al. 1995) for computing
suboptimal RNA structures is that they do not compute all the structures within a given
energy range of the minimum free-energy structure. For example, no alternative structures
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Figure 5.8. The energy dot plot (boxplot) of alternative choices of base pairs of an RNA molecule (Jacobson and Zuker
1993). The sequence is that of a human adenovirus pre-terminal protein (GenBank U52533) that is given by M. Zuker as an
example on his Web site at http://bioinfo.math.rpi.edu/~zukerm. Foldings were computed using the default parameters of
the MFOLD program at http://bioinfo.math.edu/~mfold/rna/form1.cgi (Mathews et al. 1999) using the thermodynamic val-
ues of SantaLucia (1998). The minimum energy of the molecule is —280.6 kcal/mole and the maximum energy increment is
12 kcal/mole. Black dots indicate base pairs in the minimum free-energy structure and are shown both above and the mirror
image below the main diagonal. Red, blue, and yellow dots are base pairs in foldings of increasing 4, 8, and 12 kcal/mole ener-
gies greater than the minimum energy, respectively. A region with very few alternative base pairs such as the pairing of
370-395 with 530-505 is considered to be strongly predictive, whereas regions with many alternative base pairs such as the
base-pairing in the region of 340-370 with 570-530 are much less predictive.
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are produced that have the absence of base pairs in the best structure, and, if two sub-
structures are joined by a stretch of unpaired bases, no structures are produced that are
suboptimal for both structures. These factors limit the number of alternative structures
predicted compared to known variations based on sequence variations in tRNAs (Wuchty
et al. 1999).

These limitations have been largely overcome by using an algorithm originally described
by Waterman and Byers (1985) for finding sequence alignments within a certain range of
the optimal one by modifications of the trace-back procedure used in dynamic program-
ming. This method efficiently calculates a large number of alternative structures, up to a
very large number, within a given energy range of the minimum free-energy structure (see
Fig. 5.10). The method has been used to demonstrate that natural tRNA sequences can
form many alternative structures which are close to the minimum free-energy structure
and that base modification plays a major role in this energetic stability (Wuchty et al.
1999). The method may also be used to assess the thermodynamic stability of RNA struc-
tures given expected changes in energies associated with base pairs and loops as a function
of temperature. The RNA secondary structure prediction and comparison Web site at
http://www.tbi.univie.ac.at/~ivo/RNA/ will fold molecules of length > 300 bases, and the
Vienna RNA Package software for folding larger molecules on a local machine is available
from this site.

The Boltzmann con-
stant k is 8314510
J/mole/degree K.

In the above types of analyses, the energy associated with predicted double-stranded
regions in RNA is used to produce a secondary structure. Stabilizing energies associated
with base-paired regions and destabilizing energies associated with loops are summed to
produce the most stable structure or suboptimal RNA secondary structure. A different way
of predicting the structures is to consider the probability that each base-paired region will
form based on principles of thermodynamics and statistical mechanics. The probability of
forming a region with free energy AG is expressed by the Boltzmann distribution, which
states that the likelihood of finding a structure with free energy —AG is proportional to
[ exp (—AG/KT) | where k is the Boltzmann gas constant and T is the absolute tempera-
ture.

Note that the more stable a structure, the lower the value of AG. Since AG is a negative
number, the value of exp(—AG/kT) increases for more stable structures and also grows
exponentially with a decrease in energy. The probability of these regions forming increas-
es in the same manner. Conversely, the effect of destabilizing loops that have a positive AG
is to decrease the probability of formation. By using these probability calculations and a
dynamic programming method similar to that used in MFOLD, it is possible to predict the
most probable RNA secondary structures and to assess the probability of the base pairs that
contribute energetic stability to this structure.

For a set of possible structural states, the likelihood of each may be calculated using this
formula, and the sum of these likelihoods provides a partition function that can be used to
normalize each individual likelihood, providing a probability that each will occur. Thus,
probability of structure A of energy —AG, is [ exp (—AG,/kT) ] divided by the partition
function Q, where Q = Z [ exp (—AG/KkT) ], the sum of probabilities of all possible struc-
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Figure 5.9. Model of RNA secondary structure of the human adenovirus pre-terminal protein. This model is one of several
alternative structures represented by the above energy plot and provided as an output by the current versions of MFOLD. (A)
Simple text representation of one of the predicted structures. Each stem-and-loop structure is shown separately and the left end
of each structure is placed below the point of connection to the one above. (B) More detailed rendition of one part of the pre-
dicted structures. The structure continues beyond the right side of the page.
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tures, s. This kind of analysis allows one to calculate the probability of a certain base pair
forming.

The key to this analysis is the calculation of the partition function Q. A dynamic pro-
gramming algorithm for calculating this function exactly for RNA secondary structure
has been developed (McCaskill 1990). The algorithm is very similar to that used for com-
puting an optimal folding by MFOLD. Complexity similarly increases as the cube of the
sequence length, and the energy values used for base pairs and loops are also the same
except that structures with very large interior loops are ignored. Just as the minimum
free-energy value is given at W(1,n) in the Zuker MFOLD algorithm, the value of the
partition function is given at matrix position Q(1,n) in the corresponding partition
matrix.

As indicated above, the partition function is calculated as the sum of the probabilities of
each possible secondary structure. Because there are a very large possible number of struc-
tures, the calculation is simplified by calculating an auxiliary function, Q®(i,j), which is the
sum of the probabilities of all structures that include the base pair i,j. The partition func-
tion Q(3,7) includes both these structures and the additional ones where i is not paired with
j. An example illustrating the difference between the minimum free energy and the parti-
tion function methods should be instructive. Suppose that the bases at positions i +1,j —1
and i,j can both form base pairs. They then form a stack of two base pairs. In the minimum
free-energy method, the energy of the i,j pair stacked on the i +1, j —1 pair will be added
to V(i +1,j —1) to give V(i,j), where Vis a scoring matrix that keeps track of the best struc-
ture that includes an 4,j base pair. In contrast, the value for Q(i,j) will be calculated by
multiplying the matrix value Q°(i +1, j —1) by the probability of the base pair i,j given by
the Boltzmann probability [exp (—AG/KT)], where AG is the negative stacking energy of
the i,j base pair on the i +1, j —1 base pair, and will be a large number reflecting the prob-
ability given the stability of the base-paired region.

For a hairpin structure with a row of successive base pairs, the probability will be the
product of the Boltzmann factors associated with the stacked pair, giving a high number
for the relative likelihood of formation. The procedure followed by the partition function
algorithm is to calculate Q(3,j) and Q(i,j) iteratively in a scoring matrix similar to that
illustrated in Figure 5.7A until Q(1,n) is reached. This matrix position contains the value
of the full partition function Q.

Both the partition function and the probabilities of all base pairs are computed by this
algorithm, and the most probable structural model is thereby found. Information about
intermediate structures, base-pair opening and slippage, and the temperature dependence
of the partition function may also be determined. The latter calculation provides informa-
tion about the melting behavior of the secondary structure.

A suite of RNA-folding programs available from the Vienna RNA secondary structure
prediction Web site (http://www.tbi.univie.ac.at/~ivo/RNA/) uses this methodology to
predict the most probable and alternative RNA secondary structures. An example of the
folding of a 300-base RNA molecule is given in Figure 5.10. The probability of forming
each base pair is shown in a dot matrix display in which the dots are squares of increasing
size reflecting the probability of the base pair formed by the bases in the horizontal and ver-
tical positions of the matrix. Secondary structure prediction is done by two kinds of
dynamic programming algorithms: the minimum free-energy algorithm of Zuker and
Stiegler (1981) and the partition function algorithm of McCaskill (1990).
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Figure 5.10. Suboptimal foldings of an RNA sequence using probability distributions of base-pairings. The first 300 bases of
the same adenovirus sequence used in Fig. 5.8 was submitted to the Vienna Web server. (A) The region shown represents struc-
tures within the range of bases 150300 and may be compared to the same region in Fig. 5.8. The minimum free energy of this
thermodynamic ensemble is —134.85 kcal/mole, compared to a minimum free energy of 125.46 kcal/mole. The size of the
square box at highlighted matrix positions indicates the probability of the base pair and decreases in steps of 10-fold; i.e., order
of magnitude decreases. The size variations shown in the diagram cover a range of ~4—6 orders of magnitude. Calculations of
base-pair probabilities are discussed in the text. (B) The minimum free-energy structure representing base pairs as pairs of nest-
ed parentheses. A low-resolution picture was also produced (not shown).
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The second major method that has been used to make RNA secondary structure predic-
tions (Woese et al. 1983) and also tertiary structure analyses such as those shown in Figure
5.3 (Gutell et al. 1986) is RNA sequence covariation analysis. This method examines
sequences of the same RNA molecules from different species for positions that vary togeth-
er in a manner that would allow them to produce a base pair in all of the molecules. The
idea is quite simple. On the one hand, for double-stranded regions in RNA molecules,
sequence changes that take place in evolution should maintain the base-pairing. On the
other hand, sequence changes in loops and single-stranded regions should not have such a
constraint. The method of analysis is to look for sequence positions at which covariation
maintains the base-pairing properties. The justification for this method is that these types
of joint substitutions or covariations actually are found to occur during evolution of such
genes. As shown in Figure 5.11, when one position corresponding to a base pair is changed,
another position corresponding to the base-pairing partner will also change. For example,
if two positions G and C form a base pair, then sequences that have C and G reversed, or
A and T or T and A at the corresponding positions, would also be considered reasonable
matches. Sequence covariability has been used to improve thermodynamic structure pre-
diction as described in the above section (Hofacker et al. 1998). An example of using
covariation analysis to decipher base-pair interactions in tRNA is shown in Figure 5.12.

One method of covariation analysis also examines which phylogenetic groups exhibit
change at a given position. For each position, the base that generally predominates in one
particular part of the tree is determined. These methods have required manual examina-
tion of sequences and structures for covariation, but automatic methods have also been
devised and demonstrated to produce reliable predictions (Winker et al. 1990; Han and
Kim 1993; see box below).

l. Sequence alignment

seql. ———G————— C——-—
seq2. ———C————— G———
seq3. ———A————-— C———
seq4. ———A————— T———

Il. Structural alignment

A B C D

GC CG AC AU

Figure 5.11. Conservation of base pairs in homologous RNA molecules influences structure pre-
diction. The predicted structure takes into account sequence covariation found at aligned sequence
positions, and may also use information about conserved positions in components of a phylogenetic
tree. In the example shown, sequence covariations in A, B, and D found in sequences 1, 2, and 4,
respectively, permit Watson-Crick base and G-U base-pairing in the corresponding structure, but
variation C found in sequence 3 is not compatible. Sometimes correlations will be found that sug-
gest other types of base interactions, or the occurrence of a common gap in a multiple sequence
alignment may be considered a match. Positions with greater covariation are given greater weight
in structure prediction. Molecules with only one of the two sequence changes necessary for conser-
vation of the base-paired position may be functionally deleterious.
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Figure 5.12. Covariation found in tRNA sequences reveals base interactions in tRNA secondary and tertiary structure. (A)
Alignment of tRNA sequences showing regions of interacting base pairs. (+) Transition; (—) transversions; (]) deletion; (*)
ambiguous nucleotide. (B) Diagram of tRNA structure illustrating base-base interactions revealed by a covariance analysis.
Adapted from the Web site of R. Gutell at http://www.rna.icmb.utexas.edu.




PREDICTION OF RNA SECONDARY STRUCTURE m 225




226 m CHAPTER 5

ratio of f,..(B1:B2) / [fn(B1) X fa(Bs)] is expected to equal 1, and if the frequencies

are correlated, then this ratio will be greater than 1. If they are perfectly covariant,

then f,,n(B1,B;) = Jn(B1) = f4(B;). To calculate the mutual information content H
- (m,n) in bits between the two columns m and n, the logarithm of this ratio is calcu-
' lated and summeé over all possxbie 16 base-pair combinations.

H (m,n) zm,azfm(ﬁlﬁz) X 1085 {fimn(B1sB2) / [fm(B1) fu(B2)]}

H (m,n) varies from the value of O bits of mutual information representing no corre-
lation to thatof 2 brts of mutual information, representing perfect correlation (Eddy
and Dm‘bm 1994) |

The mutual information content may be plotted on a motif logo (Gorodkin et al. 1997),
similar to that described in Chapter 4, page 196, for illustrating a sequence motif. The
example shown in Figure 5.13 shows the mutual information content M superimposed on
the information content of each sequence position in an RNA alignment.
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Figure 5.13. RNA structure logo. The top panel is the normal sequence logo showing the size of each
base in proportion to the contribution of that base to the amount of information in that column of
the multiple sequence alignment. The relative entropy method is used in which the frequency of bases
in each column is compared to the background frequency of each base. Inverted sequence characters
indicate a less than background frequency (see Chapter 4, page 196). The bottom panel includes the
same information plus the mutual information content in pairs of columns. The amount of informa-
tion is indicated by the letter M, and the matching columns are shown by nested sets of brackets and
parentheses. All sequences have a C in column 1 and a matching G in column 16. Similar columns 2
and 15 can form a second base pair stacked upon the first. Columns 7-10 and 25-22 also can form G/C
base pairs most of the time. Sequences with a G in column 7 frequently have a C in column 25, and
those with a C in column 7 may have a G in column 25. Thus, there is mutual information in these
two columns (Gorodkin et al. 1997 [using data of Tuerk and Gold 1990]).
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A formal covariance model has been devised by Eddy and Durbin (1994). Although very
accurate when used for identifying tRNA genes, the algorithm is extremely slow and
unsuitable for searching through large genomes. Instead, the method has been used to
screen through putative tRNA genes previously identified by faster methods (Lowe and
Eddy 1997). The difficulty that is faced in modeling RNA molecules is to identify the
potential base pairs in a set of related RNA molecules based on covariation at two sites.
Recall from Chapter 4 that the hidden Markov model is used for capturing the types of
variations observed in a sequence profile, including matches, mismatches, insertions, and
deletions. This type of model assumes each sequence can be predicted by a series of states
in the model, one after the other, as in a series of independent events in a Markov chain.
The hidden Markov model does not analyze joint variations at sequence positions such as
occur in RNA molecules. The model that is used for analyzing RNA secondary structure
(but not tertiary structure) is an ordered tree model. A simplified tree representation of
RNA secondary structure is shown in Figure 5.14.

The above assumes that we know which bases are paired in a model of RNA secondary
structure, whereas the goal is to build a model that discovers this information. The task is
achieved by constructing a more general model, training the model with a set of sequences,

A uc
u G
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A-U
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G GCG A
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Figure 5.14. Tree model of RNA secondary structure. The model in A is represented by the ordered
binary tree shown in B. This model attempts to capture both the sequence and the secondary struc-
ture of the RNA molecule. The tree is read like a sequence starting at the root node at the top of the
model, then moving down the main branch to the bifurcation mode. Along the main trunk are nodes
that represent matched or unmatched base pairs. Shown are two A’s matching a “-,” indicating no
pairing with these bases. After the bifurcation mode, one then moves down the most leftward branch
to the end node. Along the branch are unmatched bases, matched base pairs, and mismatched pairs.
After the end node is reached, go back to the previous bifurcation node and follow the right branch.
(Reprinted, with permission of Oxford University Press, from Eddy and Durbin 1994.)
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and then having the model reveal the most likely base-paired regions. The approach is sim-
ilar to training a hidden Markov model for proteins to recognize a family of protein
sequences, thereby producing the most probable multiple sequence alignment. In the case
of RNA secondary structure, a tree model is trained by the sequences, and the model may
then be used to predict the most probable secondary structure. In addition, the model may
also be used to search a database for sequences that produce a high score when aligned to
the model. These sequences are likely to encode a similar type of RNA molecule such as
tRNA or 55 RNA. Each model is derived by training a more general tree model with the
sequences.

The general tree model needs to represent the types of variations that are found in align-
ing a series of related sequences, such as insertions, deletions, and mismatches. To allow
for such variations, each node in the tree is replaced by a set of states that correspond to all
of the possible sequence variations that might be encountered at that position. These states
are illustrated in Figure 5.15.

The mutual information content of all sequence positions is used in designing the
model, and the expectation maximization method (Chapter 4) is used to optimize the
parameters of the model. A dynamic programming method is used to find a model that
maximizes the amount of covariation. The structure of the model may subsequently be
altered during training. Once a covariance model suitable for an RNA molecule has been
established, the model is trained by the sequences. The methodology is similar to that of
hidden Markov models and is described in detail in Chapter 4. Basically, the model is ini-
tialized by giving starting values to the base and dinucleotide frequencies in each MATCH
and INS state and to the transition probabilities. All possible paths through the model are
found for each sequence in the training set. The frequencies and transition probabilities are
modified each time a particular path in the model is used. The base pairs are found from
MATP (see Fig. 5.15), which gives probabilities to the 16 possible dinucleotides.

Once the model has been trained, the most probable path for each sequence provides a
consensus structural alignment of the sequences. A dynamic programming algorithm is
used that matches subsequence alignments to the nodes of the covariance model. The
result is a log odds score of the sequence matching the covariance model. A similar method
may be used to find sequences in a genomic database with high matching scores to the
covariance model. The method was used to predict the structural alignment of representa-
tive sets of tRNA sequences, and it provided alignments that closely matched actual struc-
tural alignments based on other methods. The software for the COVELS program is avail-
able by request from the authors (Eddy and Durbin 1994).

STOCHASTIC CONTEXT-FREE GRAMMARS FOR MODELING

In the above section, we discussed the need to have models for RNA secondary structure
that reflect the interaction among base pairs. Simpler models of sequence variation treat
sequences as simple strings of characters without such interactions and are therefore not
suitable for RNA. A general theory for modeling strings of symbols, such as bases in DNA
sequences, has been developed by linguists. There is a hierarchy of these so-called trans-
formational grammars that deal with situations of increasing complexity. The application
of these grammars to sequence analysis has been extensively discussed elsewhere (Durbin
et al. 1998). The context-free grammar is suitable for finding groups of symbols in differ-
ent parts of the input sequence that thus are not in the same context. Complementary
regions in sequences, such as those in RNA that will form secondary structures, are an
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Figure 5.15. Details of tree model for RNA secondary structure. Each type of node in the tree shown
in Fig. 5.14 is replaced by a pattern of states corresponding to the types of sequence variations that are
expected in a family of related RNA sequences. These states each store a table of frequencies of 4 bases
or of 16 possible dinucleotides. The seven different types of nodes are illustrated. BEG node includes
insert states for sequence of any length on the right or left side of the node. The pair-wise node
includes a state MATP for storing the 16 possible dinucleotide frequencies; MATL and MATR states
for storing single base frequencies on either the left or right side of the node, respectively; a DEL state
for allowing deletions; and INSL and INSR states that allow for insertions of any length on the left or
right of the node. DEL does not store information. The other five node types have the same types of
states. Each state is joined to other states by a set of transition probabilities shown by the arrows.
These probabilities are similar to those used in hidden Markov models. BIF is a bifurcation state with
transition probabilities entering the state from above and then leaving to one or the other of two
branches. (Reprinted, with permission of Oxford University Press, from Eddy and Durbin 1994.)

example of such context-free sequences. Stochastic context-free grammars (SCFG) intro-
duce uncertainty into the definition of such regions, allowing them to use alternative sym-
bols as found in the evolution of RNA molecules. Thus, SCFGs can help define both the
types of base interactions in specific classes of RNA molecules and the sequence variations
at those positions. SCFGs have been used to model tRNA secondary structure (Sakakibara
et al. 1994). Although SCFGs are computationally complex (Durbin et al. 1998), they are
likely to play an important future role in identifying specific types of RNA molecules.
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The application of SCFGs to RNA secondary structure analysis is very similar in form to
the probabilistic covariance models described in the above section. For RNA, the symbols
of the alphabet are A, C, G, and U. The context-free grammar establishes a set of rules
called productions for generating the sequence from the alphabet, in this case an RNA
molecule with sections that can base-pair and others that cannot base-pair. In addition to
the sequence symbols (named terminal symbols because they end up in the sequence),
another set of symbols (nonterminal symbols) designated Sy, S, S; . . . , determines inter-
mediate production stages. The initial symbol is S¢ by convention. The next terminal sym-
bol §; is produced by modifying S, in some fashion by productions indicated by an arrow.
For example, the productions S — S;, S; = C S, G generate the sequence C S, G where S,
has to be defined further by additional productions. The example shown in Figure 5.16
(from Sakakibara et al. 1994) shows a set of productions for generating the sequence
CAUCAGGGAAGAUCUCUUG and also the secondary structure of this molecule. The
productions chosen describe both features.

In this example of a context-free grammar, only one sequence is produced at each pro-
duction level. In a SCFG, each production of a nonterminal symbol has an associated prob-
ability for giving rise to the resulting product, and there are a set of productions, each giv-
ing a different result. For example, the production §; — C S, G could also be represented
by 15 other base-pair combinations, and each of these has a corresponding probability.
Thus, each production can be considered to be represented by a probability distribution
over the possible outcomes. Note the identity of the SCFG representation of the predicted
structure to that shown for the tree representation of the covariance model in Figure 5.14.
The use of SCFGs in RNA secondary structure production analysis is in fact very similar to
that of the covariance model, with the grammatical productions resembling the nodes in
the ordered binary tree. As with hidden Markov models, the probability distribution of
each production must be derived by training with known sequences. The algorithms used
for training the SCFG and for aligning a sequence with the SCFG are somewhat different
from those used with hidden Markov models, and the time and memory requirements are
greater (Sakakibara et al. 1994: Durbin et al 1998).
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One goal in RNA research has been to design methods to identify sequences in genomes
that encode small RNA molecules. Larger, highly conserved molecules can simply be iden-
tified based on their sequence similarity with already-known sequences. For smaller
sequences with more sequence variation, this method does not work. A number of meth-
ods for finding small RNA genes have been described and are available on the Web (Table
5.1). A major problem with these methods in searches of large genomes is that a small false-
positive rate becomes quite unacceptable because there are so many false positives to check
out. -

One of the first methods used to find tRNA genes was to search for sequences that are self-
complementary and can fold into a hairpin like the three found in tRNAs (Staden 1980).

L
-

Figure 5.16. A set of transformation rules for generating an RNA sequence and the secondary structure
of the sequence from the RNA alphabet (ACGU). (A) The set of production rules for producing the
sequence and the secondary structure. These rules reveal which bases are paired and which are not paired.
(B) Derivation of the sequence. (C) A parse tree showing another method for displaying the derivation
of the sequence in B. (D) Secondary structure from applying the rules. (Redrawn, with permission of
Oxford University Press, from Sakakibara et al. 1994.)
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B. Derivation
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CAUCAGGGAAGS,4CUUG
CAUCAGGGAAGAS,UCUUG
CAUCAGGGAAGAUS,,UCUUG
CAUCAGGGAAGAUCUCUUG.
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Figure 5.17. Probabilistic model of snoRNAs. The numbered boxes and ovals represent conserved
sequence and structural features that have been modeled by training on snoRNAs. Secondary struc-
tural features of Stem were modeled with an SCFG. Boxes with ungapped hidden Markov models, the
guide sequence with a hidden Markov model, and gapped regions (spacers) are shown by ovals. The
guide sequence interacts with methylation sites on rRNA and is targeted in each search to a comple-
mentary sequence near one of those sites. The alignment of this model produces a log odds score that
provides an indication of the reliability of the match. The transition probabilities are 1, except where
the model bifurcates to allow identification of two types of target sequences. The model is highly spe-
cific and seldom identifies incorrect matches in random sequences. (Reprinted, with permission, from
Lowe and Eddy 1999 [copyright AAAS, Washington, D.C.].)

Fichant and Burks (1991) described a program, tRNAscan, that searches a genomic sequence
with a sliding window searching simultaneously for matches to a set of invariant bases and
conserved self-complementary regions in tRNAs with an accuracy of 97.5%. Pavesi et al.
(1994) derived a method for finding the RNA polymerase III transcriptional control regions
of tRNA genes using a scoring matrix derived from known control regions that is also very
accurate. Finally, Lowe and Eddy (1997) have devised a search algorithm tRNAscan-SE that
uses a combination of three methods to find tRNA genes in genomic sequences—tRNAscan,
the Pavesi algorithm, and the COVELS program based on sequence covariance analysis
(Eddy and Durbin 1994). This method is reportedly 99-100% accurate with an extremely
low rate of false positives.

The probabilistic model shown in Figure 5.17 was used to identify small nucleolar (sno)
RNAs in the yeast genome that methylate ribosomal RNA. The model is not used to search
genomic sequences directly. Instead, a list of candidate sequences is first found by search-
ing for patterns that match the sequences in the model (Lowe and Eddy 1999). The prob-
ability model was a hybrid combination of HMMs and SCFGs trained on snoRNAs. These
RNAs vary sufficiently in sequence and structure that they are not found by straight-
forward similarity searches. The RNAs found were shown to be snoRNAs by insertional
mutagenesis.

In summary, methods for predicting the structure of RNA molecules include (1) an anal-
ysis-of all possible combinations of potential double-stranded regions by energy mini-
mization methods and (2) identification of base covariation that maintains secondary and
tertiary structure of an RNA molecule during evolution. Energy minimization methods
have been so well refined that a series of energetically feasible models and the most ther-
modynamically probable structural models may be computed. Covariation analysis by C.
Woese led to his building of detailed structural models for rRNAs. By examining the evo-
lutionary variation in these structures, he was able to predict three domains of life—the
Bacteria, the Eukarya, and a newly identified Archaea. Although a large amount of hori-
zontal transfer among evolutionary lineages of other genes has added a great deal of noise
to the evolutionary signal, the rRNA-based prediction is supported by other types of
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genomic analyses. In addition to these uses of rRNA structural analysis, excellent proba-
bilistic models of two small RNA molecules, tRNA and snoRNA, have been built, and these
models may be used to search reliably through genomic sequences for genes that encode
these RNA molecules. The successful analysis of these types of RNA molecules should be
readily extensible to other classes of RNA molecules.
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