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INTRODUCTION

PAIR—WISE SEQUENCE ALIGNMENT 18 a very large topic to cover as one chapter. Thus,
starting with this chapter, more detailed discussions of topics, and information on subjects
of more peripheral interest, will be available from the Web site for this book. This site is
organized according to the same subject headings as this chapter and can be found at
http://www.bioinformaticsonline.org. In addition, starting with this chapter, procedural
flowcharts will appear at the beginning of the Methods section of most chapters to provide
an overview of the methods of analysis. This chapter discusses pair-wise sequence align-
ment. Multiple sequence alignment is discussed in Chapter 4.

Sequence alignment is the procedure of comparing two (pair-wise alignment) or more
(multiple sequence alignment) sequences by searching for a series of individual characters
or character patterns that are in the same order in the sequences. Two sequences are aligned
by writing them across a page in two rows. Identical or similar characters are placed in the
same column, and nonidentical characters can either be placed in the same column as a mis-
match or opposite a gap in the other sequence. In an optimal alignment, nonidentical char-
acters and gaps are placed to bring as many identical or similar characters as possible into
vertical register. Sequences that can be readily aligned in this manner are said to be similar.

There are two types of sequence alignment, global and local, and they are illustrated
below in Figure 3.1. In global alignment, an attempt is made to align the entire sequence,
using as many characters as possible, up to both ends of each sequence. Sequences that are
quite similar and approximately the same length are suitable candidates for global align-
ment. In local alignment, stretches of sequence with the highest density of matches are
aligned, thus generating one or more islands of matches or subalignments in the aligned
sequences. Local alignments are more suitable for aligning sequences that are similar along
some of their lengths but dissimilar in others, sequences that differ in length, or sequences
that share a conserved region or domain.

Global Alignment

For the two hypothetical protein sequence fragments in Figure 3.1, the global alignment is
stretched over the entire sequence length to include as many matching amino acids as pos-
sible up to and including the sequence ends. Vertical bars between the sequences indicate

LGPSSKQTGKGS-SRIWDN
I I | I I l I Global alignment
LN-1TKSAGKGAIMRLGDA
——————— TGKG-~---~- -~
| | I Local alignment
——————— AGKG-=--==—--—
Figure 3.1. Distinction between global and local alignments of two sequences.
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Local Alignment

the presence of identical amino acids. Although there is an obvious region of identity in
this example (the sequence GKG preceded by a commonly observed substitution of T for
A), a global alignment may not align such regions so that more amino acids along the
entire sequence lengths can be matched.

In a local alignment, the alignment stops at the ends of regions of identity or strong simi-
larity, and a much higher priority is given to finding these local regions (Fig. 3.1) than to
extending the alignment to include more neighboring amino acid pairs. Dashes indicate
sequence not included in the alignment. This type of alignment favors finding conserved
nucleotide patterns, DNA sequences, or amino acid patterns in protein sequences.

G

Sequence alignment is useful for discovering functional, structural, and evolutionary infor-
mation in biological sequences. It is important to obtain the best possible or so-called
“optimal” alignment to discover this information. Sequences that are very much alike, or
“similar” in the parlance of sequence analysis, probably have the same function, be it a reg-
ulatory role in the case of similar DNA molecules, or a similar biochemical function and
three-dimensional structure in the case of proteins. Additionally, if two sequences from
different organisms are similar, there may have been a common ancestor sequence, and the
sequences are then defined as being homologous. The alignment indicates the changes that
could have occurred between the two homologous sequences and a common ancestor
sequence during evolution, as shown in Figure 3.2.

With the advent of genome analysis and large-scale sequence comparisons, it becomes
important to recognize that sequence similarity may be an indicator of several possible

Sequence A Sequence B

X steps y steps

Ancestor sequence

Figure 3.2. The evolutionary relationship between two similar sequences and a possible common
ancestor sequence that would make the sequences homologous. The number of steps required to
change one sequence to the other is the evolutionary distance between the sequences, and is also the
sum of the number of steps to change the common ancestor sequence into one of the sequences (x)
plus the number of steps required to change the common ancestor into the other (y). The common
ancestor sequence is not available, such that x and y cannot be calculated; only x + y is known. By
the simplest definition, the distance x + y is the number of mismatches in the alignment (gaps are
not usually counted), as illustrated in Fig. 1.3. In a phylogenetic analysis of three or more similar
sequences, the separate distances from the ancestor can be estimated, as discussed in Chapter 6.
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types of ancestor relationships, or there may be no ancestor relationship at all, as illustrat-
ed in Figure 3.3. For example, new gene evolution is often thought to occur by gene dupli-
cation, creating two tandem copies of the gene, followed by mutations in these copies. In
rare cases, new mutations in one of the copies provide an advantageous change in func-
tion. The two copies may then evolve along separate pathways. Although the resulting sep-
aration of function will generate two related sequence families, sequences among both
families will still be similar due to the single gene ancestor. In addition, genetic rearrange-

A.
Gene
duplication |

Gene dupli /
/\Epeciation ene duplication

Species | Species Il

C. il D. I

Figure 3.3. Origins of genes having a similar sequence. Shown are illustrative examples of gene evo-
lution. In A, a duplication of gene a to produce tandem genes al and a2 in an ancestor of species I
and II has occurred. Separation of the duplicated region by speciation gives rise to two separate
branches, shown in B as blue and red. al in species I and al in species II are orthologous because
they share a common ancestor. Similarly, a2 in species I and a2 in species II are orthologous. How-
ever, the al genes are paralogous to the a2 genes because they arose from a gene duplication event,
indicated in A. If two or more copies of a gene family have been separated by speciation in this fash-
ion, they tend to all undergo change as a group, due to gene conversion-type mechanisms (Li and
Graur 1991). In C, a gene in species I and a different gene in species II have converged on the same
function by separate evolutionary paths. Such analogous genes, or genes that result from convergent
evolution, include proteins that have a similar active site but within a different backbone sequence.
In D, genes in species I and 11 are related through the transfer of genetic material between species,
even though the two species are separated by a long evolutionary distance. Although the transfer is
shown between outer branches of the evolutionary tree, it could also have occurred in lower-down
branches, thus giving rise to a group of organisms with the transferred gene. Such genes are known
as xenologous or horizontally transferred genes. Transfer of the P transposable elements between
Drosophila species is a prime example of such horizontal transfer (Kidwell 1983). Horizontal trans-
fer also is found in bacterial genomes and can be traced as a regional variation in base composition
within chromosomes. A similar type of transfer is that of the small ribosomal RNA subunits of mito-
chondria and chloroplasts, which originated from early prokaryotic organisms. Symbiotic relation-
ships between organisms may be a precursor event leading to such exchanges. Other rearrangements
within the genome (not shown) may produce chimeric genes comprising domains of genes that
were evolving separately.
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Genes that are descend-
ed from a common
ancestor are called
homologs.

It is important to
describe these relation-
ships  accurately in
publications. A com-
mon error in the molec-
ular biology literature
is to refer to sequence
“homology” when one
means sequence sitmi-
larity. Sequence “simi-
larity” is a measure of
the matching charac-
ters in an alignment,
whereas homology is a
statement of common
evolutionary origin.

ments can reassort domains in proteins, leading to more complex proteins with an evolu-
tionary history that is difficult to reconstruct (Henikoff et al. 1997).

Evolutionary theory provides terms that may be used to describe sequence relationships.
Homologous genes that share a common ancestry and function in the absence of any evi-
dence of gene duplication are called orthologs. When there is evidence for gene duplica-
tion, the genes in an evolutionary lineage derived from one of the copies and with the same
function are also referred to as orthologs. The two copies of the duplicated gene and their
progeny in the evolutionary lineage are referred to as paralogs. In other cases, similar
regions in sequences may not have a common ancestor but may have arisen independent-
ly by two evolutionary pathways converging on the same function, called convergent evo-
lution. There are some remarkable examples in protein structures. For instance, although
the enzymes chymotrypsin and subtilisin have totally different three-dimensional struc-
tures and folds, the active sites show similar structural features, including histidine (H),
serine (S), and aspartic acid (D) in the catalytic sites of the enzymes (for discussion, see
Branden and Tooze 1991). Additional examples are given in Chapter 10 (p. 509). In such
cases, the similarity will be highly localized. Such sequences are referred to as analogous
(Fitch 1970). A closer examination of alignments can help to sort out possible evolution-
ary origins among similar sequences (Tatusov et al. 1997).

As pointed out by Fitch and Smith (1983), sequences can be either homologous or non-
homologous, but not in between. The genetic rearrangements referred to above can give
rise to chimeric genes, in which some regions are homologous and others are not. Refer-
ring to the entire sequences as homologous in such situations leads to an inaccurate and
incomplete description of the sequence lineage.

Another complication in tracing the origins of similar sequences is that individual genes
may not share the same evolutionary origin as the rest of the genome in which they
presently reside. Genetic events such as symbioses and viral-induced transduction can
cause horizontal transfer of genetic material between unrelated organisms. In such cases,
the evolutionary history of the transferred sequences and that of the organisms will be dif-
ferent. Again, with the capability of detecting such events in the genomes of organisms
comes the responsibility to describe these changes with the correct evolutionary terminol-
ogy. In this case, the sequences are xenologous (Gray and Fitch 1983). Recently, Lawrence
and Ochman (1997) have shown that horizontal transfer of genes between species is as
common in enteric bacteria, if not more common, than mutation. Describing such
changes requires a careful description of sequence origins. As discussed in Chapters 6 and
10, phylogenetic and other types of sequence analyses help to uncover such events.

Alignment of Pairs of Sequences

Aiignment of two sequences is performed using the following methods:

1. Dot matrix analysis

2. The dynamic programming (or DP) algorithm

3. Word or k-tuple methods, such as used by the programs FASTA and BLAST, described
in Chapter 7.

Unless the sequences are known to be very much alike, the dot matrix method should
be used first, because this method displays any possible sequence alignments as diagonals
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on the matrix. Dot matrix analysis can readily reveal the presence of insertions/deletions
and direct and inverted repeats that are more difficult to find by the other, more automat-
ed methods. The major limitation of the method is that most dot matrix computer pro-
grams do not show an actual alignment.

The dynamic programming method, first used for global alignment of sequences by
Needleman and Wunsch (1970) and for local alignment by Smith and Waterman (1981a),
provides one or more alignments of the sequences. An alignment is generated by starting
at the ends of the two sequences and attempting to match all possible pairs of characters
between the sequences and by following a scoring scheme for matches, mismatches, and
gaps. This procedure generates a matrix of numbers that represents all possible alignments
between the sequences. The highest set of sequential scores in the matrix defines an opti-
mal alignment. For proteins, an amino acid substitution matrix, such as the Dayhoff per-
cent accepted mutation matrix 250 (PAM250) or blosum substitution matrix 62
(BLOSUMS62) is used to score matches and mismatches. Similar matrices are available for
aligning DNA sequences.

The dynamic programming method is guaranteed in a mathematical sense to provide
the optimal (very best or highest-scoring) alignment for a given set of user-defined vari-
| ables, including choice of scoring matrix and gap penalties. Fortunately, experience with
the dynamic programming method has provided much help for making the best choices,
and dynamic programming has become widely used. The dynamic programming method
can also be slow due to the very large number of computational steps, which increase
approximately as the square or cube of the sequence lengths. The computer memory
requirement also increases as the square of the sequence lengths. Thus, it is difficult to use
the method for very long sequences. Fortunately, computer scientists have greatly reduced
these time and space requirements to near-linear relationships without compromising the
reliability of the dynamic programming method, and these methods are widely used in the
available dynamic programming applications to sequence alignment. Other shortcuts have
been developed to speed up the early phases of finding an alignment.

The word or k-tuple methods are used by the FASTA and BLAST algorithms (see Chap-
ter 7). They align two sequences very quickly, by first searching for identical short stretch-
es of sequences (called words or k-tuples) and by then joining these words into an align-
ment by the dynamic programming method. These methods are fast enough to be suitable
for searching an entire database for the sequences that align best with an input test
sequence. The FASTA and BLAST methods are heuristic; i.e., an empirical method of com-
puter programming in which rules of thumb are used to find solutions and feedback is
used to improve performance. However, these methods are reliable in a statistical sense,
and usually provide a reliable alignment.

Multiple Sequence Alignment

From a multiple alignment of three or more protein sequences, the highly conserved
residues that define structural and functional domains in protein families can be identified.
New members of such families can then be found by searching sequence databases for
other sequences with these same domains. Alignment of DNA sequences can assist in find-
ing conserved regulatory patterns in DNA sequences. Despite the great value of multiple
sequence alignments, obtaining one presents a very difficult algorithmic problem. The
methods that have been devised are discussed in Chapter 4.
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METHODS
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A dot matrix analysis is primarily a method for comparing two sequences to look for pos-
sible alignment of characters between the sequences, first described by Gibbs and McIntyre
(1970). The method is also used for finding direct or inverted repeats in protein and DNA
sequences, and for predicting regions in RNA that are self-complementary and that, there-
fore, have the potential of forming secondary structure. Every laboratory that does
sequence analysis should have at least one dot matrix program available. In choosing a pro-
gram, look for as many of the features described below as possible. The dot matrix should
be visible on the computer terminal, thus providing an interactive environment so that dif-
ferent types of analyses may be tried. Use of colored dots can enhance the detection of
regions of similarity (Maizel and Lenk 1981). Additional descriptions of the dot matrix
method have appeared elsewhere (Doolittle 1986; States and Boguski 1991). The examples
given below use the dot matrix module of DNA Strider (version 1.3) on a Macintosh com-
puter. The program DOTTER has interactive features for the UNIX X-Windows environ-
ment (Sonnhammer and Durbin 1995; http://www.cgr.ki.se/cgr/groups/sonnhammer/
Dotter.html). The Genetics Computer Group programs COMPARE and DOTPLOT also
perform a dot matrix analysis. Although not a dot matrix method, the program PLALIGN
in the FASTA suite may be used to display the alignments found by the
dynamic programming method between two sequences on a graph (http://fasta.bioch.
virginia.edu/fasta/fasta_list.html; Pearson 1990). A dot matrix program that may be used
with a Web browser is described in Junier and Pagni (2000) (http://www.isrec.isb-
sib.ch/java/ dotlet/Dotlet.html).

1. This chart assumes that both sequences are protein sequences or that both are DNA sequences. If one
is a DNA sequence, that sequence should be translated and then aligned with the second, protein
sequence.

2. The local alignment program, e.g., LALIGN or BESTFIT, usually has a recommended scoring matrix
and gap penalty combination. It is important to make sure that the combination is one that is known
to produce a confined, local alignment with random (or scrambled) sequences. A global alignment
program may also be used with sequences of approximately the same length.

3. For protein sequences, a high-quality alignment is one that includes most of each sequence, a signifi-
cant proportion (e.g., 25%) of identities throughout the alignment, multiple examples of conservative
substitutions (chemically and structurally similar amino acids), and relatively few gaps confined to
specific regions of the alignment. A poor-quality alignment includes only a portion of the sequences,
has few and widely dispersed identities and conservative substitutions, tends to include regions of low
complexity (repeats of same amino acid), and includes gaps that are obviously necessary to obtain the
alignment. For DNA sequences, a significant alignment must include long runs of identities and few
gaps. For two random or unrelated DNA sequences of length 100 and normal composition (0.25 of
each base), the longest run of matches that can be expected is 6 or 7 (see text). A clue as to the signif-
icance of an alignment may also be obtained by using an alignment program that gives multiple alter-
native alignments, e.g., LALIGN. The first alignment found, which will be the highest scoring, should
have a much higher score than the following ones, which are designed so that the same sequence posi-
tions will not be aligned a second time. Hence, these subsequent alignments should usually be random.

4. The result of this analysis can be a guide for the test of significance that follows. In the test described
in this chapter, the second sequence is scrambled and realigned with the first sequence. Scrambling can
be done at the level of the individual nucleotide or amino acid, or at the level of words by keeping the
composition of short stretches of sequence intact.
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Pair-wise Sequence Comparison

The major advantage of the dot matrix method for finding sequence alignments is that all
possible matches of residues between two sequences are found, leaving the investigator the
choice of identifying the most significant ones. Then, sequences of the actual regions that
align can be detected by using one of two other methods for performing sequence align-
ments, e.g., dynamic programming. These methods are automatic and usually show one
best or optimal alignment, even though there may be several different, nearly alike align-
ments. Alignments generated by these programs can be compared to the dot matrix align-
ment to determine whether the longest regions are being matched and whether insertions
and deletions are located in the most reasonable places.

In the dot matrix method of sequence comparison, one sequence (A) is listed across the
top of a page and the other sequence (B) is listed down the left side, as illustrated in Fig-
ures 3.4 and 3.5. Starting with the first character in B, one then moves across the page keep-
ing in the first row and placing a dot in any column where the character in A is the same.
The second character in B is then compared to the entire A sequence, and a dot is placed
in row 2 wherever a match occurs. This process is continued until the page is filled with
dots representing all the possible matches of A characters with B characters. Any region of
similar sequence is revealed by a diagonal row of dots. Isolated dots not on the diagonal
represent random matches that are probably not related to any significant alignment.

Detection of matching regions may be improved by filtering out random matches in a
dot matrix. Filtering is achieved by using a sliding window to compare the two sequences.
Instead of comparing single sequence positions, a window of adjacent positions in the two
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Figure 3.4. Dot matrix analysis of DNA sequences encoding phage N\ cI (vertical sequence) and
phage P22 ¢2 (horizontal sequence) repressors. This analysis was performed using the dot matrix dis-
play of the Macintosh DNA sequence analysis program DNA Strider, vers. 1.3. The window size was
11 and the stringency 7, meaning that a dot is printed at a matrix position only if 7 out of the next
11 positions in the sequences are identified.
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Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage \ cI (horizontal sequence)
and phage P22 ¢2 (vertical sequence) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

sequences is compared at the same time, and a dot is printed on the page only if a certain
minimal number of matches occur. The window starts at the positions in A and B to be
compared and includes characters in a diagonal line going down and to the right, compar-
ing each pair in turn, as in making an alignment. A larger window size is generally used for
DNA sequences than for protein sequences because the number of random matches is
much greater due to the use of only four DNA symbols as compared to 20 amino acid sym-
bols. A typical window size for DNA sequences is 15 and a suitable match requirement in
this window is 10. For protein sequences, the matrix is often not filtered, but a window size
of 2 or 3 and a match requirement of 2 will highlight matching regions. If two proteins are
expected to be related but to have long regions of dissimilar sequence with only a small
proportion of identities, such as similar active sites, a large window, e.g., 20, and small
stringency, e.g., 5, should be useful for seeing any similarity. Identification of sequence
alignments by the dot matrix method can be aided by performing a count of dots in all pos-
sible diagonal lines through the matrix to determine statistically which diagonals have the
most matches, and by comparing these match scores with the results of random sequence
comparisons (Gibbs and McIntyre 1970; Argos 1987).

An example of a dot matrix analysis between the DNA sequences that encode the
Escherichia coli phage \ cI and phage P22 2 repressor proteins is shown in Figure 3.4. With
a window of 1 and stringency of 1, there is so much noise that no diagonals can be seen,
but, as shown in the figure, with a window of 11 and a stringency of 7, diagonals appear in
the lower left. The analysis reveals that there are regions of similarity in the 3’ ends of the
coding regions, which, in turn, suggests similarity in the carboxy-terminal domains of the
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encoded repressors. Note that sequential diagonals in matrix C do not line up exactly, indi-
cating the presence of extra nucleotides in one sequence (the lambda cI gene on the verti-
cal scale). The diagonals shown in the lower part of the matrix reveal a region of sequence
similarity in the carboxy-terminal domains of the proteins. A small insertion in the cI pro-
tein that is approximately in the middle of this region and shifts the diagonal slightly
downward accounts for this pattern.

An example of a dot matrix analysis between the amino acid sequences of the same two
E. coli phage lambda cI and phage P22 c2 repressor proteins is shown in Figure 3.5. This
matrix was filtered by a window of 1 and a stringency of 1. As found with the DNA
sequence alignment of the corresponding genes, diagonals shown in the lower part of the
matrix reveal a region of sequence similarity in the carboxy-terminal domains of the pro-
teins. The small insertion in the cI protein approximately in the middle of this region
which shifts the diagonal slightly downward and which is also observed in the DNA align-
ment of these corresponding genes is also visible. Note that these windows are much small-
er than required for DNA sequence comparisons due to the greater number of possible
symbols (20 amino acids) and therefore fewer random matches.

In conclusion, for DNA sequence dot matrix comparisons, use long windows and high
stringencies, e.g., 7 and 11, 11 and 15. For protein sequences, use short windows, e.g., 1 and
1, for window and stringency, respectively, except when looking for a short domain of par-
tial similarity in otherwise not-similar sequences. In this case, use a longer window and a
small stringency, e.g., 15 and 5, for window and stringency, respectively.

There are three types of variations in the analysis of two protein sequences by the dot
matrix method. First, chemical similarity of the amino acid R group or some other feature
for distinguishing amino acids may be used to score similarity. Second, a symbol compar-
ison table such as the PAM250 or BLOSUMS62 tables may be used (States and Boguski
1991). These tables provide scores for matches based on their occurrence in aligned pro-
tein families. These tables are discussed later in this chapter (pages 78 and 85, respective-
ly). When these tables are used, a dot is placed in the matrix only if a minimum similarity
score is found. These table values may also be used in a sliding window option, which aver-
ages the score within the window and prints a dot only above a certain average score. Final-
ly, several different matrices can be made, each with a different scoring system, and the
scores can be averaged. This method should be useful for aligning more distantly related
proteins. The scores of each possible diagonal through the matrix are then calculated, and
the most significant ones are identified and shown on a computer screen (Argos 1987).

Sequence Repeats

Dot matrix analysis can also be used to find direct and inverted repeats within sequences.
Repeated regions in whole chromosomes may be detected by a dot matrix analysis, and an
interactive Web-based program has been designed for showing these regions at increasing
levels of detail (http://genome-www.stanford.edu/Saccharomyces/ SSV/viewer_start.html).
Direct repeats may also be found by performing sequence alignments with dynamic pro-
gramming methods (see next section). When used to align a sequence with itself, the pro-
gram LALIGN will show alternative possible alignments between the repeated regions;
PLALIGN will plot these alignments on a graph similar in appearance to a dot matrix (see
http://fasta.bioch.virginia.edu/fasta/fasta-listhtml; Pearson 1990). Here, the sequence is
analyzed against itself and the presence of repeats is revealed by diagonal rows of dots. A
Bayesian method for finding direct repeats is described on page 122. Inverted repeats
require special handling and are discussed in Chapters 5 and 8. In Figure 3.6, an example
of such an analysis for direct repeats in the amino acid sequence of the human low-densi-
ty lipoprotein (LDL) receptor is shown. A list of additional proteins with direct repeats is
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Figure 3.6. Dot matrix analysis of the human LDL receptor against itself using DNA Strider, vers. 1.3, on a Macintosh com-
puter. (A) Window 1, Stringency 1. There is a diagonal line from upper left to lower right due to the fact that the same
sequence is being compared to itself. The rest of the graph is symmetrical about this line. Other (quite hard to see) lines on
either side of this diagonal are also present. These lines indicate repeated sequences perhaps 50 or so long. Patches of high-
density dots, e.g., at the position corresponding to position 800 in both sequences representing short repeats of the same
amino acid, are also seen. (B) Window 23, Stringency 7. The occurrence of longer repeats may be found by using this sliding
window. In this example, a dot is placed on the graph at a given position only if 7/23 of the residues are the same. These choic-
es are arbitrary and several combinations may need to be tried. Many repeats are seen in the first 300 positions. A pattern of
approximate length 20 and at position 30 is repeated at least six times at positions 70, 100, 140, 180, 230, and 270. Two longer,
overlapping repeats of length 70 are also found in this same region starting at positions 70 and 100, and repeated at position
200. Since few of these diagonals remain in new analyses at 11/23 (stringency/window) and all disappear at 15/23, they are not
repeats of exactly the same sequence but they do represent an average of about 7/23 matches with no deletions or insertions.
The information from the above dot matrix may be used as a basis for listing the actual amino acid repeats themselves by one
of the other methods for sequence alignment described below.
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given in Doolittle (1986, p. 50), and repeats are also discussed in States and Boguski (1991,
p.109). As discussed in Chapters 9 and 10, there are many examples of proteins composed
of multiple copies of a single domain.

Repeats of a Single Sequence Symbol

A dot matrix analysis can also reveal the presence of repeats of the same sequence charac-
ter many times. These repeats become apparent on the dot matrix of a protein sequence
against itself as horizontal or vertical rows of dots that sometimes merge into rectangular
or square patterns. Such patterns are particularly apparent in the right and lower regions
of the dot matrix of the human LDL receptor shown in Figure 3.6 but are also seen
throughout the rest of the matrix. The occurrence of such repeats of the same sequence
character increases the difficulty of aligning sequences because they create alignments with
artificially high scores. A similar problem occurs with regions in which only a few sequence
characters are found, called low-complexity regions. Programs that automatically detect
and remove such regions from the analysis so that they do not interfere with database sim-
ilarity searches are discussed in Chapter 7.

Dynamic programming is a computational method that is used to align two protein or
nucleic acid sequences. The method is very important for sequence analysis because it pro-
vides the very best or optimal alignment between sequences. Programs that perform this
analysis on sequences are readily available, and there are Web sites that will perform the
analysis. However, the method requires the intelligent use of several variables in the pro-
gram. Thus, it is important to understand how the program works in order to make
informed choices of these variables.

The method compares every pair of characters in the two sequences and generates an
alignment. This alignment will include matched and mismatched characters and gaps in
the two sequences that are positioned so that the number of matches between identical or
related characters is the maximum possible. The dynamic programming algorithm pro-
vides a reliable computational method for aligning DNA and protein sequences. The
method has been proven mathematically to produce the best or optimal alignment
between two sequences under a given set of match conditions. Optimal alignments provide
useful information to biologists concerning sequence relationships by giving the best pos-
sible information as to which characters in a sequence should be in the same column in an
alignment, and which are insertions in one of the sequences (or deletions on the other).
This information is important for making functional, structural, and evolutionary predic-
tions on the basis of sequence alignments.

Both global and local types of alignments may be made by simple changes in the basic
dynamic programming algorithm. A global alignment program is based on the Needle-
man-Wunsch algorithm, and a local alignment program on the Smith-Waterman algo-
rithm, described below (p. 72). The predicted alignment will be given a score that gives the
odds of obtaining the score between sequences known to be related to that obtained by
chance alignment of unrelated sequences. There is a method to calculate whether or not an
alignment obtained this way is statistically significant. One of the sequences may be scram-
bled many times and each randomly generated sequence may be realigned with the second
sequence to demonstrate that the original alignment is unique. The statistical significance
of alignment scores is discussed in detail below (p. 96).
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Another feature of the dynamic programming algorithm is that the alignments obtained
depend on the choice of a scoring system for comparing character pairs and penalty scores
for gaps. For protein sequences, the simplest system of comparison is one based on iden-
tity. A match in an alignment is only scored if the two aligned amino acids are identical.
However, one can also examine related protein sequences that can be aligned easily and
find which amino acids are commonly substituted for each other. The probability of a sub-
stitution between any pair of the 20 amino acids may then be used to produce alignments.
Recent improvements and experience with the dynamic programming programs and the
scoring systems have greatly simplified their use. These enhancements are discussed below
and at http://www.bioinformaticsonline.org,

It is important to recognize that several different alignments may provide approximate-
ly the same alignment score; i.e., there are alignments almost as good as the highest-scor-
ing one reported by the alignment program. Some programs, e.g., LALIGN, provide sever-
al entirely different alignments with different sequence positions matched that can be
compared to improve confidence in the best-scoring one. Alignment programs have also
been greatly improved in algorithmic design and performance. With the advent of faster
machines, it is possible to do a dynamic programming alignment between a query
sequence and an entire sequence database and to find the similar sequences in several min-
utes. Dynamic programming has also been used to perform multiple sequence alignment,
but only for a small number of sequences because the complexity of the calculations
increases substantially for more than two sequences. Sequence alignment programs are
available as a part of most sequence analysis packages, such as the widely used Genetics
Computer Group GAP (global alignment) and BESTFIT (local alignment) programs.
Sequences can also be pasted into a text area on a guest Web page on a remote host
machine that will perform a dynamic programming alignment, and there are also versions
of alignment programs that will run on a microcomputer (Table 3.1).

In deciding to perform a sequence alignment, it is important to keep the goal of the
analysis in mind. Is the investigator interested in trying to find out whether two proteins
have similar domains or structural features, whether they are in the same family with a
related biological function, or whether they share a common ancestor relationship? The
desired objective will influence the way the analysis is done. There are several decisions to
be made along the way, including the type of program, whether to produce a global or local
alignment, the type of scoring matrix, and the value of the gap penalties to be used. There
are a very large number of amino acid scoring matrices in use (see book Web site), some
much more popular than others, and these scoring matrices are designed for different pur-
poses. Some, such as the Dayhoff PAM matrices, are based on an evolutionary model of
protein change, whereas others, such as the BLOSUM matrices, are designed to identify
members of the same family. Alignments between DNA sequences require similar kinds of
considerations. It is often worth the effort to try several approaches to find out which
choice of scoring system and gap penalty give the most reasonable result. Fortunately, most
alignment programs come with a recommended scoring matrix and gap penalties that are
useful for most situations. A more recent development (see Bayesian methods discussed on
P- 124) is the simultaneous use of a set of scoring matrices and gap penalties by a method
that generates the most probable alignments (see Table 3.1). The final choice as to the most
believable alignment is up to the investigator, subject to the condition that reasonable deci-
sions have been made regarding the methods used.

For sequences that are very similar, e.g., >95%, the sequence alignment is usually quite
obvious, and a computer program may not even be needed to produce the alignment. As
the sequences become less and less similar, the alignment becomes more difficult to pro-
duce and one is less confident of the result. For protein sequences, similarity can still be
recognized down to a level of approximately 25% amino acid identity. At this level of iden-



66  CHAPTER 3

Table 3.1. Web sites for alignment of sequence pairs

Name of site Web address Reference
Bayes block aligner http://www.wadsworth.org/res&res/bioinfo Zhu et al. (1998)
BCM Search Launcher:
Pairwise sequence alignment® http://dot.imgen.bcm.tme.edu:9331/seq- see Web site
search/alignment.html
SIM—Local similarity program for finding  http://www.expasy.ch/tools/sim.html Huang et al. (1990);
alternative alignments Huang and Miller (1991);
Pearson and Miller (1992)
Global alignment programs (GAP, NAP) http://genome.cs.mtu.edu/align/align.html Huang (1994)
FASTA program suite” http://fasta.bioch.virginia.edu/fasta/fasta_list.html ~ Pearson and Miller (1992);
Pearson (1996)
BLAST 2 sequence alignment (BLASTN, http://www.ncbinlm.nih.gov/gorf/bl2.html Altschul et al. (1990)
BLASTP)®
Likelihood-weighted sequence alignment http://www.ibc.wustl.edu/servive/lwa.html see Web site
(wa)?

 This server provides access to a number of Web sites offering pair-wise alignments between nucleic acid sequences, protein
sequences, or between a nucleic acid and a protein sequence.

The FASTA algorithm normally used for sequence database searches (see Chapter 7) provides an alternative method to dynamic
programming for producing an alignment between sequences. Briefly, all short patterns of a certain length are located in both
sequences. If multiple patterns are found in the same order in both sequences, these provide the starting point for an alignment by the
dynamic programming algorithm. Older versions of FASTA performed a global alignment, but more recent versions perform a local
alignment with statistical evaluations of the scores. The program PLFASTA in the FASTA program suite provides a plot of the best
matching regions, much like a dot matrix analysis, and thus gives an indication of alternative alignments. The FASTA suite is also avail-
able from Genestream at http://vega.igh.cnrs.fr/. Programs include ALIGN (global, Needleman-Wunsch alignment), LALIGN (local,
Smith-Waterman alignment), LALIGNO (Smith-Waterman alignment, no end gap penalty), FASTA (local alignment, FASTA
method), and PRSS (local alignment with scrambled copies of second sequence to do statistical analysis). Versions of these programs
that run with a command-line interface on MS-DOS and Macintosh microcomputers are available by anonymous FIP from ftp.vir-
ginia.edu/pub/fasta.

¢ The BLAST algorithm normally used for database similarity searches (Chapter 7) can also be used to align two sequences.
4 A description of the probabilistic method of aligning two sequences is described in Durbin et al. (1998) and Chapter 4. A related
topic, hidden Markov models for multiple sequence alignments, is discussed in Chapter 4.

tity, the relative numbers of mismatched amino acids and gaps in the alignment have to be
decided empirically and a decision made as to which gap penalties work the best for a given
scoring matrix. Alignment of sequences at this level of identity is called the “twilight zone”
of sequence alignment by Doolittle (1981). The alignment program may provide a quite
convincing alignment, which suggests that the two sequences are homologous. The statis-
tical significance of the alignment score may then be evaluated, as described later in this
chapter.

Description of the Algorithm

Alignment of two sequences without allowing gaps requires an algorithm that performs a
number of comparisons roughly proportional to the square of the average sequence length,
as in a dot matrix comparison. If the alignment is to include gaps of any length at any posi-
tion in either sequence, the number of comparisons that must be made becomes astro-
nomical and is not achievable by direct comparison methods. Dynamic programming is a
method of sequence alignment that can take gaps into account but that requires a man-
ageable number of comparisons.

The method of sequence alignment by dynamic programming and the proof that the
method provides an optimal (highest scoring) alignment are illustrated in Figures 3.7 and
3.8. To understand how the method works, we must first recall what is meant by an align-
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of scoring a sequence alignment with a gap penalty. The individual alignment scores are taken from an

ment, using the two protein sequences shown in Figure 3.7 as an example. The two
sequences will be written across the page, one under the other, the object being to bring as
many amino acids as possible into register. In some regions, amino acids in one sequence
will be placed directly below identical amino acids in the second. In other regions, this pro-
cess may not be possible and nonidentical amino acids may have to be placed next to each
other, or else gaps must be introduced into one of the sequences. Gaps are added to the
alignment in a manner that increases the matching of identical or similar amino acids at
subsequent portions in the alignment. Ideally, when two similar protein sequences are
aligned, the alignment should have long regions of identical or related amino acid pairs
and very few gaps. As the sequences become more distant, more mismatched amino acid
pairs and gaps should appear.

The quality of the alignment between two sequences is calculated using a scoring system
that favors the matching of related or identical amino acids and penalizes for poorly
matched amino acids and gaps. To decide how to score these regions, information on the
types of changes found in related protein sequences is needed. These changes may be
expressed by the following probabilities: (1) that a particular amino acid pair is found in
alignments of related proteins; (2) that the same amino acid pair is aligned by chance in
the sequences, given that some amino acids are abundant in proteins and others rare; and
(3) that the insertion of a gap of one or more residues in one of the sequences (the same as
an insertion of the same length in the other sequence), thus forcing the alignment of each
partner of the amino acid pair with another amino acid, would be a better choice. The ratio
of the first two probabilities is usually provided in an amino acid substitution matrix. Each

1. SCORE OF NEW = SCORE OF PREVIOUS + SCORE OF NEW
ALIGNMENT ALIGNMENT (A) ALIGNED PAIR

VDS - C ¥ VDS - C Y

V E S L C Y VE S L C Y

II. SCORE OF

ALIGNMENT (A) ALIGNMENT (B) ALIGNED PAIR
VDS - C V D § - cC
V E S L C V E S L c
8 = -1 + 9

ITIT.

15 = 8 + 7

SCORE OF PREVIOUS + SCORE OF NEW

REPEAT REMOVING ALIGNED PAIRS UNTIL END OF ALIGNMENT IS REACHED.

Figure 3.8. Derivation of the dynamic programming algorithm.




68 @ CHAPTER 3

table entry gives the ratio of the observed frequency of substitution between each possible
amino acid pair in related proteins to that expected by chance, given the frequencies of the
amino acids in proteins. These ratios are called odds scores. The ratios are transformed to
logarithms of odds scores, called log odds scores, so that scores of sequential pairs may be
added to reflect the overall odds of a real to chance alignment of an alignment. Examples
are the Dayhoff PAM250 and BLOSUMS62 substitution matrices described below (p. 76).
These matrices contain positive and negative values, reflecting the likelihood of each amino
acid substitution in related proteins. Using these tables, an alignment of a sequential set of
amino acid pairs with no gaps receives an overall score that is the sum of the positive and
negative log odds scores for each individual amino acid pair in the alignment. The higher
this score, the more significant is the alignment, or the more it resembles alignments in
related proteins. The score given for gaps in aligned sequences is negative, because such
misaligned regions should be uncommon in sequences of related proteins. Such a score
will reduce the score obtained from an adjacent, matching region upstream in the
sequences. The score of the alignment in Figure 3.7, using values from the BLOSUM62
amino acid substitution matrix and a gap penalty score of —11 for a gap of length 1, is 26
(the sum of amino acid pair scores) —11 =15. The value of —11 as a penalty for a gap of
length 1 is used because this value is already known from experience to favor the alignment
of similar regions when the BLOSUM62 comparison matrix is used. Choice of the gap
penalty is discussed further below where a table giving suitable choices is presented (see
Table 3.10 on p. 113). As shown in the example, the presence of the gap decreases signifi-
cantly the overall score of the alignment.
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Although one may be able to align the two short sequences in Figure 3.7 by eye and to
place the gap where shown, the dynamic programming algorithm will automatically place
gaps in much longer sequence alignments so as to achieve the best possible alignment. The
derivation of the dynamic programming algorithm is illustrated in Figure 3.8, using the
above alignment as an example. Consider building this alignment in steps, starting with an
initial matching aligned pair of characters from the sequences (V/V) and then sequential-
ly adding a new pair until the alignment is complete, at each stage choosing a pair from all
the possible matches that provides the highest score for the alignment up to that point. If
the full alignment finally reached on the left side of Figure 3.8 (I) has the highest possible
or optimal score, then the old alignment from which it was derived (A) by addition of the
aligned Y/Y pair must also have been optimal up to that point in the alignment. If this were
incorrect, and a different preceding alignment other than A was the highest scoring one,
then the alignment on the left would also not be the highest scoring alignment, and we
started with that as a known condition. Similarly, in Figure 3.8 (II), alignment A must also
have been derived from an optimal alignment (B) by addition of a C/C pair. In this man-
ner, the alignment can be traced back sequentially to the first aligned pair that was also an
optimal alignment. One concludes that the building of an optimal alignment in this step-
wise fashion can provide an optimal alignment of the entire sequences.

The example in Figure 3.8 also illustrates two of the three choices that can be made in
adding to an alignment between two sequences: Match the next two characters in the next
positions in each sequence, or match the next character to a gap in the upper sequence. The
last possibility, not illustrated, is to add a gap to the lower sequence. This situation is anal-
ogous to performing a dot matrix analysis of the sequences, and of either continuing a
diagonal or of shifting the diagonal sideway or downward to produce a gap in one of the
sequences. An example of using the dynamic programming algorithm to align two short
protein sequences is illustrated in Figure 3.9.

Formal Description of the Dynamic Programming Algorithm

The algorithm (Fig. 3.9) may be written in mathematical form, as shown in Figure 3.10.
The diagram indicates the moves that are possible to reach a certain matrix position (3,7)
starting from the previous row and column at position (i — 1, j — 1) or from any position
in the same row and column.

The following equation describes the algorithm that was illustrated in Figure 3.9. There
are three paths in the scoring matrix for reaching a particular position, a diagonal move
from position i — 1, j — 1 to position i, j with no gap penalties, or a move from any other
position from column j or row i, with a gap penalty that depends on the size of the gap. For
two sequencesa = a;a,...a,and b = b; b, ... b,, where S;; = S(aja, ... a;, b,b,..b;) then
(Smith and Waterman 1981a,b)

where S;; is the score at position i in sequence a and position j in sequence b, s(a;b;) is the
score for aligning the characters at positions i and j, w, is the penalty for a gap of length x
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in sequence a, and w, is the penalty for a gap of length y in sequence b. Note that S; is a
type of running best score as the algorithm moves through every position in the matrix.
Eventually, when all of the matrix positions (all S;;) have been filled, the best score of the
alignment will be found as the highest scoring position in the last row and column (for a
global alignment), after correcting for any remaining gap penalties to align the sequence
ends, if applicable. To determine an optimal alignment of the sequences from the scoring
matrix, a second matrix called the trace-back matrix is used (Fig. 3.9). The trace-back
matrix keeps track of the positions in the scoring matrix that contributed to the highest
overall score found. The sequence characters corresponding to these high scoring positions
may align or may be next to a gap, depending on the information in the trace-back matrix.
An example of this procedure can be found on the book Web site.

Use of the dynamic programming method requires a scoring system for the comparison of
symbol pairs (nucleotides for DNA sequences and amino acids for protein sequences), and a
scheme for insertion/deletion (GAP) penalties. Once those parameters have been set, the
resulting alignment for two sequences should always be the same. Scoring matrices are

Y

Figure 3.9. Example of using the dynamic programming algorithm to align sequences al a2 a3 a4 and bl b2 b3 b4.

1. The sequences are written across the top and down the left side of a matrix, respectively, similar to that done in the dot
matrix analysis, except that an extra row and column labeled “gap” are added to allow the alignment to begin with a gap
of any length in either sequence. The gap rows are filled with penalty scores for gaps of increasing lengths, as indicated. A
zero is placed in the upper right box corresponding to no gaps in either sequence.

2. Maximum possible values are calculated for all other boxes below and to the right of the top row and left column, taking
into account any sized gap or no gap, using the steps listed in a through d below. The scores for individual matches al-bl,
al-b2, etc., are obtained from a scoring matrix (symbol comparison table). To calculate the value for a particular matrix
position, trial values are calculated from all moves into that position allowed by the algorithm. The allowed moves are from
any position above or to the left of the current position, in the same column or row, or from the upper left diagonal posi-
tion. The diagonal move attempts to align the sequence characters without introducing a gap. Thus, there is no gap penal-
ty in this case. However, moves from above and to the left will introduce gaps, and thus will require one or more gap penal-
ties to be used. (a) s11 is the score for an al-b1l match added to 0 in the upper left position. According to the algorithm,
there are two other possible paths to this position shown by the vertical and horizontal arrows, but they would probably
have to give a lower score because they start at a gap penalty and must include an additional gap penalty. (b) Trial values
for s12 are calculated and the maximum score is chosen. Trial 1 is to add the score for the al-b2 match to s11 and subtract
a penalty for a gap of size 1. The other three trials shown by arrows include gap penalties and so likely cannot yield a high-
er score than trial 1. (¢} All possible scores for s21 are calculated by the trial moves indicated. The best score should be
obtained by adding the score of an a2-b1 match to s11 since all other moves include gap penalties. (d) Trial values of 522
are calculated by considering moves from s11, s21, and s12, and from the top row and left end column. s22 will be the best
score of several possible choices, including adding the score for an a2-b2 match to s11, or to s21 less a single gap penalty.
Other trials will normally be attempted from other positions above and to the left of this position, but in this case, they will
probably not provide a higher score for s22 because they include multiple gap penalties.

3. As the maximum scores for each matrix position are calculated, a record of the paths that produced the highest scores to
reach each matrix position is kept. These short paths, which represent extending the alignment to another matching pair,
with or without gaps, are recorded in another matrix called the trace-back matrix, illustrated below. For example, if mov-
ing from s11 to s21 gave the highest score of all moves to s21, then the corresponding region of the matrix will appear as
shown.

4, The paths in the trace-back matrix are joined to produce an alignment. In the example shown, the highest-scoring matrix
position in the sequence comparison matrix is located, in this case s44, and the arrows are then traced back as far as pos-
sible, generating the path shown. The corresponding alignment A is shown below the matrix. More than one alignment
may be possible if there is more than one path from the highest scoring matrix position. As an example, s43 could also be
a high-scoring position, generating trace-back alignment B, an alignment that includes a gap opposite a2. Another gap may
also be placed opposite b4, which has no matching symbol. Scoring end gaps is optional in the alignment programs. If

Legend continues.
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% 1 2c.

f gap al a2 a3 a4 gap al a2 a3 a4
gap 0 1 gap |2 gaps |3 gaps |4 gaps gap 0 1gap (2 geps 3 gaps |4 gaps
b1 1gap b1 1gap | s11;;52v1
b2 |2 gaps b2 (2gaps| s12
b3 |3 gaps b3 |3 gaps
b4 |4 gaps b4 |4 gaps

2a. 2d.
gap al a2 a3 ad gap al a2 a3 a4
gap O\ 1 gap||2 gaps |3 gaps {4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1 gﬁsﬁ v b1 1gap | si1 s%1
b2 (2 gaps b2 (2 gaps| si 21 sé2
b3 |3 gaps b3 3 gaps
b4 |4 gaps b4 |4 gaps
2b. 3. Part of trace back matrix
gap al a2 a3 a4 gap al a2 a3 a4
gap 0 1 gap, |2 gaps |3 gaps |4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1gap s1'1 b1 1gap | s11-4 s21 s31 s41
b2 |2 gaps\lﬁsb b2 |[2gaps| s12 522 s32 s42
b3 |3 gaps b3 [3gaps| s13 s23 s33 s43
b4 |4 gaps b4 |4 gaps| s14 s24 s34 s44

4. Trace back matrix

gap al a2 a3 a4

gap 0 1 gap |2 gaps [3 gaps |4 gaps

bl [1gap | s11 ¥ s21B| 31 | s41

b2 [2ga s12 s22 s32 s42
gaps !

b3 |3gaps| s13 | s23A[ s33_ | s43

b4 |4 gaps| s14 s24 s34 s44

Alignment A: al a2 a3 a4
b1 b2 b3 b4

Alignment B: al a2 a3 a4 -
b1 - b2 b3 b4

included in this case, alignment B would be disfavored by an additional gap penalty. In addition to this series of alignments,
or so-called clump of alignments starting from the highest scoring position, there will be other possible alignments start-
ing from other high-scoring matrix positions, and these may also have multiple pathways through the scoring matrix, each

representing a different alignment. Note that these alignments are global alignments because they include the entire
sequernces.
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Figure 3.10. Formal description of the dynamic programming algorithm.

described below. The most commonly used ones for protein sequence alignments are the log
odds form of the PAM250 matrix and the BLOSUM62 matrix. However, a number of other
choices are available.

Dynamic Programming Can Provide Global or Local Sequence Alignments

Global Alignment: Needleman-Wunsch Algorithm

The dynamic programming method as described above gives a global alignment of
sequences, as described by Needleman and Wunsch (1970), but was also proven mathe-
matically and extended to include an improved scoring system by Smith and Waterman
(1981a,b). The optimal score at each matrix position is calculated by adding the current
match score to previously scored positions and subtracting gap penalties, if applicable.
Fach matrix position may have a positive or negative score, or 0. The Needleman-Wunsch
algorithm will maximize the number of matches between the sequences along the entire
length of the sequences. Gaps may also be present at the ends of sequences, in case there is
extra sequence left over after the alignment. These end gaps are often, but not always, given
a gap penalty. The effect of these penalties is illustrated below. An example of a global
alignment of two short sequences calculated by hand using the algorithm is shown on the
book Web site. The example also reveals that more than one alignment may be equally as
likely.

Local Alignment: Smith-Waterman Algorithm

A modification of the dynamic programming algorithm for sequence alignment provides
a local sequence alignment giving the highest-scoring local match between two sequences
(Smith and Waterman 1981a,b). Local alignments are usually more meaningful than glob-
al matches because they include patterns that are conserved in the sequences. They can also
be used instead of the Needleman-Wunsch algorithm to match two sequences that may
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have a matched region that is only a fraction of their lengths, that have different lengths,
that overlap, or where one sequence is a fragment or subsequence of the other. The rules
for calculating scoring matrix values are slightly different, the most important differences
being (1) the scoring system must include negative scores for mismatches, and (2) when a
dynamic programming scoring matrix value becomes negative, that value is set to zero,
which has the effect of terminating any alignment up to that point. The alignments are pro-
duced by starting at the highest-scoring positions in the scoring matrix and following a
trace path from those positions up to a box that scores zero. The mathematical formula-
tion of the dynamic programming algorithm is revised to include a choice of zero as the
minimum value at any matrix position. For two sequencesa = a;,a,...a,andb =b; b,...
b,,, where H;; = H(aja, . . . a; byb,..b;), then (Smith and Waterman 1981a)

where Hj; is the score at position i in sequence a and position j in sequence b, s(a,b;) is the
score for aligning the characters at positions i and j, w, is the penalty for a gap of length x
in sequence a, and w, is the penalty for a gap of length y in sequence b.

To illustrate the difference between the Needleman-Wunsch and Smith-Waterman
methods, a local alignment of the same two sequences is shown on the book Web site.

Does a Local Alignment Program Always Produce a Local Alignment and a Global
Alignment Program Always Produce a Global Alignment?

Although a computer program that is based on the above Smith-Waterman local align-
ment algorithm is used for producing an optimal alignment, this feature alone does not
assure that a local alignment will be produced. The scoring matrix or match and mismatch
scores and the gap penalties chosen also influence whether or not a local alignment is
obtained. Similarly, a program based on the Needleman-Wunsch algorithm can also
return a local alignment depending on the weighting of end gaps and on other scoring
parameters. Often, one can simply inspect the alignment obtained to see how many gaps
are present. If the matched regions are long and cover most of the sequences and obvious-
ly depend on the presence of many gaps, the alignment is global. A local alignment, on the
other hand, will tend to be shorter and not include many gaps, just as in the example given
on the book Web site. However, these tests are quite subjective, and a more precise method
of knowing whether a given program and set of scoring parameters will provide a local or
global alignment is required. Looking ahead in the chapter for a moment, the best way of
knowing is by looking at what happens when many random or completely unrelated
sequences are aligned under the chosen conditions. As the length of the random sequences
being aligned increases, the score of a global alignment will just increase proportionally.
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This is easy to see. Because a global alignment matches most of the sequence, and the neg-
ative mismatch score and gap penalties are deliberately chosen to be small in comparison
to match scores in order to provide a long alignment, only matches count and the score has
to be proportional to the length.

If using a scoring matrix, a matrix that gives on the average a positive score to each
aligned position, combined with a small enough gap penalty to allow extension of the
alignment through poorly matched regions, will give a global alignment. Conversely, for
the local alignment, a negative mismatch score and gap penalties are chosen to balance the
positive score of a match and to prevent the alignment growing into regions that do not
match very well. The scoring matrix in this case will on the average give a negative value to
the matched positions, and the gap penalty will be large enough to prevent gaps from
extending the alignment. The local alignment score of random sequences does not increase
proportionally to sequence length, because the positive score of matches is offset by the
mismatch and penalty scores. In this case, it may be shown by theory and experiment that
the score of local random alignments increases much more slowly, and proportionally to
the logarithm of the product of the sequence lengths. It is this different behavior of the
alignment score of random sequences with length that distinguishes global and local align-
ments.

One may well ask, Does it really matter whether I use a sequence alignment program
based on the global alignment algorithm or one based on the local alignment algorithm?
The answer is that sometimes both methods will provide the same alignment with the same
scoring system and sometimes they will not. The most reasonable approach is to use a pro-
gram based on the appropriate algorithm for the analysis at hand, and then to choose the
scoring system carefully. Small changes in the scoring system can abruptly change an align-
ment from a local to a global one. There are even examples in the bioinformatics literature
where this feature of alignment scoring systems has been overlooked. The rest of this chap-
ter is designed to provide a suitable guide for making the right choices.

Additional Development and Use of the Dynamic Programming Algorithm for Sequence

Alignments

Use of Distance Scores for Sequence Alignment

As originally designed by Needleman and Wunsch and Smith and Waterman, the dynam-
ic programming algorithm was used for sequence alignments scored on the basis of the
similarity or identity of sequence characters. An alternative method is to score alignments
based on differences between sequences and sequence characters; i.e., how many changes
are required to change one sequence into another. Using this measure, the greater the dis-
tance between sequences, the greater the evolutionary time that has elapsed since the
sequences diverged from a common ancestor. Hence, distance scores provide a more bio-
logically natural way to compare sequences than do similarity scores. Using a distance
scoring scheme, Sellers (1974, 1980) showed that the dynamic programming method
could be used to provide an alignment that highlighted the evolutionary changes. Smith
et al. (1981) and Smith and Waterman (1981b) showed that alignments based on a simi-
larity scoring scheme could give a similar alignment. This analysis is discussed further on
the book Web site. Conversion between distance and similarity scores is discussed in
Chapter 6.
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Improvement in Speed and Memory Requirement for the Dynamic
Programming Algorithm

The dynamic programming methods for sequence alignments originally required between
n X mand n X m” steps and storage in several matrices of size n X m, where n is the length
of the shorter sequence (Needleman and Wunsch 1970; Waterman et al. 1976; Smith and
Waterman 1981a). On the book Web site, a series of improvements in this algorithm that
reduced the number of steps and amount of memory required are described. These steps
include: (1) a decreased number of steps in the alignment algorithm by Gotoh (1982); (2)
a reduction in the amount of memory required to a linear function of sequence length
(Myers and Miller 1988); (3) ability to find near-optimal alignments (Chao et al. 1994) and
The alignment pro- 14 glign long sequences (Schwartz et al. 1991); and (4) ability to find the best-scoring alter-
grams listed in Table . . . . ..
31 incude these fea- ~ DAtIVE alignments that do not include alignments of the same sequence positions (Water-
tures. man and Eggert 1987; Huang et al. 1990; Huang and Miller 1991).

An alternative global alignment is found by giving the matrix position that begins with
an alignment score of zero, and then all matrix positions that are affected by this change
are recalculated. The next highest matrix score and the path leading to it provide an alter-
native alignment of the sequences that does not include the same sequence matches as were
present in the original alignment (Waterman and Eggert 1987). Alternative local align-
ments are found by a more complex algorithm (the SIM algorithm) that includes the
improvements listed above (Huang et al. 1990; Huang and Miller 1991).

Examples of Global and Local Alignments

An example of global and local alignments between two phage repressor proteins using the
Genetics Computer Group (GCG) programs GAP (Needleman-Wunsch algorithm) and
BESTEIT (Smith-Waterman algorithm) is shown in Figure 3.11. Note that the proteins are
58% similar in the carboxy-terminal domain, which is the region required for
protein—protein interactions and a self-cleavage function that leads to phage induction. In
these GCG implementations of the Needleman-Wunsch and Smith-Waterman algorithms,
the alignments found in the carboxy-terminal domain are identical. However, the Smith-
Waterman method (B) only reports the most alike regions, as expected by the focus on a
local alignment strategy. In contrast, the Needleman-Wunsch method shows the entire
alignment of the sequences but reports a lower score of similarity due to the longer align-
ment.

LALIGN (Fig. 3.12) is an implementation of the SIM algorithm for finding multiple
unique (nonintersecting) alignments in DNA and protein sequences (Huang and Miller
1991) distributed in the FASTA package from W. Pearson. The program is also available
on Web sites (see Table 3.1). Two features of these alignments are noteworthy: First, the
highest-scoring alignment is similar to that found by the GAP program using a different
amino acid substitution matrix and different gap penalties, with some minor variations in
the more dissimilar regions and extension of the alignment farther into the amino-termi-
nal domains. Second, by design, the alternative alignments never align the same amino
acids and, in this example, the second and third alignments score much lower than the first
one. These observations that strongly aligning regions are not significantly influenced by
the scoring system, and that alternative high-scoring alignments are not possible, add con-
vincing support that the initial alignment represents true similarity between these
sequences. Another example of an alignment of these same sequences using ALIGN with a
different scoring system is given on page 116.
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A. GAP (Needleman-Wunsch algorithm)
Percent Similarity: 44.651 Percent Identity: 36.279
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B. BESTFIT (Smith-Waterman algorithm)
Percent Similarity: 58.871 Percent Identity: 48.387
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Figure 3.11. Example of local alignment of phage \ cI and phage P22 2 repressors by dynamic programming using the GCG
GAP (Needleman-Wunsch algorithm) and BESTFIT (Smith-Waterman algorithm) programs. The log odds form of the
PAMI120 amino acid substitution matrix was used. PAM120 is optimal for proteins that are ~40% similar. The alignment
reveals that the proteins are similar in the carboxy-terminal domain. The penalty for opening a gap in one of the sequences is
11 and for extending the gap 8; these were the default values assigned by the programs. Gaps at the unaligned ends of sequences
were also weighted. In the program output, percent identity indicates the number of identical amino acids in the alignment,
and percent similarity, the number of similar amino acids. Similar amino acids are defined by high-scoring matches between
the amino acid pairs in the substitution matrix, and were defined at the time the program was run. The most similar pairs were
indicated by a 7, less similar pairs by a ‘.” and unrelated pairs by a space, ‘’, between the amino acid pairs. Although these
dynamic programming programs provide a single optimal alignment, it is important to realize that a series of alignments are
usually possible. Other programs, such as ALIGN in the FASTA set (Table 3.1 ALIGN-SITES), provide a user-specified num-
ber of alignments (see Fig. 3.12). Additionally, the alignments depend on the method used by the program to convert the trace-
back matrix into an alignment. GCG programs GAP and BESTFIT provide a method for printing two extremes of alignment,
depending on whether gaps are favored in one sequence or the other. These options are called high road and low road.

Amino Acid Substitution Matrices

Protein chemists discovered early on that certain amino acid substitutions commonly
occur in related proteins from different species. Because the protein still functions with
these substitutions, the substituted amino acids are compatible with protein structure and
function. Often, these substitutions are to a chemically similar amino acid, but other
changes also occur. Yet other substitutions are relatively rare. Knowing the types of
changes that are most and least common in a large number of proteins can assist with pre-
dicting alignments for any set of protein sequences, as illustrated in Figure 3.13. If related
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Figure 3.12. Example of LALIGN program for finding multiple local alignments of two protein sequences. Three indepen-
dent alignments of the phage X and P22 repressors are shown. The amino acid substitution matrix used was the log odds form
of the Dayhoff PAM250 matrix provided with the program, with a gap opening penalty of —12 and a gap extension penalty

of —2.

LALIGN finds the best local alignments between two sequences
version 2.0u64 March 1998

Please cite:

X. Huang and W. Miller (1991) Adv. Appl. Math. 12:373-381

Comparison of:

(A) lamcl.pro LAMCl REFORMAT of: cipro.pro from: 1 - 237
(B) p22c2.pro P22C2 REFORMAT of: p22c2.pro from: 1 - 216
using matrix file: pam250.mat, gap penalties: -12/-2
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protein sequences are quite similar, they are easy to align, and one can readily determine
the single-step amino acid changes. If ancestor relationships among a group of proteins are
assessed, the most likely amino acid changes that occurred during evolution can be pre-
dicted. This type of analysis was pioneered by Margaret Dayhoff (1978).

Amino acid substitution matrices or symbol comparison tables, as they are sometimes
called, are used for such purposes. Although the most common use of such tables is for
comparison of protein sequences, other tables of nucleic acid symbols are also used for
comparison of nucleic acid sequences in order to accommodate ambiguous nucleotide
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Alignment
sequence A Tyr Cys Asp Ala
sequence B Phe Met Glu Gly
BLOSUMG62 matrix value 3 -1 2 0

Total score for alignment of sequence A with sequence B
=3-1+2+0=4

Figure 3.13. Use of amino acid substitution matrix to evaluate an alignment of two protein
sequences. The score for each amino acid pair (Tyr/Phe, etc.) is looked up in the BLOSUM62 matrix.
Each value represents an odds score, the likelihood that the two amino acids will be aligned in align-
ments of similar proteins divided by the likelihood that they will be aligned by chance in an align-
ment of unrelated proteins. In a series of individual matches in an alignment, these odds scores are
multiplied to give an overall odds score for the alignment itself. For convenience, odds scores are
converted to log odds scores so that the values for amino acid pairs in an alignment may be summed
to obtain the log odds score of the alignment. In this case, the logarithms are calculated to the base
2 and multiplied by 2 to give values designated as half-bits (a bit is the unit of an odds score that has
been converted to a logarithm to the base 2). The value of 4 indicates that the 4 amino acid align-
ment is 242 = 4-fold more likely than expected by chance.

characters or models of expected sequence changes during different periods of evolution-
ary time that vary scoring of transitions and transversions.

In the amino acid substitution matrices, amino acids are listed both across the top of a
matrix and down the side, and each matrix position is filled with a score that reflects how
often one amino acid would have been paired with the other in an alignment of related
protein sequences. The probability of changing amino acid A into B is always assumed to
be identical to the reverse probability of changing B into A. This assumption is made
because, for any two sequences, the ancestor amino acid in the phylogenetic tree is usual-
ly not known. Additionally, the likelihood of replacement should depend on the product
of the frequency of occurrence of the two amino acids and on their chemical and physical
similarities. A prediction of this model is that amino acid frequencies will not change over
evolutionary time (Dayhoff 1978).

Dayhoff Amino Acid Substitution Matrices (Percent Accepted Mutation or
PAM Matrices)

This family of matrices lists the likelihood of change from one amino acid to another in
homologous protein sequences during evolution. There is presently no other type of scor-
ing matrix that is based on such sound evolutionary principles as are these matrices. Even
though they were originally based on a relatively small data set, the PAM matrices remain
a useful tool for sequence alignment. Each matrix gives the changes expected for a given
period of evolutionary time, evidenced by decreased sequence similarity as genes encoding
the same protein diverge with increased evolutionary time. Thus, one matrix gives the
changes expected in homologous proteins that have diverged only a small amount from
each other in a relatively short period of time, so that they are still 50% or more similar.
Another gives the changes expected of proteins that have diverged over a much longer peri-
od, leaving only 20% similarity. These predicted changes are used to produce optimal
alignments between two protein sequences and to score the alignment. The assumption in
this evolutionary model is that the amino acid substitutions observed over short periods of
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evolutionary history can be extrapolated to longer distances. The BLOSUM matrices (see
below) are based on scoring substitutions found over a range of evolutionary periods and
reveal that substitutions are not always as predicted by the PAM model.

In deriving the PAM matrices, each change in the current amino acid at a particular site
is assumed to be independent of previous mutational events at that site (Dayhoft 1978).
Thus, the probability of change of any amino acid a to amino acid b is the same, regard-
less of the previous changes at that site and also regardless of the position of amino acid a
in a protein sequence. Amino acid substitutions in a protein sequence are thus viewed as a
Markov model (see also hidden Markov models in Chapter 4), characterized by a series of
changes of state in a system such that a change from one state to another does not depend
on the previous history of the state. Use of this model makes possible the extrapolation of
amino acid substitutions observed over a relatively short period of evolutionary time to
longer periods of evolutionary time.

To prepare the Dayhoff PAM matrices, amino acid substitutions that occur in a group
of evolving proteins were estimated using 1572 changes in 71 groups of protein sequences
that were at least 85% similar. Because these changes are observed in closely related pro-
teins, they represent amino acid substitutions that do not significantly change the function
of the protein. Hence they are called “accepted mutations,” defined as amino acid changes
“accepted” by natural selection. Similar sequences were first organized into a phylogenet-
ic tree, as illustrated in Figure 1.1 in Chapter 1. The number of changes of each amino acid
into every other amino acid was then counted. To make these numbers useful for sequence
analysis, information on the relative amount of change for each amino acid was needed.

Relative mutabilities were evaluated by counting, in each group of related sequences, the
number of changes of each amino acid and by dividing this number by a factor, called the
exposure to mutation of the amino acid. This factor is the product of the frequency of
occurrence of the amino acid in that group of sequences being analyzed and the total num-
ber of all amino acid changes that occurred in that group per 100 sites. This factor nor-
malizes the data for variations in amino acid composition, mutation rate, and sequence
length. The normalized frequencies were then summed for all sequence groups. By these
scores, Asn, Ser, Asp, and Glu were the most mutable amino acids, and Cys and Trp were
the least mutable.

The above amino acid exchange counts and mutability values were then used to gener-
ate a 20 X 20 mutation probability matrix representing all possible amino acid changes.
Because amino acid change was modeled by a Markov model, the mutation at each site
being independent of the previous mutations, the changes predicted for more distantly
related proteins that have undergone N mutations could be calculated. By this model, the
PAM1 matrix could be multiplied by itself N times, to give transition matrices for com-
paring sequences with lower and lower levels of similarity due to separation of longer peri-
ods of evolutionary history. Thus, the commonly used PAM250 matrix represents a level
0f 250% of change expected in 2500 my. Although this amount of change seems very large,
sequences at this level of divergence still have about 20% similarity. For example, alanine
will be matched with alanine 13% of the time and with another amino acid 87% of the
time.

The percentage of remaining similarity for any PAM matrix can be calculated by sum-
ming the percentages for amino acids not changing (Ala versus Ala, etc.) after multiplying
each by the frequency of that amino acid pair in the database (e.g., 0.089 for Ala) (Dayhoff
1978). The PAM120, PAM80, and PAM60 matrices should be used for aligning sequences
that are 40%, 50%, and 60% similar, respectively. Simulations by George et al. (1990) have
shown that, as predicted, the PAM250 matrix provides a better-scoring alignment than
lower-numbered PAM matrices for distantly related proteins of 14-27% similarity.
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PAM matrices are usually converted into another form, called log odds matrices. The
odds score represents the ratio of the chance of amino acid substitution by two different
hypotheses—one that the change actually represents an authentic evolutionary variation at
that site (the numerator), and the other that the change occurred because of random
sequence variation of no biological significance (the denominator). Odds ratios are con-
verted to logarithms to give log odds scores for convenience in multiplying odds scores of
amino acid pairs in an alignment by adding the logarithms (Fig. 3.13).
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Table 3.2. Normalized probability scores for
changing Phe to any other amino acid (or of not
changing) at PAM1 and PAMZ250 evolutionary dis-

tances

Amino acid

change PAM1 PAM250
Phe to Ala 0.0002 0.04
Phe to Arg 0.0001 0.01
Phe to Asn 0.0001 0.02
Phe to Asp 0.0000 0.01
Phe to Cys 0.0000 0.01
Phe to Gln 0.0000 0.01
Phe to Glu 0.0000 0.01
Phe to Gly 0.0001 0.03
Phe to His 0.0002 0.02
Phe to Ile 0.0007 0.05
Phe to Leu 0.0013 0.13
Phe to Lys 0.0000 0.02
Phe to Met 0.0001 0.02
Phe to Phe 0.9946 0.32
Phe to Pro 0.0001 0.02
Phe to Ser 0.0003 0.03
Phe to Thr 0.0001 0.03
Phe to Trp 0.0001 0.01
Phe to Tyr 0.0021 0.15
Phe to Val 0.0001 0.05
SUM?* 1.0000 1.00

*Approximate since scores are rounded off,

The multiplication of two PAM1 matrices to give a
PAM2 matrix. Only three rows and columns are shown
for illustrative purposes.

aal aa2 aa3 — aal aa2 aa3 —
aall| a b ¢ aal{ a b ¢
aa2| d e f % aa2| d e f
aa3 g h i aa3| g h i
! d
aal aa2 aa3 — A=2a2+bd+cg+...
aall A B C B=ab+be+ch+...
= :2; I(); IIEI l; C=ac+bf +ci +...
1 D=da+ed +fg +... etc.
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grouped according to the chemistry of the side group: (C) sulthydryl, (STPAG) small hydrophilic, (NDEQ) acid, acid amide
and hydrophilic, (HRK) basic, (MILV) small hydrophobic, and (FYW) aromatic. Each matrix value is calculated from an odds
score, the probability that the amino acid pair will be found in alignments of homologous proteins divided by the probabili-

the base 10 is multiplied by 10 and then used as the table value (see text for details). Thus, +10 means the ancestor probabil-
ity is greater, 0 that the probabilities are equal, and —4 that the alignment is more often a chance one than due to an ances-
tor relationship. Because these numbers are logarithms, they may be added to give a combined probability of two or more

odds form (the mutation data matrix or MDM) of the PAM250 scoring matrix. Amino acids are

found in alignments of unrelated proteins by random chance. The logarithm of these ODDS scores to

alignment. Thus, the probability of aligning two Ys in an alignment YY/YY is 10 + 10 = 20, a very sig-
that of YY with TP is —2 —5 = — 7, a rare and unexpected alignment between homologous sequences.

At one time, the PAM250 scoring matrix was modified in an attempt to improve the
alignment obtained. All scores for matching a particular amino acid were normalized to
the same mean and standard deviation, and all amino acid identities were given the same
score to provide an equal contribution for each amino acid in a sequence alignment (Grib-
skov and Burgess 1986). These modifications were included as the default matrices for the
GCG sequence alignment programs in versions 8 and earlier and are optional in later ver-
sions. They are not recommended because they will not give an optimal alignment that is
in accord with the evolutionary model.

Choosing the Best PAM Scoring Matrices for Detecting Sequence Similarity. The
ability of PAM scoring matrices to distinguish statistically between chance and biological-
ly meaningful alignments has been analyzed using a recently developed statistical theory
for sequences (Altschul 1991) that is discussed later in this chapter. As discussed above,
each PAM matrix is designed to score alignments between sequences that have diverged by
a particular degree of evolutionary distance. Altschul (1991) has examined how well the
PAM matrices actually can distinguish proteins that have diverged to a greater or lesser
extent, when these proteins are subjected to a local alignment.
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Initially, when using a scoring matrix to produce an alignment, the amount of similar-
ity between sequences may not be known. However, the ungapped alignment scores
obtained are maximal when the correct PAM matrix, i.e., the one corresponding to the
degree of similarity in the target sequences, is used (Altschul 1991). Altschul (1991) has
also examined the ability of PAM matrices to provide a reliable enough indication of an
ungapped local alignment score between sequences on an initial attempt of alignment. For
sequence alignments, the PAM200 matrix is able to detect a significant ungapped align-
ment of 16—62 amino acids whose score is within 87% of the optimal one. Alternatively,
several combinations, such as PAM80 and PAM250 or PAM120 and PAM350, can also be
used. Altschul (1993) has also proposed using a single matrix and adjusting a statistical
parameter in the scoring system to reach more distantly related sequences, but this change
would primarily be for database searches.

Scoring matrices are also used in database searches for similar sequences. The optimal
matrices for these searches have also been determined (see book Web site and Chapter 7).
It is important to remember that these predictions assume that the amino acid distribu-
tions in the set of protein families used to make the scoring matrix are representative of all
families that are likely to be encountered. The original PAM matrices represent only a
small number of families. Scoring matrices obtained more recently, such as the BLOSUM
matrices, are based on a much larger number of protein families. BLOSUM matrices are
not based on a PAM evolutionary model in which changes at large evolutionary distance
are predicted by extrapolation of changes found at small distances. Matrix values are based
on the observed frequency of change in a large set of diverse proteins. As is discussed on
the book Web site, the BLOSUM scoring matrices (especially BLOSUMS62) appear to cap-
ture more of the distant types of variations found in protein families.

In addition to the aforementioned differences among PAM scoring matrices for scoring
alignments of more- or less-related proteins, the ability of each PAM matrix to discrimi-
nate real local alignments from chance alignments also varies. To calculate the ability of the
entire matrix to discriminate related from unrelated sequences (H, the relative entropy),
the score for each amino acid pair s; (in units of log,, called bits) is multiplied by the prob-
ability of occurrence of that pair in the original dataset, g;; (Altschul 1991). This weighted
score is then summed over all of the amino acid pairs to produce a score that represents
the ability of the average amino acid pair in the matrix to discriminate actual from chance
alignments.

3)

In information theory, this score is called the average mutual information content per
pair, and the sum over all pairs is the relative entropy of the matrix (termed H). The rela-
tive entropy will be a small positive number. For the PAM250 matrix the number is +0.36,
for PAM120, +0.98, and for PAM160, +0.70. In general, all other factors being equal, the
higher the value of H for a scoring matrix, the more likely it is to be able to distinguish real
from chance alignments.

Analysis of the Dayhoff Model of Protein Evolution as Used in PAM Matrices. As
outlined above, the Dayhoff model of protein evolution is a Markov process. In this model,
each amino acid site in a protein can change at any time to any of the other 20 amino acids
with probabilities given by the PAM table, and the changes that occur at each site are inde-
pendent of the amino acids found at other sites in the protein and depend only on the cur-
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rent amino acid at the site. The assumptions that underlie the method of constructing the
Dayhoff scoring matrix have been challenged (for discussion, see George et al. 1990; States
and Boguski 1991). First, it is assumed that each amino acid position is equally mutable,
whereas, in fact, sites vary considerably in their degree of mutability. Mutagenesis hot spots
are well known in molecular genetics, and variations in mutability of different amino acid
sites in proteins are well known.

The more conserved amino acids in similar proteins from different species are ones that
play an essential role in structure and function and the less conserved are in sites that can
vary without having a significant effect on function. Thus, there are many factors that
influence both the location and types of amino acid changes that occur in proteins. Wilbur
(1985) has tested the Markov model of evolution (see box, below) and has shown that it
can be valid if certain changes are made in the way that the PAM matrices are calculated.
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A further criticism of the PAM scoring matrices is that they are not more useful
for sequence alignment than simpler matrices, such as one based on a chemical group-
ing of amino acid side chains. Although alignment of related proteins is straightforward
and quite independent of the symbol comparison scoring scheme, alignments of less-
related proteins are much more speculative (Feng et al. 1985). These matrices and the
BLOSUM matrices have been very useful for finding more distantly related sequences
(George et al. 1990). There have been recent changes in the way that members of protein
families are identified (see Chapters 4 and 9). Once a family has been identified, family-
specific scoring matrices can be produced, and there is no point in using these general
matrices. As described in Chapter 4, a scoring matrix representing a section of aligned
sequences with no gaps, or a matrix representing a section of aligned sequences with
matches, mismatches, and gaps (a profile), are the best tools to search for more family
members.

Another criticism of the PAM matrix is that constructing phylogenetic relationships
prior to scoring mutations has limitations, due to the difficulty of determining ancestral
relationships among sequences, a topic discussed in Chapter 6. Early on in the Dayhoff
analysis, the evolutionary trees were estimated by a voting scheme for the branches in the
tree, each node being estimated by the most abundant amino acid in distal parts of the tree.
Once available, the PAM matrices were used to estimate the evolutionary distance between
proteins, given the amount of sequence similarity. Such data can be used to produce a tree
based on evolutionary distances (Chapter 6). This circular analysis of using alignments to
score amino acid changes and then to use the matrices to produce new alignments has also
been criticized. However, no method has yet been devised in any type of sequence analysis
for completely circumventing this problem. Evidence that the values in the scoring matrix
are insensitive to changes in the phylogenetic relationships has been provided (George et
al. 1990).

Finally, the Dayhoff PAM matrices have been criticized because they are based on a
small set of closely related proteins. The Dayhoff data set has been augmented to include
the 1991 protein database (Gonnet et al. 1992; Jones et al. 1992). The ability of the Dayhoff
matrices to identify homologous sequences has also been extensively compared to that of
other scoring matrices. These comparisons are discussed on the book Web site.

Blocks Amino Acid Substitution Matrices (BLOSUM)

The BLOSUMS62 substitution matrix (Henikoff and Henikoff 1992) is widely used for scor-
ing protein sequence alignments. The matrix values are based on the observed amino acid
substitutions in a large set of ~2000 conserved amino acid patterns, called blocks. These
blocks have been found in a database of protein sequences representing more than 500
families of related proteins (Henikoff and Henikoff 1992) and act as signatures of these
protein families. The BLOSUM matrices are thus based on an entirely different type of
sequence analysis and a much larger data set than the Dayhoff PAM matrices.
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These protein families were originally identified by Bairoch in the Prosite catalog. This
catalog provides lists of proteins that are in the same family because they have a similar
biochemical function. For each family, a pattern of amino acids that are characteristic of
that function is provided. Henikoff and Henikoff (1991) examined each Prosite family for
the presence of ungapped amino acid patterns (blocks) that were present in each family
and that could be used to identify members of that family. To locate these patterns, the
sequences of each protein family were searched for similar amino acid patterns by the
MOTTF program of H. Smith (Smith et al. 1990), which can find patterns of the type aal
d1 aa2 d2 aa3, where aal and aa2 are conserved amino acids and d1 and d2 are stretches
of intervening sequence up to 24 amino acids long located in all sequences. These initial
patterns were organized into larger ungapped patterns (blocks) between 3 and 60 amino
acids long by the Henikoffs PROTOMAT program (http://www.blocks.thcrc.org).
Because these blocks were present in all of the sequences in each family, they could be
used to identify other members of the same family. Thus, the family collections were
enlarged by searching the sequence databases for more proteins with these same con-
served blocks.

The blocks that characterized each family provided a type of multiple sequence align-
ment for that family. The amino acid changes that were observed in each column of the
alignment could then be counted. The types of substitutions were then scored for all
aligned patterns in the database and used to prepare a scoring matrix, the BLOSUM
matrix, indicating the frequency of each type of substitution. As previously described for
the PAM matrices, BLOSUM matrix values were given as logarithms of odds scores of the
ratio of the observed frequency of amino acid substitutions divided by the frequency
expected by chance. An example of the calculations is shown in Figure 3.15.

This procedure of counting all of the amino acid changes in the blocks, however, can
lead to an overrepresentation of amino acid substitutions that occur in the most closely
related members of each family. To reduce this dominant contribution from the most alike
sequences, these sequences were grouped together into one sequence before scoring the
amino acid substitutions in the aligned blocks. The amino acid changes within these clus-
tered sequences were then averaged. Patterns that were 60% identical were grouped togeth-
er to make one substitution matrix called BLOSUMG60, and those 80% alike to make anoth-
er matrix called BLOSUMS0, and so on. As with the PAM matrices, these matrices differ
in the degree to which the more common amino acid pairs are scored relative to the less
common pairs. Thus, when used for aligning protein sequences, they provide a greater or
lesser distinction between the more common and less common amino acid pairs. The abil-
ity of these different BLOSUM matrices to distinguish real from chance alignments and to
identify as many members as possible of a protein family has been determined (Henikoff
and Henikoff 1992).

Two types of analyses were performed: (1) an information content analysis of each
matrix, as was described above for the PAM matrices, and (2) an actual comparison of the
ability of each matrix to find members of the same families in a database search, discussed
below. As the clustering percentage was increased, the ability of the resulting matrix to dis-
tinguish actual from chance alignments, defined as the relative entropy of the matrix or the
average information content per residue pair (see above), also increased. As clustering
increased from 45% to 62%, the information content per residue increased from ~0.4 to
0.7 bits per residue, and was ~1.0 bits at 80% clustering. However, at the same time, the
number of blocks that contributed information decreased by 25% between no clustering
and 62% clustering. BLOSUMG62 represents a balance between information content and
data size. The BLOSUMS62 matrix is shown in Figure 3.16.
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Figure 3.15. Derivation of the matrix values in the BLOSUM62 scoring matrix. As an example of
the calculations, if a column in one of the blocks consisted of 9 A and 1 S amino acids, the follow-
ing is true for this data set (see Henikoff and Henikoff 1992).

1. Since the original sequence from which the others were derived is not known, each column posi-
tion has to be considered a possible ancestor of the other nine columns. Hence, there are
8+7+6...+1 = 36 possible AA pairs (f4) and 9 possible AS pairs {f45) to be compared.

2. There are 20+ 1918+ ... +1 = 210 possible amino acid pairs.

3. The frequency of occurrence of an AA pair, qaa = faa/(fan + fas) = 36/(36+9) = 0.8, and that
of an AS pair, qas = fas/(fan + fas) = 9/(36+9) = 0.2.

4. The expected frequency of A being in a pair, pa = (qaa + qas/2) = 0.8 + 0.2/2 = 0.9, and that
Ofps - qu/2 =0.1.

5. The expected frequency of occurrence of AA pairs, exa = pa X pa = 0.9 X 0.9 = 0.81, and that
of AS, eas = 2 X ps X pa = 2 X 0.9 X 0.1 = 0.18.

6. The matrix entry for AA will be calculated from the ratio of the occurrence frequency to the
expected frequency. For AA, ratio = qaa/ €an = 0.8/0.81 = 0.99, and for AS, ratio = qas/ €as =
0.2/0.18 = 1.11.

7. Both ratios are converted to logarithms to the base 2 and then multiplied by 2 (1/2 bit units).
Matrix entry for AA, sxa = logy(qaa/ easn) = —0.04, and for AS, sxs = logy(qas/ eas) = 0.30.
These logarithms are both rounded to 1 '/, bit unit.

Henikoff and Henikoff (1993) have prepared a set of interval BLOSUM matrices that
represent the changes observed between more closely related or more distantly related rep-
resentatives of each block. Rather than representing the changes observed in very alike
sequences up to sequences that were n% alike to give a BLOSUM-n matrix, the new
BLOSUM-nm matrix represented the changes observed in sequences that were between
1% alike and m% alike. The idea behind these matrices was to have a set of matrices cor-
responding to amino acid changes in sequence blocks that are separated by different evo-
lutionary distances.

Comparison of the PAM and BLOSUM Amino Acid Substitution Matrices

There are several important differences in the ways that the PAM and BLOSUM scoring
matrices were derived, and these differences should be appreciated in order to interpret the
results of protein sequence alignments obtained with these matrices. First, the PAM matri-
ces are based on a mutational model of evolution that assumes amino acid changes occur
as a Markov process, each amino acid change at a site being independent of previous
changes at that site. Changes are scored in sequences that are 85% similar after predicting



88 8 CHAPTER 3

cl's T P AG NDTETG GHTERIKM I LVF Y W]

Figure 3.16. The BLOSUM62 amino acid substitution matrix. The amino acids in the table are grouped according to the
chemistry of the side group: (C) sulthydryl, (STPAG) small hydrophilic, (NDEQ) acid, acid amide, and hydrophilic, (HRK)
basic, (MILV) small hydrophobic, and (FYW) aromatic. Each entry is the logarithm of the odds score, found by dividing the
frequency of occurrence of the amino acid pair in the BLOCKS database (after sequences 62% or more in similarity have been
clustered) by the likelihood of an alignment of the amino acids by random chance. The denominator in this ratio is calculat-
ed from the frequency of occurrence of each of the two individual amino acids in the BLOCKS database and provides a mea-
sure of a chance alignment of the two amino acids. The actual/expected ratio is expressed as a log odds score in so-called half-
bit units, obtained by converting the odds ratio to a logarithm to the base 2, and then multiplying by 2. A zero score means
that the frequency of the amino acid pair in the database is as expected by chance, a positive score that the pair is found more
often than by chance, and a negative score that the pair is found less often than by chance. The accumulated score of an align-
ment of several amino acids in two sequences may be obtained by adding up the respective scores of each individual pair of
amino acids. As with the PAM250-derived matrix, the highest-scoring matches are between amino acids that are in the same
chemical group, and the very highest-scoring matches are for cysteine—cysteine matches and for matches among the aromat-
ic amino acids. Compared to the PAM 160 matrix, however, the BLOSUM62 matrix gives a more positive score to mismatch- i
es with the rare amino acids, e.g., cysteine, a more positive score to mismatches with hydrophobic amino acids, but a more }
negative score to mismatches with hydrophilic amino acids {(Henikoff and Henikoff 1992).

a phylogenetic history of the changes in each family. Thus, the PAM matrices are based on
prediction of the first changes that occur as proteins diverge from a common ancestor dur-
ing evolution of a protein family. Matrices that may be used to compare more distantly
related proteins are then derived by extrapolation from these short-term changes, assum-
ing that these more distant changes are a reflection of the short-term changes occurring
over and over again. For each longer evolutionary interval, each amino acid can change to
any other with the same frequency as observed in the short term. In contrast, the BLOSUM
matrices are not based on an explicit evolutionary model. They are derived from consider-
ing all amino acid changes observed in an aligned region from a related family of proteins,
regardless of the overall degree of similarity between the protein sequences. However, these
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proteins are known to be related biochemically and, hence, should share common ances-
try. The evolutionary model implied in such a scheme is that the proteins in each family
share a common origin, but closer versus distal relationships are ignored, as if they all were
derived equally from the same ancestor, called a starburst model of protein evolution (see
Chapter 6). Second, the PAM matrices are based on scoring all amino acid positions in
related sequences, whereas the BLOSUM matrices are based on substitutions and con-
served positions in blocks, which represent the most alike common regions in related
sequences. Thus, the PAM model is designed to track the evolutionary origins of proteins,
whereas the BLOSUM model is designed to find their conserved domains.

Other Amino Acid Scoring Matrices

In addition to the Dayhoff PAM, and related Gonnet et al. (1992), Benner et al. (1994), and
Jones et al. (1992) matrices and the BLOSUM matrices, a number of other amino acid sub-
stitution matrices have been used for producing protein sequence alignments, and several
representative ones are listed in Table 3.3. For a more complete list and comparison, see
Vogt et al. (1995). These tables vary from a comparison of simple chemical properties of
amino acids to a complex analysis of the substitutions found in secondary structural
domains of proteins. Because most of these tables are designed to align proteins on the
basis of some such feature of the amino acids, and not on an evolutionary model, they are
not particularly suitable for evolutionary analysis. They can be very useful, however, for
discovering structural and functional relationships, or family relationships among pro-
teins. A sequence alignment program that uses a combination of these tables has been
found to be particularly useful for detecting distant protein relationships (Argos 1987;
Rechid et al. 1989). There have been extensive comparisons of the usefulness of various
amino acid substitution matrices for aligning sequences, for finding similar sequences in a
protein sequence database, or for aligning similar sequences based on structure that are
described on the book Web site.

Table 3.3. Criteria used in amino acid scoring matrices for sequence alignments

1. Simple identity, which scores only identical amino acids as a match and all others as a mismatch.

2. Genetic code changes, which score the minimum number of nucleotide changes to change a codon for
one amino acid into a codon for another, due to Fitch (1966), and also with added information based
on structural similarity of amino acid side chains (Feng et al. 1985). A similar matrix based on the
assumption that genetic code is the only factor influencing amino acid substitutions has been pro-
duced (Benner et al. 1994).

3. Matrices based on chemical similarity of amino acid side chains, molecular volume, and polarity and
hydrophobicity of amino acid side chains (see Vogt et al. 1995).

4. Amino acid substitutions in structurally aligned three-dimensional structures (Risler et al. 1988;
matrix JO93, Johnson and Overington 1993). A similar matrix was described by Henikoff and
Henikoff (1993). Sander and Schneider (1991) prepared a similar matrix based on these same substi-
tations but augmented by substitutions found in proteins which are so similar to the structure-solved
group that they undoubtedly have the same three-dimensional structure.

5. Gonnet et al. (1994) have prepared a 400 X 400 dipeptide substitution matrix for aligning proteins
based on the possibility that amino acid substitutions at a particular site are influenced by neighbor-
ing amino acids, and thus that the environment of an amino acid plays a role in protein evolution.

6. Jones et al. (1994) have prepared a scoring matrix specifically for transmembrane proteins. This
matrix was prepared using an analysis similar to that used for preparing the original Dayhoff PAM
matrices, and therefore provides an estimate of evolutionary distances among members of this class of
proteins.




90 8 CHAPTER 3

Nucleic Acid PAM Scoring Matrices

Just as amino acid scoring matrices have been used to score protein sequence alignments,
nucleotide scoring matrices for scoring DNA sequence alignments have also been devel-
oped. The DNA matrix can incorporate ambiguous DNA symbols (see Table 2.1) and
information from mutational analysis, which reveals that transitions (substitutions
between the purines A and G or between the pyrimidines C and T) are more probable than
transversions (substitutions between purine to pyrimidine or pyrimidine to purine) (Li
and Graur 1991). These substitution matrices may be used to produce global or local align-
ments of DNA sequences.

States et al. (1991) have developed a series of nucleic acid PAM matrices based on a
Markov transition model similar to that used to generate the Dayhoff PAM scoring matri-
ces. Although designed to improve the sensitivity of similarity searches of sequence
databases, these matrices also may be used to score nucleic acid alignments. The advantage
of using these matrices is that they are based on a defined evolutionary model and that the
statistical significance of alignment scores obtained by local alignment programs may be
evaluated, as described later in this chapter.

To prepare these DNA PAM matrices, a PAM1 mutation matrix representing 99%
sequence conservation and one PAM of evolutionary distance (1% mutations) was first
calculated. For a model in which all mutations from any nucleotide to any other are equal-
ly likely, and in which the four nucleotides are present at equal frequencies, the four diag-
onal elements of the PAM1 matrix representing no change are 0.99 whereas the six other
elements representing change are 0.00333 (Table 3.4). The values are chosen so that the
sum of all possible changes for a given nucleotide in the PAM1 matrix is 1% (3 X 0.00333
= 0.00999). For a biased mutation model in which a given transition is threefold more
likely than a transversion (Table 3.4), the off-diagonal matrix elements corresponding to
the one possible transition for each nucleotide are 0.006 and those for the two possible
transversions are 0.002, and the sum for each nucleotide is again 1% (0.006 + 0.002 +
0.002 = 0.01).

As with the amino acid matrices, the above matrix values are then used to produce log
odds scoring matrices that represent the frequency of substitutions expected at increasing

Table 3.4. Nucleotide mutation matrix for an evolutionary dis-
tance of 1 PAM, which corresponds to a probability of a change at
each nucleotide position of 1%

A. Model of uniform mutation rates among nucleotides

A G T C
A 0.99
G 0.00333 0.99
T 0.00333 0.00333 0.99
C 0.00333 0.00333 0.00333 0.99
B. Model of threefold higher transitions than transversions
A G T C
A 0.99
G 0.006 0.99
T 0.002 0.002 0.99
C 0.002 0.002 0.006 0.99

Values are frequency of change at each site, or of no change for all base
combinations.
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evolutionary distances. In terms of an alignment, the probability (s;) of obtaining a match

between nucleotides i and j, divided by the random probability of aligning i and j, is given
by

where M;; is the value in the mutation matrix given in Table 3.4, and p; and p; are the frac-
tional composition of each nucleotide, assumed to be 0.25. The base of the logarithm can
be any value, corresponding to multiplying every value in the matrix by the same constant.
With such scaling variations, the ability of the matrix to distinguish among significant and
chance alignments will not be altered. The resulting tables with s;; expressed in units of bits
(logarithm to the base 2) and rounded off to the nearest whole integer are shown in Table
3.5.

From these PAM1 matrices, additional log odds matrices at an evolutionary distance of
n PAMs may be obtained by multiplying the PAM1 matrix by itself # times. The ability of
each matrix to distinguish real from random nucleotide matches in an alignment, desig-
nated H, measured in bit units (log,) can be calculated using the equation

where the s;; scores are also expressed in bit units. In Table 3.6 are shown the log odds val-
ues of the match and mismatch scores for PAM matrices at increasing evolutionary dis-
tances, assuming a uniform rate of mutation among all nucleotides. Also shown is the per-
centage of nucleotides that will be changed at that distance. The identity score will be 100
minus this value. This percentage is not as great as the PAM score due to expected back-
mutation over longer time periods. Also shown are the H scores of the matrices at each
PAM value.

Table 3.5. Nucleotide substitution matrix at 1 PAM of evo-
lutionary distance

A. Model of uniform mutation rates among nucleotides

A G T C
A 2
G —6 2
T —6 —6 2
C —6 —6 -6 2
B. Model of threefold higher transitions than transversions
A G T C
A 2
G -5 2
T -7 -7 2
C -7 —7 -5 2

Units are log odds scores obtained as described in the text.
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Gap Penalties

Table 3.6. Properties of nucleic acid substitution matrices assuming a uniform rate
of mutation among nucleotides

Percentage Match score Mismatch score  Average information

PAM distance difference (bits) (bits) per position (bits)
10 9.4 1.86 —3.00 1.40
25 21.3 1.66 —1.82 0.92
50 36.5 1.34 —1.04 0.47
100 55.2 0.84 —0.44 0.13
125 60.8 0.65 ~—0.30 0.07

The following points may be made:

1. If comparing sequences that are quite similar, it is better to use a lower scoring matrix
because the information content of the small PAM matrices is relatively higher. As dis-
cussed earlier for lower-numbered Dayhoff PAM matrices for more-alike protein
sequences, a more optimal alignment will be obtained.

2. As the PAM distance increases, the mismatch scores in the biased mutational model in
Table 3.7 become positive and appear as conservative substitutions. Thus, the bias
model can provide considerably more information than the uniform mutation model
when aligning sequences that are distantly related (>30% different) and may be used
for this purpose (States et al. 1991).

3. The scoring matrices at large evolutionary distances provide very little information per
aligned nucleotide pair. When sequences have so little similarity, a much longer align-
ment is necessary to be significant.

As with amino acid scoring matrices, the average information content shown is only
achieved by using the scoring matrix that matches the percentage difference between the
sequences. For example, for sequences that are 21% different (79% identical), the matrix
at 25 PAM distance should be used. One cannot know ahead of time what the percentage
similarity or difference between two sequences actually is until an alignment is done, thus
a trial alignment must first be done. States et al. (1991) have calculated how efficient a
given scoring matrix is at achieving the highest possible score in aligning two sequences
that vary in their levels of similarity. Once the initial similarity score has been obtained
with these matrices, a more representative score can be obtained by using another PAM
matrix designed specifically for sequences at that level of similarity.

The inclusion of gaps and gap penalties is necessary in order to obtain the best possible
alignment between two sequences. A gap opening penalty for any gap (g) and a gap exten-

Table 3.7. Properties of nucleic acid substitution matrices assuming transitions are threefold
more frequent than transversions

Percentage Matchscore Transition  Transversion Average information

PAM distance  difference (bits) score (bits)  score (bits) per position (bits)
10 9.3 1.86 —2.19 —-3.70 1.42
25 21.0 1.66 —1.06 —2.46 0.96
50 35.8 1.36 —0.37 —1.60 0.54
100 53.7 0.89 0.06 —0.86 0.19

150 62.9 0.57 0.16 —0.52 0.08
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sion penalty for each element in the gap (r) is most often used, to give a total gap score w,,
according to the equation

: (6)

where x is the length of the gap. Note that in some formulations of the gap penalty, the
equation wy = g + r (x — 1) is used. Thus, the gap extension penalty is not added to the
gap opening penalty until the gap size is 2. Although this difference does not affect the
alignment obtained, one needs to distinguish which method is being used by a particular
computer program if the correct results are to be obtained. In the former case, the penal-
ty for a gap of size 1 is g + x, whereas in the latter case this value is g. The values for these
penalties have to be chosen to balance the scores in the scoring matrix that is used. Thus,
the Dayhoff log odds matrix at PAM250 is expressed in units of logyo, which is approxi-
mately 1/3 bits, but if this matrix were converted to 1/2 bits, the same gap penalties would
no longer be appropriate.

If too high a gap penalty is used relative to the range of scores in the substitution matrix,
gaps will never appear in the alignment. Conversely, if the gap penalty is too low compared
to the matrix scores, gaps will appear everywhere in the alignment in order to align as many
of the same characters as possible. Fortunately, most alignment programs will suggest gap
penalties that are appropriate for a given scoring matrix in most situations. In the GCG and
FASTA program suites, the scoring matrix itself is formatted in a way that includes default
gap penalties. Examples of the values of g and r used by various alignment programs are
shown on the book Web site. When deciding gap penalties for local alignment programs,
another consideration is that the penalties should be large enough to provide a local align-
ment of the sequences. Examples of suitable values are given in Table 3.10 on p. 114.
Altschul and Gish (1996) and Pearson (1996, 1998) have found that use of appropriate gap
penalties will provide an improved local alignment based on statistical analysis. These
studies are described in detail in the following section.

Mathematician Peter Sellers (1974) showed that if sequence alignment was formulated
in terms of distances instead of similarity between sequences, a biologically more appeal-
ing interpretation of gaps is possible. The distance is the number of changes that must be
made to convert one sequence into the other and represents the number of mutations that
will have occurred following separation of the genes during evolution; the greater the dis-
tance, the more distantly related are the sequences in evolution. In this case, substitution
produces a positive score of 1. Notice that the distance score plus the similarity score for
an alignment is equal to 1. Sellers proved that this distance formulation of sequence align-
ment has a desirable mathematical property that also makes evolutionary sense. If three
sequences, a, b, and ¢, are compared using the above scoring scheme, the distance score as
defined above is described as a metric that satisfies the triangle inequality relationship

(7)

where d(a,b) is the distance between sequences a and b, and likewise for the other two d
values. Expressed another way, if the three possible distances between three sequences are
obtained, then the distance between any first pair plus that for any second pair cannot
underscore the third pair. Violating this rule would not be consistent with the expected
evolutionary origin of the sequences. To satisfy the metric requirement, the scoring of
individual matches, mismatches, and gaps must be such that in an alignment of two iden-
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tical sequences a and a’, d(a,a’) must equal 0 and for two totally different sequences b and
b’, d(b,b’) must equal 1. For any other two sequences a and b, d(a,b) = d(b,a). Hence, it
is important that the distance score for changing one sequence character into a second is
the same as the converse score for changing the second into the first, if the distance score
of the alignment is to remain a metric and to make evolutionary sense. The above rela-
tionships were shown by Sellers to be true for gaps of length 1 in a sequence alignment. He
also showed that the smallest number of steps required to change one sequence into the
other could be calculated by the dynamic programming algorithm. The method was simi-
lar to that discussed above for the Needleman-Wunsch global and Smith-Waterman local
alignments, except that these former methods found the maximum similarity between two
sequences, as opposed to the minimum distance found by the Sellers analysis.

Subsequently, Smith et al. (1981) and Smith and Waterman (1981a,b) showed that gaps
of any length could also be included in an alignment and still provide a distance metric for
the alignment score. In this formulation, the gap penalty was required to increase as a func-
tion of the gap length. The argument was made that a single mutational event involving a
single gap of n residues should be more likely to have occurred than # single gaps. Thus, to
increase the likelihood of such gaps of length >1 being found, the penalty for a gap of
length n was made smaller than the score for n individual gaps. The simplest way of imple-
menting this feature of the gap penalty was to have the gap score w, be a linear function of
gap length by consisting of two parts, a larger gap opening penalty (g) and a smaller gap
extension penalty (r) for each extra position in the gap, or w, = g + rx, where x is the
length of the gap, as described above. This type of gap penalty is referred to as an affine gap
penalty in the literature. Any other formula for scoring gap penalties should also work,
provided that the score increases with length of the gap but that the score is less than x indi-
vidual gaps. Scoring of gaps by the above linear function of gap length has now become
widely used in sequence alignment. However, more complex gap penalty functions have
been used (Miller and Myers 1988).

Penalties for Gaps at the Ends of Alignments

Sequence alignments are often produced that include gaps opposite nonmatching charac-
ters at the ends of an alignment. These gaps may be given the same penalty score as gaps
inside of the alignment or, alternatively, they may not be given any penalty score. End gaps
were an important component in the mathematical formulation of both the similarity and
distance methods of sequence alignment for producing both global and local alignments.
Failure to include them in distance calculations can result in a failure to obtain distance
scores that make evolutionary sense (Smith et al. 1981). Examples of using or of not using
end gap penalties in the Needleman-Wunsch alignment are shown on the book Web site.
Without scoring end alignments, gaps may be liberally placed at the ends of alignments by
the dynamic programming algorithm to increase the matching of internal characters, as
opposed to including these gaps as a part of the overall alignment.

If comparing sequences that are homologous and of about the same length, it makes a
great deal of sense to include end gap penalties to achieve the best overall alignment. For
sequences that are of unknown homology or of different lengths, it may be better to use an
alignment that does not include end gap penalties (States and Boguski 1991). If one
sequence is expected to be contained within the other, it is reasonable to include end gap
penalties only for the shorter sequence. However, for any test alignment, these end penal-
ties should be included in at least one alignment to assure that they do not have an effect.
It is also important to use alignment programs that include them as an option.
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Parametric Sequence Alignments

Computer methods that find a range of possible alignments in response to varying the
scoring system used for matches, mismatches, and gaps, called parametric sequence com-
parisons (Waterman et al. 1992; Waterman 1994 and references therein), have been devel-
oped. There is also an effort to use scores such that the results of global and local types of
sequence alignments provide consistent results. For example, if two sequences are similar
along their entire lengths, both global and local methods should provide the same align-
ment. The program Xparal (Gusfield and Stelling 1996), which can perform this type of
analysis, is available from http://theory.cs.ucdavis.edu/~stevenk. The program runs on a
UNIX environment under X-Windows. When provided with two sequences and some of
the alignment parameters, such as gap score, the program displays graphically the types of
possible alignments when the remaining parameters are varied. Another sequence align-
ment program that performs parametric sequence alignment is the Bayes block aligner,
discussed below (p. 124).

Effects of Varying Mismatched Gap Penalties on Local Alignment Scores

Vingron and Waterman (1994) have reviewed the effect of varying the parameters of the
scoring system on the alignment of random DNA and protein sequences. To simplify the
number of parameters, a constant penalty for any size gap was used. If a very high mis-
match penalty is used relative to a positive score for a match, with zero gap penalty, the
local alignment of these sequences will not include any gaps and is defined as the longest
common subsequence. The global alignment with the same scoring parameters will have
no mismatches but will have many gaps so placed as to maximize the matches, and the
score will be positive. In this case, the score of the local alignment of the sequences is pre-
dicted to increase linearly with the length of the sequences being compared.

Another case of varying alignment is penalizing gaps heavily. Then the best scoring local
alignment between the sequences will be one that optimizes the score between matches and
mismatches, without any gaps. If both mismatches and gaps are heavily penalized, the
resulting alignment will also be a local alignment that contains the longest region of exact
matches. In the above two cases, the alignment score of the highest-scoring local alignment
will increase as the logarithm of the length of the sequences. Under these same conditions,
the score of the corresponding global alignment between the sequences will be negative.
The transition between a linear and logarithmic dependence of the local similarity score on
sequence length occurs when the score of the corresponding global alignment is zero.
When both the mismatch and gap penalties are varied between zero and a high negative
score, the number of possible alignments of random DNA sequences is very large.

Three general conclusions can be drawn from this theoretical study of random sequence
alignments: (1) Use of high mismatch and gap penalties that are greater than a match score
will find local alignments, of which there are relatively few in number; (2) when the penal-
ty for a mismatch is greater than twice the score for a match, the gap penalty becomes the
decisive parameter in the alignment; and (3) for a mismatch penalty less than twice the
score of a gap and a wide range of gap penalties, there are a large number of possible align-
ments that depend on both the mismatch and gap penalty scores.

Distinguishing local from global alignments has an important practical application. A
local alignment is rarely produced between random sequences. Accordingly, the signifi-
cance of a local alignment between real sequences may be readily calculated, as described
below. In contrast, the significance of a global alignment is difficult to determine since a
global alignment is readily produced between random sequences.
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Optimal Combinations of Scoring Matrices and Gap Penalties for Finding Related Proteins

The usefulness of combinations of scoring matrices and gap penalties for identifying relat-
ed proteins, including distantly related ones, has been compared (Feng et al. 1985; Doolit-
tle 1986; Henikoff and Henikoff 1993; Pearson 1995, 1996, 1998; Agarwal and States 1998;
Brenner et al. 1998). The method generally used is to start with a database of protein
sequences organized into families, either based on sequence similarity or structural simi-
larity (described in Chapters 7 and 9, respectively). A member of a family is then selected
and used as a query sequence in a search of the entire database from which the sequence
came, using a database similarity search method (FASTA, BLAST, SSEARCH), as described
in Chapter 7. These methods basically use the dynamic programming algorithm and a
choice of scoring matrix and gap penalties to produce alignment scores. Details of these
studies are described on the book Web site.

In summary, the following general observations have been made: (1) Some scoring
matrices are superior to others at finding related proteins based on either sequence or
structure. For example, matrices prepared by examining the full range of amino acid sub-
stitutions in families of related proteins, such as the BLOSUM62 matrix, perform better
than matrices based on variations in closely related proteins that are extrapolated to pro-
duce matrices for more distantly related sequences, such as the Dayhoff PAM250 matrix.
(2) Gap penalties that for a given scoring matrix are adjusted to produce a local alignment
are the most suitable. (3) To identify related sequences, the significance of the ahgnment
scores should be estimated, as described in the following section.

These methods provide the means to demonstrate sequence similarity in even the most
distantly related proteins. For closely related proteins, a PAM-type scoring matrix that
matches the evolutionary separation of the sequences may provide a higher-scoring align-
ment, as described on page 82. Another set of studies has suggested that a global alignment
algorithm in combination with scoring matrices that have all positive values and suitable
gap penalties can be used to align proteins that have limited sequence similarity (i.e., 25%
identity) but that have similar structure (Vogt et al. 1995; Abagyan and Batalov 1997).

One of the most important recent advances in sequence analysis is the development of
methods to assess the significance of an alignment between DNA or protein sequences. For
sequences that are quite similar, such as two proteins that are clearly in the same family,
such an analysis is not necessary. A significance question arises when comparing two
sequences that are not so clearly similar but are shown to align in a promising way. In such
a case, a significance test can help the biologist to decide whether an alignment found by
the computer program is one that would be expected between related sequences or would
just as likely be found if the sequences were not related. The significance test is also need-
ed to evaluate the results of a database search for sequences that are similar to a sequence
by the BLAST and FASTA programs (Chapter 7). The test will be applied to every sequence
matched so that the most significant matches are reported. Finally, a significance test can
also help to identify regions in a single sequence that have an unusual composition sug-
gestive of an interesting function. Our present purpose is to examine the significance of
sequence alignment scores obtained by the dynamic programming method.

Originally, the significance of sequence alignment scores was evaluated on the basis of
the assumption that alignment scores followed a normal statistical distribution. If
sequences are randomly generated in a computer by a Monte Carlo or sequence shuffling
method, as in generating a sequence by picking marbles representing four bases or 20
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amino acids out of a bag (the number of each type is proportional to the frequency found
in sequences), the distribution may look normal at first glance. However, further analysis
of the alignment scores of random sequences will reveal that the scores follow a different
distribution than the normal distribution called the Gumbel extreme value distribution
(see p. 104). In this section, we review some of the earlier methods used for assessing the
significance of alignments, then describe the extreme value distribution, and finally discuss
some useful programs for this type of analysis with some illustrative examples.

The statistical analysis of alignment scores is much better understood for local align-
ments than for global alignments. Recall that the Smith-Waterman alignment algorithm
and the scoring system used to produce a local alignment are designed to reveal regions of
closely matching sequence with a positive alignment score. In random or unrelated
sequence alignments, these regions are rarely found. Hence, their presence in real sequence
alignments is significant, and the probability of their occurring by chance alignment of
unrelated sequences can be readily calculated. The significance of the scores of global align-
ments, on the other hand, is more difficult to determine. Using the Needleman-Wunsch
algorithm and a suitable scoring system, there are many ways to produce a global alignment
between any pair of sequences, and the scores of many different alignments may be quite
similar. When random or unrelated sequences are compared using a global alignment
method, they can have very high scores, reflecting the tendency of the global algorithm to
match as many characters as possible. Thus, assessment of the statistical significance of a
global alignment is a much more difficult task. Rather than being used as a strict test for
sequence homology, a global alignment is more appropriately used to align sequences that
are of approximately the same length and already known to be related. The method will
conveniently show which sequence characters align. One can then use this information to
perform other types of analyses, such as structural modeling or an evolutionary analysis.

Significance of Global Alignments

In general, global alignment programs use the Needleman-Wunsch alignment algorithm
and a scoring system that scores the average match of an aligned nucleotide or amino acid
pair as a positive number. Hence, the score of the alignment of random or unrelated
sequences grows proportionally to the length of the sequences. In addition, there are many
possible different global alignments depending on the scoring system chosen, and small
changes in the scoring system can produce a different alignment. Thus, finding the best
global alignment and knowing how to assess its significance is not a simple task, as reflect-
ed by the absence of studies in the literature.

Waterman (1989) provided a set of means and standard deviations of global alignment
scores between random DNA sequences, using mismatch and gap penalties that produce a
linear increase in score with sequence length, a distinguishing feature of global alignments.
However, these values are of limited use because they are based on a simple gap scoring
system. Abagyan and Batalov (1997) suggested that global alignment scores between unre-
lated protein sequences followed the extreme value distribution, similar to local alignment
scores. However, since the scoring system that they used favored local alignments, these
alignments they produced may not be global but local (see below). Unfortunately, there is
no equivalent theory on which to base an analysis of global alignment scores as there is for
local alignment scores. For zero mismatch and gap penalties, which is the most extreme
condition for a global alignment giving the longest subsequence common to two
sequences, the score between two random or unrelated sequences P is proportional to
sequence length n, such that P = cn (Chvital and Sankoff 1975), but it has not proven pos-
sible to calculate the proportionality constant ¢ (Waterman and Vingron 1994a).
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To evaluate the significance of a Needleman-Wunsch global alignment score, Dayhoff
(1978) and Dayhoff et al. (1983) evaluated Needleman-Wunsch alignment scores for a large
number of randomized and unrelated but real protein sequences, using their log odds scor-
ing matrix at 250 PAMs and a constant gap penalty. The distribution of the resulting ran-
dom scores matched a normal distribution. On the basis of this analysis, the significance of
an alignment score between two apparently related sequences A and B was determined by
obtaining a mean and standard deviation of the alignment scores of 100 random permuta-
tions or shufflings of A with 100 of B, conserving the length and amino acid composition of
each. If the score between A and B is significant, the authors specify that the real score
should be at least 3—5 standard deviations greater than the mean of the random scores. This
level of significance means that the probability that two unrelated sequences would give
such a high score is 1.35 X 1072 (3 s.p.s) and 2.87 X 107° (5 s.D.s). In evaluating an align-
ment, two parameters were varied to maximize the alignment score: First, a constant called
the matrix bias was added to each value in the scoring matrix and, second, the gap penalty
was varied. The statistical analysis was then performed after the score between A and B had
been maximized. Recall that the log odds PAM250 matrix values vary from —7to 17 in units
of 1/3 bits. The bias varied from 2 to 20 and had the effect of increasing the score by the bias
times the number of alignment positions where one amino acid is matched to another. As
a result, the alignment frequently decreases in length because there are fewer gaps, assum-
ing the gap penalty is not also changed. Tt was these optimized alignments on which the sig-
nificance test was performed. Feng et al. (1985) used the same method to compare the sig-
nificance of alignment scores obtained by using different scoring matrices. They used
25-100 pairs of randomized sequences for each test of an alignment.

There are several potential problems with this approach, some of which apply to other
methods as well. First, the method is expensive in terms of the number of computational
steps, which increase at least as much as the square of sequence length because many
Needleman-Wunsch alignments must be done. However, this problem is much reduced
with the faster computers and more efficient algorithms of today. Second, if the amino acid
composition is unusual, and if there is a region of low complexity (for example, many
occurrences of one or two amino acids), the analysis will be oversimplified. Third, when
natural sequences were compared more closely, the patterns found did not conform to a
random set of the basic building blocks of sequences but rather to a random set of sequence
segments that were varying. Consider use of the 26-letter alphabet in English sentences.
Alphabet letters do not appear in any random order in these sentences but rather in a
vocabulary of meaningful words. What happens if sentences, which are made up of words,
are compared? On the one hand, if just the alphabet composition of many sentences is
compared, not much variation is seen. On the other hand, if words are compared, much
greater variation is found because there are many more words than alphabet characters. If
random sequences are produced from segments of sequences, rather than from individual
residues, more variation is observed, more like that observed when unrelated natural
sequences are compared. The increased variation found among natural sequences is not
surprising when one thinks of DNA and proteins as sources of information. For example,
protein-encoding regions of DNA sequences are constrained by the genetic code and by
amino acid patterns that produce functional domains in proteins.

Lipman et al. (1984) analyzed the distribution of scores among 100 vertebrate nucleic
acid sequences and compared these scores with randomized sequences prepared in differ-
ent ways. When the randomized sequences were prepared by shuffling the sequence to
conserve base composition, as was done by Dayhoff and others, the standard deviation was
approximately one-third less than the distribution of scores of the natural sequences. Thus,
natural sequences are more variable than randomized ones, and using such randomized
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sequences for a significance test may lead to an overestimation of the significance. If,
instead, the random sequences were prepared in a way that maintained the local base com-
position by producing them from overlapping fragments of sequence, the distribution of
scores has a higher standard deviation that is closer to the distribution of the natural
sequences. The conclusion is that the presence of conserved local patterns can influence the
score in statistical tests such that an alignment can appear to be more significant than it
actually is. Although this study was done using the Smith-Waterman algorithm with nucle-
ic acids, the same cautionary note applies for other types of alignments. The final problem
with the above methods is that the correct statistical model for alignment scores was not
used. However, these earlier types of statistical analysis methods set the stage for later ones.

The GCG alignment programs have a RANDOMIZATION option, which shuffles the
second sequence and calculates similarity scores between the unshuffled sequence and each
of the shuffled copies. If the new similarity scores are significantly smaller than the real
alignment score, the alignment is considered significant. This analysis is only useful for
providing a rough approximation of the significance of an alignment score and can easily
be misleading.

Dayhoff (1978) and Dayhoff et al. (1983) devised a second method for testing the relat-
edness of two protein sequences that can accommodate some local variation. This method
is useful for finding repeated regions within a sequence, similar regions that are in a dif-
ferent order in two sequences, or a small conserved region such as an active site. As used
in a computer program called RELATE (Dayhoff 1978), all possible segments of a given
length of one sequence are compared with all segments of the same length from another.
An alignment score using a scoring matrix is obtained for each comparison to give a score
distribution among all of the segments. A segment comparison score in standard deviation
units is calculated as the difference between the value for real sequences minus the average
value for random sequences divided by the standard deviation of the scores from the ran-
dom sequences. A version of the program RELATE that runs on many computer platforms
is included with the FASTA distribution package by W. Pearson. An example of the output
of the RELATE program for the phage A and P22 repressor sequences is shown in Table
3.8. This program also calculates a distribution based on the normal distribution, thus it
provides only an approximate indication of the significance of an alignment.

Modeling a Random DNA Sequence Alignment

The above types of analyses assume that alignment scores between random sequences fol-
low a normal distribution that can be used to test the significance of a score between two
test sequences. For a number of reasons, mathematicians were concerned that this statisti-
cal model might not be correct. Let’s start by creating two aligned random DNA sequences
by drawing pairs of marbles from a large bag filled with four kinds of labeled marbles. The
marbles are in equal proportions and labeled A, T, G, and C to represent an assumed equal
representation of the four nucleotides in DNA. Now consider the probability of removing
10 identical pairs representing 10 columns in an alignment between two random
sequences. The probability of removing an identical pair (an A and another A) is 1/4 X 1/4,
but there are 4 possible identical pairs (A/A, C/C, G/G, and T/T), so that the probability of
removing any identical pair is 4 X 1/4 X 1/4 = 1/4 and that for removing 6 identical pairs
is (1/4)° = 2.4 X 10 % The probability of drawing a mismatched pairis 1 — 1/4 = 3/4, and
that of drawing 6/6 mismatched pairs (3/4)° = 0.178. Most random alignments produced
in this manner will have a mixture of a few matches and many mismatches.

The calculations are a little more complex if the four nucleotides are not equally repre-
sented, but the results will be approximately the same. The probability of drawing the same
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Table 3.8. Distribution of alignment scores produced by program RELATE
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40301 comparisons of window: 25, mean score: -27.3 (13.34)
matrix file: PAM250

29 segments >= 4 sd above mean

The sequences of two phage repressors were broken down into overlapping 25-amino-
acid segments, and all 40,301 combinations of these segments were compared. The first
column gives the approximate location of the number of standard deviations (13.34)
from the mean score of —27.3. The second column is increasing ranges of the alignment
score, and the third, the number of segment alignment scores, that fall within the range.
Twenty-nine scores were greater than 3 standard deviations from the mean. Thus, these
two sequences share segments that are significantly more related than the average seg-
ment, and the proteins share strong regions of local similarity. In such cases of strong
local similarity, a local alignment program such as LEASTA, PLFASTA, or LALIGN can
provide the alignments and a more detailed statistical analysis, as described below. Graph
is truncated on right side.
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pair is p, where p = ps® + pc> + p* + pr’, where py is the proportion of nucleotide X.
p is an important parameter to remember for the discussion below. An even more compli-
cated situation is when the two random sequences to align have different nucleotide dis-
tributions. One way would be to use an average p for the two sequences. This example illus-
trates the difficulty of modeling sequence alignments between two different organisms that
have a different base composition.

The above model is not suitable for predicting the number of sequentially matched posi-
tions between random sequences of a given length. To estimate this number, a DNA
sequence alignment may also be modeled by coin-tossing experiments (Arratia and Water-
man 1989; Arratia et al. 1986, 1990). Random alignments will normally comprise mixtures
oof matches and mismatches, just as a series of coin tosses will produce a mixture of heads
and tails. The chance of producing a series of matches in a sequence alignment with no mis-
matches is similar to the chance of tossing a coin and coming up with a series of only heads.
The numbers of interest are the highest possible score that can be obtained and the proba-
bility of obtaining such a score in a certain number of trials. In such models, coins are usu-
ally considered to be “fair” in that the probability of a head is equal to that of a tail. The coin
in this example has a certain probability p of scoring a head (H) and g = 1 — p of scoring a
tail (T). The longest run of heads R has been shown by Erdos and Rényi to be given by
logy/p(n). If p = 0.5 as for a normal coin, then the base of the logarithm is 1/p = 2. For the
example of 7 = 100 tosses, then R = log,100 = log.100/log.2 = 4.605/0.693 = 6.65.

To use the coin model, an alignment of two random sequences a = a, a,, a5---a, and
b = b, by, bs---by, each of the same length n is converted to a series of heads and tails. If
a; = b; then the equivalent toss result is an H, otherwise the result is a T. The following
example illustrates the conversion of an alignment to a series of H and T tosses.

The longest run of matches in the alignment is now equivalent to the longest run of
heads in the coin-tossing sequence, and it should be possible to use the Erdos and Rényi
law to predict the longest run of matches. This score, however, only applies to one partic-
ular alignment of random sequences, such as generated above by the marble draw. In per-
forming a sequence alignment, two sequences are in effect shifted back and forth with
respect to each other to find regions that can be aligned. In addition, the sequences may be
of different lengths. If two random sequences of length m and # are aligned in this same
manner, the same law still applies but the length of the predicted match is log,,,(mn)
(Arratia et al. 1986). If m = n, the longest run of matches is doubled. Thus, for DNA
sequences of length 100 and p = 0.25 (equal representation of each nucleotide), the longest
expected run of matches is 2 X logy (1) = 2 X 1og4100 = 2 X log.100 / log.4 = 2 X 4.605
/ 1.386 = 6.65, the same number as in the coin-tossing experiment. This number corre-
sponds to the longest subalignment that can be expected between two random sequences
of this length and composition.

A more precise formula for the expectation value or mean of the longest match M and
its variance has been derived (Arratia et al. 1986; Waterman et al. 1987; Waterman 1989).
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where y = 0.577 is Euler’s number and g = 1 — p. Note that Equation 9 can be simplified

where K is a constant that depends on the base composition.

Equation 11 also applies when there are k mismatches in the alignment, except that
another term = k log/, logy,,(qgmn) appears in the equation (Arratia et al. 1986). K, the
constant in Equation 11, depends on k. The log log term is small and can be replaced by a
constant (Mott 1992), and simulations also suggest that it is not important (Altschul and
Gish 1996). Altschul and Gish (1996) have found a better match to Equation 11 when the
length of each sequence is reduced by the expected length of a match. In the example given
above with two sequences of length 100, the expected length of a match was 6.65. As the
sequences slide align each other, it is not possible to have overlaps on the ends that are
shorter than 7 because there is not enough sequence remaining. Hence, the effective length
of the sequences is 100 — 7 = 93 (Altschul and Gish 1996). This correction is also used for
the calculation of statistical significance by the BLAST algorithm discussed in Chapter 7.

Equation 11 is fundamentally important for calculating the statistical significance of
alignment scores. Basically, it states that as the lengths of random or unrelated sequences
increase, the mean of the highest possible local alignment scores will be proportional to the
logarithm of the product of the sequence lengths, or twice the logarithm of the sequence
length if the lengths are equal (since log (nn) = 2 log n). Equation 10 also predicts a con-
stant variance among scores of random or unrelated sequences, and this prediction is also
borne out by experiment. It is important to emphasize once again that this relationship
depends on the use of scoring parameters appropriate for a local alignment algorithm, such
as 1 for a match and —0.9 for a mismatch, or a scoring matrix that scores the average
aligned position as negative, and also upon the use of sufficiently large gap penalties. This
type of scoring system gives rise to positive scoring regions only rarely. The significance of
these scores can then be estimated as described herein.

Another way of describing the result in Equation 11 uses a different parameter, A, where
A = log.(1/p) (Karlin and Altschul 1990)

Recall that p is the probability of a match between the same two characters, given above as
1/4 for matching a random pair of DNA bases, assuming equal representation of each base
in the sequences. p may also be calculated as the probability of a match averaged over scor-
ing matrix and sequence composition values. Instead, it is A that is more commonly used
with scoring matrix values. The calculation of X and also of K is described below and in
more detail on the book Web site.

It is more useful in sequence analysis to use alignment scores instead of lengths for com-
paring alignments. The expected or mean alignment length between two random sequences
given by Equations 11 and 12 can be easily converted to an alignment score just by using
match and mismatch or scoring matrix values along with some simple normalization pro-
cedures. Thus, in addition to predicting length, these equations can also predict the mean
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or expected value of the alignment scores E(S) between random sequences of lengths 7 and
n. Assessing statistical significance then boils down to calculating the probability that an
alignment score between two random or unrelated sequences will actually go above E(S).
Hence, the expected score or mean extreme score is

Another important mathematical result bearing on this question was that the number
of matched regions that exceeds the mean score E(S) in Equation 13 could be predicted by
the Poisson distribution where the mean x of the Poisson distribution is given by E(S)
(Waterman and Vingron 1994b). The Poisson distribution applies when the probability of
success in a single trial is small, but the number of trials is large (as in comparing many
pairs of random sequences or a test sequence to many scrambled versions of a second
sequence) so that some trials end in success but others do not. Some alignments do not
reach the expected score, but others will reach or even exceed that score. The Poisson dis-
tribution gives the probability P, of the number of successes, i.e., 0, 1, 2, 3 . . . when the
average number is x and is given by the formula P, = e™* x" / n!. The probability that no
score from many test alignments will exceed x is therefore approximated by (P, = ¢ *).
The probability that at least one score exceeds x is 1 ~ Py and is given by P (S > x) = 1 —¢™*
so that

b

Equation 15 estimates the probability of a score greater than x between two random
sequences and is identical to the extreme value distribution described below. The Poisson
approximation provides a very convenient way to estimate K and \ from alignment scores
between many random or unrelated sequences by using the fraction of alignments that
have a score less than value x (see book Web site).

Alignments with Gaps

It was predicted on mathematical grounds and shown experimentally that a similar type of
analysis holds for sequence alignments that include gaps (Smith et al. 1985). Thus, when
Smith et al. (1985) optimally aligned a large number of unrelated vertebrate and viral DNA
sequences of different lengths (n and m) and their complements to each other, using a
dynamic programming local alignment method that allowed for a score of +1 for matches,
—0.9 for mismatches, and —2 for a single gap penalty (longer gaps were not considered in
order to simplify the analysis), a plot of the similarity score (S) versus the log,/p(nm) pro-
duced a straight line with approximately constant variance. This result is as expected in the
above model except that with the inclusion of gaps, the slope was increased and was of the
form
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with constant standard deviation ¢ = 1.78. This result was then used to calculate how
many standard deviations were between the predicted mean and variance of the local align-
ment scores for unrelated sequences and the scores for test pairs of sequences. If the actu-
al alignment score exceeded the predicted Syc., by several standard deviations, then the
alignment score should be significant. For example, the expected score between two
unrelated sequences of lengths 2948 and 431, average p = 0.279, Was Spean = 2.55 X
log1/0.279(2948 X 431) — 8.99 = 2.55 X (log.(2948 X 431)/log.(1/0.279)) — 8.99 = 2.55
X 14.1/1.28 — 8.99 = 28.1 — 8.99 = 19.1. The actual optimal alignment score between
the two real sequences of these lengths was 37.20, which exceeds the alignment score
expected for random sequences by (37.20 — 19.1) / 1.78 = 10.20. Is this number of stan-
dard deviations significant? Smith et al. (1985) and Waterman (1989) suggested the use of
a conservative statistic known as Chebyshev’s inequality, which is valid for many proba-
bility distributions: The probability that a random variable exceeds its mean is less than or
equal to the square of 1 over the number of standard deviations from the mean. In this
example where the actual score is 10 standard deviations above the mean, the probability
is (1/10)> = 0.01.

Waterman (1989) has noted that for low mismatch and gap penalties, e.g., +1 for
matches, —0.5 for mismatches, and —0.5 for a single gap penalty, the predicted alignment
scores between random sequences as estimated above are not accurate because the score
will increase linearly with sequence length instead of with the logarithm of the length. The
linear relationship arises when the alignment is more global in nature, and the logarithmic
relationship when it is local. Waterman (1989) has fitted alignment scores from a large
number of randomly generated DNA sequences of varying lengths to either the predicted
log(n) or n linear relationships expected for low- and high-valued mismatch and gap
penalties. The results provide the mean and standard deviation of an alignment score for
several scoring schemes, assuming a constant gap penalty.

With further mathematical analysis, it became apparent that the expected scores
between alignment of random and unrelated sequences follow a distribution called the
Gumbel extreme value distribution (Arratia et al. 1986; Karlin and Altschul 1990). This
type of distribution is typical of values that are the highest or best score of a variable, such
as the number of heads only expected in a coin toss discussed previously. Subsequently,
S. Karlin and S. Altschul (1990, 1993) further developed the use of this distribution for
evaluating the significance of ungapped segments in comparisons between a test sequence
and a sequence database using the BLAST program (for review, see Altschul et al. 1994).
The method is also used for evaluating the statistical features of repeats and amino acid
patterns and clusters in the same sequence (Karlin and Altschul 1990; Karlin et al. 1991).
The program SAPS developed by S. Karlin and colleagues at Stanford University and avail-
able at http://ulrec3.unil.ch/software/software.html provides this type of analysis. The
extreme value distribution is now widely used for evaluating the significance of the score
of local alignments of DNA and protein sequence alignments, especially in the context of
database similarity searches.

The Gumbel Extreme Value Distribution

When two sequences have been aligned optimally, the significance of a local alignment
score can be tested on the basis of the distribution of scores expected by aligning two ran-
dom sequences of the same length and composition as the two test sequences (Karlin and
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Altschul 1990; Altschul et al. 1994; Altschul and Gish 1996). These random sequence align-
ment scores follow a distribution called the extreme value distribution, which is somewhat
like a normal distribution with a positively skewed tail in the higher score range. When a
set of values of a variable are obtained in an experiment, biologists are used to calculating
the mean and standard deviation of the entire set assuming that the distribution of values
will follow the normal distribution. For sequence alignments, this procedure would be like
obtaining many different alignments, both good and bad, and averaging all of the scores.
However, biologically interesting alignments are those that give the highest possible scores,
and lower scores are not of interest. The experiment, then, is one of obtaining a set of val-
ues, and then of using only the highest value and discarding the rest. The focus changes
from the statistical approach of wanting to know the average of scores of random
sequences, to one of knowing how high a value will be obtained next time another set of
alignment scores of random sequences is obtained.

The distribution of alignment scores between random sequences follows the extreme
value distribution, not the normal distribution. After many alignments, a probability dis-
tribution of highest values will be obtained. The goal is to evaluate the probability that a
score between random or unrelated sequences will reach the score found between two real
sequences of interest. If that probability is very low, the alignment score between the real
sequences is significant and the sequence similarity score is significant.

The probability distribution of highest values in an experiment, the extreme value dis-
tribution, is compared to the normal probability distribution in Figure 3.17. The equations
giving the respective y coordinate values in these distributions, Y,, and Y,, are

Figure 3.17. Probability values for the extreme value distribution (A) and the normal distribution
(B). The area under each curve is 1.
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The area under both curves is 1. The normal curve is symmetrical about the expectation
value or mean at x = 0, such that the area under the curve below the mean (0.5) is the same
as that above the mean (0.5) and the variance o is 1. The probability of a particular value
of x for the normal distribution is obtained by calculating the area under curve B, usually
between —x and +x. For x = 2, often used as an indication of a significant deviation from
the mean, the area between —2 and +2 is 0.9544. For the extreme value distribution, the
expectation value or mean of x is the value of the Euler-Mascheroni constant, 0.57722 ...
and the variance of x, o, is the value of ? / 6 = 1.6449. The probability that score S will
be less than value x, P ( S < x), is obtained by calculating the area under curve A from —o
to x, by integration of Equation 17 giving

and the probability of $ = x is 1 minus this probability

For the extreme value distribution, the area below x = 0, which represents the peak or
mode of the distribution, is 1/e or 0.368 of the total area of 1, and the area above the mean
is 1 — 0.368 = 0.632. Atavalueof x = 2, Yev = 0.118and P(S<2) =exp[ —e ] =
0.873. Thus, just over 0.87 of the area under the curve is found below x = 2. An area of
0.95 is not reached until x = 3. The difference between the two distributions becomes even
greater for larger values of x. As a result, for a variable whose distribution comes from
extreme values, such as random sequence alignment scores, the score must be greater than
expected from a normal distribution in order to achieve the same level of significance.

The above equations are modified for use with scores obtained in an analysis. For a vari-
able x that follows the normal distribution, values of x are used to estimate the mean m and
standard deviation o of the distribution, and the probability curve given by Equation 18
then becomes

The probability of a particular value of x can be estimated by using m and o to estimate the
number of standard deviations from the mean, Z, where Z = (x — m)/o. Similarly, Equa-
tions 17 and 20 can be modified to accommodate the extreme values such as sequence
alignment scores
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where u is the mode, highest point, or characteristic value of the distribution, and \ is
the decay or scale parameter. As is apparent in Equation 22, N converts the experimen-
tally measured values into standard values of x after subtraction of the mode from each
score.

It is quite straightforward to calculate « and N, and several methods using alignment
scores are discussed on the book Web site. There is an important relationship between u
and A, and the mean and standard deviation of a set of extreme values. The mean and stan-
dard deviation do not only apply to the normal distribution, but in fact are mathematical-
ly defined for any probability distribution. The mean of any set of values of a variable may
always be calculated as the sum of the values divided by their number. The mean m or
expected value of a variable x, E (x), is defined as the first moment of the values of the vari-
able around the mean. From this definition, the mean is that number from which the sum
of deviations to all values is zero. The standard deviation o is the second moment of the
values about the mean and is the sum of the squares of the devations from the mean divid-
ed by the number of observations less one (n — 1). The mean x and standard deviation o
of a set of extreme values can be calculated in the same way, and then u and \ can be cal-
culated using the following equations derived by mathematical evaluation of the first and
second moments of the extreme value distribution (Gumbel 1962; Altschul and Erickson
1986).

where vy was already introduced. Equation 23 is derived from the ratio of the standard devi-
ations o of the two distributions in Figure 3.17, or 1 to =% /6. Equation 24 is derived from
the observation that the mode or the EV distribution (zero in Fig. 3.17) has the value of v
less than the mean. However, the value of v must be scaled by the ratio of the standard
deviations. Hence <y / \ is subtracted from the mean. This method of calculating # and A
from means and standard deviations is called the method of moments.

As with the normal distribution, z scores may be calculated for each extreme value x,
where z = (x - m) / o is the number of standard deviations from the mean m to each score.
z scores are used by the FASTA, version 3, programs distributed by W. Pearson (1998).
Equation 22 may be written in a form that directly uses z scores to evaluate the probabil-
ity that a particular score Z exceeds a value z,

For sequence analysis, # and A depend on the length and composition of the sequences
being compared, and also on the particular scoring system being used. They can be calcu-
lated directly or estimated by making many alignments of random sequences or shuffled
natural sequences, using a scoring system that gives local alignments. The parameters will
change when a different scoring system is used. Examples of programs that calculate these
values are given below.

For alignments that do not include any gaps, 4 and A may be calculated from the scor-
ing matrix. The scaling factor X is calculated as the value of x, which satisfies the condition
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where p; and p; are the respective fractional representations of residues i and j in the
sequences, and s; is the score for a match being i and j, taken from a log odds scoring
matrix. u, the characteristic value of the distribution, is given by (Altschul and Gish 1996)

where m and n are the sequence lengths and K is a constant that can also be calculated from
the values of p; and s;;. Note that this value originates from the coin toss analysis that gave
rise to Equation 14. Combining Equations 25 and 27 eliminates # and gives the following
relationship

wite

To facilitate calculations, a sequence alignment score S may also be normalized to pro-
duce a score S'. The effect of normalization is to change the score distribution into the
form shown above in Figure 3.17 with u = 0 and A = 1. From Equation 28, §’ is calculat-

ed by

The probability of a particular normalized score may then be readily calculated. This capa-
bility depends on a determination of the N and K to calculate the normalized scores S’ by
Equation 30.

The probability function P(S" = x) decays exponentially in x as x increases and P(S' =
x) =1—exp [ — e *] —> e . Consequently, an important approximation for Equa-
tions 29 and 31 for the significant part of the extreme value distribution where x > 2 is
shown in Equations 32 and 33. Note that the replacement equations are single and not
double exponentials.
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Table 3.9. Approximation of P(S' = x) by e ™

x l-exp[—e *] e™
0 0.63 1

1 0.308 0.368
2 0.127 0.135
3 0.0486 0.0498
4 0.0181 0.0183

A comparison of probability calculations using this approximation instead of that given in
Equation 31 is shown in Table 3.9. For x > 2, the estimates differ by less than 2%. The esti-
mate given in Equation 32 also provides a quicker method for estimating the significance
of an alignment score.

A Quick Determination of the Significance of an Alignment Score

Scoring matrices are most useful for statistical work if they are scaled in logarithms to the
base 2 called bits. Scaling the matrices in this fashion does not alter their ability to score
sequence similarities, and thereby to distinguish good matches from poor ones, but does
allow a simple estimation of the significance of an alignment. The actual alignment may
then be calculated by summing the matrix values for each of the aligned pairs, using matrix
values in bit units. If the actual alignment score in bits is greater than expected for align-
ment of random sequences, the alignment is significant.

For a typical amino acid scoring matrix and protein sequence, K = 0.1 and \ depends
on the values of the scoring matrix. If the log odds matrix is in units of bits as described
above, then A = log.2 = 0.693, and the following simplified form of Equation 32 may be
derived (Altschul 1991) by taking logarithms to the base 2 and setting p as the probability
of the scores of random or unrelated alignments reaching a score of S or greater

then S, the score corresponding to probability P, may be obtained by rearranging terms of
Equation 34 as follows

Since for most scoring matrices K = 0.1 and choosing P = 0.05, the first term is 1, and the

second term in Equation 35 becomes the most important one for calculating the score
(Altschul 1991), thus giving
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The Importance of the Type of Scoring Matrix for Statistical Analyses

Using a log odds matrix in bit units simplifies estimation of the significance of an align-
ment. The Dayhoff PAM matrices, the BLOSUM matrices, and the nucleic acid PAM scor-
ing matrices are examples of this type. Such matrices are also useful for finding local align-
ments because the matrix includes both positive and negative values. Another important
feature of the log odds form of the scoring matrix is that this design is optimal for assess-
ing statistical significance of alignment scores. A set of matrices, each designed to detect
similarity between sequences at a particular level, is best for this purpose. Use of a matrix
that is designed for aligning sequences that have a particular level of similarity (or evolu-
tionary distance) assures the highest-scoring alignment and therefore the very best esti-
mate of significance. Thus, lower-numbered PAM matrices are most suitable for aligning
sequences that are more similar. In the above example, the Dayhoff PAM250 matrix
designed for sequences that are 20% similar was used to align sequences that are approxi-
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mately 20% identical and 50% similar (identities plus common replacements in the align-
ment). Using a lower PAM120 matrix produces a slightly higher score for this alignment,
and thus increases the significance of the alignment score.

Another important parameter of the scoring matrix for statistical purposes is the expect-
ed value of the average amino acid pair, calculated as shown in Equation 37. This value
should be negative if alignment scores for the matrix are to be used for statistical tests, as
performed in the above example. Otherwise, in any aligned pair of sequences the scores
will increase with length faster than the logarithm of the length. Not all scoring matrices
will meet this requirement. To calculate the expected score (E), the score for each amino
acid pair (s;) is multiplied by the fractional occurrences of each amino acid (piand p)). This
weighted score is then summed over all of the amino acid pairs. The expected values of the
log odds matrices such as the Dayhoff PAM, BLOSUM, JTT, JO93, PET91, and Gonnet92
matrices all meet this statistical requirement.

For example, for the PAM120 matrix in one-half bits E = —1.64 and for PAM160 in one-
half bits, E = —1.14. Thus, scores obtained with these matrices may be used in the above
statistical analysis. Ungapped alignment scores obtained using the BLOSUM62 matrix may
also be subject to a significance test, as described above for the PAM matrices. The test is
valid because the expect score for a random pair of amino acids is negative (E = —0.52).
Because the matrix is in half-bit units, the alignment is significant when a score exceeds
16/0.52 = 32 half-bits.

To assist in keeping track of information, scoring matrices have appeared in a new for-
mat suitable for use by many types of programs. An example is given in Figure 3.18. The
matrix includes: (1) the scale of the matrix and the value of the statistical parameter \; (2)
E, the expect score of the average amino acid pair in the matrix, which if negative assures
that local alignments will be emphasized (Eq. 37); (3) H, the information content or
entropy of the matrix (Eq. 3) giving the ability of the matrix to discriminate related from
unrelated sequence alignments, not shown here; and (4) suitable gap penalties. The BLO-
SUM matrices are also available in this same format.

Significance of Gapped, Local Alignments

When random sequences of varying lengths are optimally aligned with the Smith-Water-
man dynamic programming algorithm using an appropriate scoring matrix and gap penal-
ties, the distribution of scores also matches the extreme value distribution (Altschul and
Gish 1996). Similarly, in optimally aligning a given sequence to a database of sequences,
and after removing the high scores of the closely related sequences, the scores of the unre-
lated sequences also follow this distribution (Altschul et al. 1994; Pearson 1996, 1998). In
these and other cases, optimal scores are found to increase linearly with log (1), where 7 is
the sequence length. Equation 33 predicts that the optimal alignment score (x) expected
between two random or unrelated sequences should be proportional to the logarithm of
the product of the sequence lengths, x = log,(nm). If the sequence lengths are approxi-
mately equal, n = m, then x should be proportional to log,(n*) = 2 log,(n), and the pre-
dicted score should also increase linearly with log(n). logy(n) is equivalent to log(n)
because, to change the base of a logarithm, one merely multiplies by a constant. In com-
paring one sequence of length m to a sequence database of length n, m is a constant and
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This matrix was produced by "pam" Version 1.0.6 [28-Jul-93]

PAM 120 substitution matrix, scale = In(2)/2 = 0.346574 [1/2 bits]
Expected score = -1.64, Entropy = 0.979 bits

Lowest score = -8, Highest score = 12

A R N D C Q EGH I L XMPFP S TWY VB Z X *

-3-1 0-3-1 0 1-3-1-3-2-2-4111-7-4 0 0-1-1-8
6 -1 -3 -4 1-3-4 1~2-4 2-1-5-1-1-2 1-5-3-2-1-2-8
-1 4 2-5 0 1 0 2-2-4 1-3-4-2 1 0-4-2-3 3 0-1-8
-3 2 5-7 1 3 0 0-3<5-1-4-7-3 0-1-8-5-3 4 3-2-8
-4 -5 -7 9 -7 -7 -4 -4 =3 =7 -7 -6 -6 -4 0 -3 -8 -1 -3 -6 ~7 -4 -8
1 0 1-7 6 2-3 3-3-2 0-1-6 0-2-2-6-~5-3 0 4-1-8
-3 1 3-7 2 5-1-1-3+4-1-3-7-2-1-2-8«5-3 3 4-1-8

-4 0 0 -4-3-1 5-4-4-5-3-4-5-21-1-8-6-2 0-2-2-8

1 2 0-4 3-1-4 7-4-3-2~4-3-1-2-3-3-1-311=-2-8
-2 -2-3-3-3-3-4-4 6 1-3 1 0-3-2 0-6-2 3-3-3-1-8
-4 -4 -5 -7 -2 -4 -5-3 1 5-4 3 0-3-4-3-3-2 1-4-3-2-8
2 1-1-7 0-1-3-2-3-4 5 0-7-2-1-1-5-5-4 0-1-2-8
-1 -3-4-6-1-3-4-41 3 0 8-1-3-2-1«-6-4 1-4-2-2-8
-5 «4 =7 =6 =6 -7 =5 -3 0 0 -7 -1 8 -5-3 -4-1 4 -3 -5-6-3 -8
-1 -2~3 -4 0~2-2-1-3-3-2-3-5 6 1-1-7-6-2-2~1-2-8
-1 1 0 0-2-1 1-2-2-4-1-2-3 1 3 2-2-3-2 0-1-1-8
-2 0-1-3-2-2-1-3 0-3-~1-1-4-1 2 4-6-3 0 0-2-1--8

71 -4 -8-8-6-8 -8 -3 -6-3-5-6-1-7-2-612~2 -8 -6 -7 -5 -8
-5 -2 -5 -1 =5 -5 ~6 -1 -2 -2 -5 -4 4 -6 -3 -3 -2 8~-3-3-5-3-8
-3-3-3-3-3-3-2-3 3 1-4 1~-3-2-2 0-8-3 5-3-3-1-8
-2 3 4-6 0 3 0 1 -3-4 0-4-5-2 0 0-6-3-3 4 2-1-8
-1 0 3-7 4 4-2 1-3-3-1-2-6-1-1-2-7-5-3 2 4-1-8
-2 -1 =2 -4 =1 -1 -2 -2 -1 -2 =2 -2 ~3 -2 -1 -1 -5 =3 -1 -1 -1 -2 -8
-8 -8 -8-86-8-8-8-8-8-8-8-8«8-8-8--8-8--8--88--8--8 1

Figure 3.18. Example of BLASTP format of the Dayhoff MDM giving log odds scores at 120 PAMs. Note that the matrix has
mirror-image copies of the same score on each side of the main diagonal. Besides the standard single-letter amino acid sym-
bols, there are four new symbols, B, Z, X, *. B is the frequency-weighted average of entries for D and N pairs, Z similarly for
Q and E entries, X similarly for all pairs in each row, and * is the lowest score in the matrix for matches with any other
sequence character that may be present.

the predicted score should increase linearly as log(n). This log(n) relationship has been
found in several studies of the distribution of optimal local alignment scores that have
included gap penalties (Smith et al. 1985; Arratia et al. 1986; Collins et al. 1988; Pearson
1996, 1998; for additional references, see Altschul et al. 1994). Thus, the same statistical
methods described above for assessing the significance of ungapped alignment scores may
also be used for gapped alignment scores. Methods for calculating the parameters K and A
for a given combination of scoring matrix methods and gap penalties are described on the
book Web site.

Methods for Calculating the Parameters of the Extreme Value Distribution

In the analysis by Altschul and Gish (1996), 10,000 random amino acid sequences of vari-
able lengths were aligned using the Smith-Waterman method and a combination of the
scoring matrix and a reasonable set of gap penalties for the matrix. The scores found by
this method followed the same extreme value distribution predicted by the underlying sta-
tistical theory. Values of K and \ were then estimated for each combination by fitting the
data to the predicted extreme value distribution. Some representative results are shown in
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Table 3.10. Readers should consult Tables V=VII in Altschul and Gish (1996) for a more
detailed list of the gap penalties tested.

Altschul and Gish (1996) have cautioned users of these statistical parameters. First, the
parameters were generated by alignment of random sequences that were produced assum-
ing a particular amino acid distribution, which may be a poor model for some proteins.
Second, the accuracy of A and K cannot be estimated easily. Finally, for gap costs that give
values of H < 0.15, the optimal alignment length is a significant fraction of the sequence
lengths and produces a source of error called the edge effect. The effect occurs when the
expected length of an alignment is a significant fraction of the sequence length, and, as dis-
cussed earlier, alignments between sequences that overlap at their ends cannot be com-
pleted. The expected length is then subtracted from the sequence length before \ is esti-
mated. If no such correction is done, X may be overestimated.

These values for gap penalties should also not be construed to represent the best
choice for a given pair of sequences or the only choices, simply because the statistical
parameters are available. The process of choosing a gap penalty remains a matter of rea-
soned choice. In trying the effects of varying the gap penalty, it is important to recognize
that as the gap penalty is lowered, the alignments produced will have more gaps and will
eventually change from a local to a global type of alignment, even though a local align-
ment program is being used. In contrast, higher H values are generated by a very large
gap penalty and produce alignments with no gaps (Table 3.10), thus suggesting an
increased ability to discriminate between related and unrelated sequences. In this
respect, Altschul and Gish (1996) note that beyond a certain point increasing the gap

Table 3.10. Statistical parameters for combination of scoring matrices and affine
gap penalties

Gap opening Gap extension
Scoring matrix penalty® penalty® K A H*
BLOSUMS50 oo? 0-c0 0.232 0.11 0.34
BLOSUMS50 15 8-15 0.09 0.222 0.31
BLOSUMS50 11 8-11 0.05 0.197 0.21
BLOSUMS50 11 1 —_ —_ —
BLOSUMSé62 oo 0-0 0.318 0.13 0.40
BLOSUMS62 12 3-12 0.1 0.305 0.38
BLOSUMSé62 8 7-8 0.06 0.270 0.25
BLOSUMBS62 7 1 — — —
PAM250 oo? 0- 0.229 0.09 0.23
PAM250 15 5-15 0.06 0.215 0.20
PAM250 10 8-10 0.031 0.175 0.11
PAM250 11 1 —_ -— —

Dashes indicate that no value can be calculated because the relationship between alignment
score and sequence length is linear and not logarithmic, indicating that the alignment is glob-
al, not local, in character. Statistical significance may not be calculated for these gap penalty-
scoring matrix combinations. The corresponding values for gap penalties define approximate
lower limits that should be used.

* A value of o for gap penalty will produce alignments with no gaps.

® The penalty for a gap opening of length 1 is the value of the gap opening penalty shown.
The gap extension penalty is not added until the gap length is 2. Make sure that the alignment
program uses this same scheme for scoring gaps. The extension penalty is shown over a range
of values; values within this range did not change K and \.

¢ The entropy in units of the natural logarithm.
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extension penalty does not change the parameters, indicating that most gaps in their
simulations are probably of length 1. However, reducing the gap penalty can also allow
an alignment to be extended and create a higher scoring alignment. Eventually, howev-
er, the optimal local alignment score between unrelated sequences will lose the log length
relationship with sequence length and become a linear function. At this point, gap penal-
ties are no longer useful for obtaining local alignments and the above statistical rela-
tionships are no longer valid.

The higher the H value, the better the matrix can distinguish related from unrelated
sequences. The lower the value of H, the longer the expected alignment. These conditions
may be better if a longer alignment region is required, such as testing a structural or func-
tional model of a sequence by producing an alignment. Conversely, scoring parameters
giving higher values of H should produce shorter, more compact alignments. If H < 0.15,
the alignments may be very long. In this case, the sequences have a shorter effective length
since alignments starting near the ends of the sequences may not be completed. This edge
effect can lead to an overestimation of A but was corrected for in the above table (Altschul
and Gish 1996).

Unfortunately, the above method for calculating the significance of an alignment score
may not be used to test the significance of a global alignment score. The theory does not
apply when these same substitution matrices are used for global alignments. Transforma-
tion of these matrices by adding a fixed constant value to each entry or by multiplying each
value by a constant has no effect on the relative scores of a series of global alignments.
Hence, there is no theoretical basis for a statistical analysis of such scores as there is for
local alignments (Altschul 1991).

As discussed in Chapter 7, two programs are commonly used for database similarity
searches: FASTA and BLAST. These programs both calculate the statistical significance of
the higher scores found with similar sequences, but the types of analyses used to deter-
mine the statistical significance of these scores are somewhat different. BLAST uses the
value of K and \ found by aligning random sequences and Equation 29, where n and m
are shortened to compensate for inability of ends to align. FASTA calculates the statisti-
cal significance using the distribution of scores with unrelated sequences found during
the database search. In effect, the mean and standard deviation of the low scores found in
a given length range are calculated. These scores represent the expected range of scores of
unrelated sequences for that sequence length (recall that the local alignment scores
increase as the logarithm of the sequence length). The number of standard deviations to
the high scores of related sequences in the same length range (z score) is then determined.
The significance of this z score is then calculated according to the extreme value distribu-
tion expected of the z scores, given in Equation 25. This method is discussed in greater
detail in Chapter 7. Pearson (1996) showed that these two methods are equally useful in
database similarity searches for detecting sequences more distantly related to the input
query sequence.

"Pearson (1996) has also determined the influence of scoring matrices and gap penal-
ties on alignment scores of moderately related and distantly related protein sequences in
the same family. For two examples of moderately related sequences, the choice of scor-
ing matrix and gap penalties (gap opening penalty followed by penalty for each addi-
tional gap position) did not matter, i.e., BLOSUM50 —12/—2, BLOSUM62 —8/—2,
Gonnet93 —10/—2, and PAM250 —12, —2 all produced statistically significant scores.
The scores of distantly related proteins in the same family depended more on the choice
of scoring matrix and gap penalty, and some scores were significant and others were not.
Pearson recommends using caution in evaluating alignment scores using only one par-
ticular combination of scoring matrix and gap penalties. He also suggests that using a
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larger gap penalty, e.g., —14, —2 with BLOSUMS50, can increase the selectivity of a
database search for similarity (fewer sequences known to be unrelated will receive a sig-
nificant alignment score).

A difficulty encountered by FASTA in calculating statistical parameters during a
database search is that of distinguishing unrelated from related sequences, because only
scores of unrelated sequences must be used. As score and sequence length information
1s accumulated during the search, the scores will include high, intermediate, and some-
times low scores of sequences that are related to the query sequence, as well as low scores
and sometimes intermediate and even high scores of unrelated sequences. As an exam-
Ple, a high score with an unrelated database sequence can occur because the database
sequence has a region of low complexity, such as a high proportion of one amino acid.
Regardless of the reason, these high scores must be pruned from the search if accurate
statistical estimates are to be made. Pearson (1998) has devised several such pruning
schemes, and then determined the influence of the scheme on the success of a database
search at demonstrating statistically significant alignment scores among members of the
same protein family or superfamily. However, no particular scheme proved to be better
than another.
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The above method does not necessarily ensure that the choice of scoring matrix and gap
penalties provides a realistic set of local alignment scores. In the comparable situation of
matching a test sequence to a database of sequences, the scores also follow the extreme
value distribution. For this situation, Mott (1992) has explained that for local alignments
the end point of the alignment should on the average be half-way along the query
sequence, and for global alignments, the end point should be beyond that half-way point.
Pearson (1996) has pointed out that the presence of known, unrelated sequences in the
upper part of the curve where E > 1 (see Chapter 7) can be an indication of an inappro-
priate scoring system.

The Statistical Significance of Individual Alignment Scores between Sequences and the
Significance of Scores Found in a Database Search Are Calculated Differently

In performing a database search between a query sequence and a sequence database, a
new comparison is made for each sequence in the database. Alignment scores between
unrelated sequences are employed by FASTA to calculate the parameters of the extreme
value distribution. The probability that scores between unrelated sequences could reach
as high as those found for matched sequences can then be calculated (Pearson 1998).
Similarly, in the database similarity search program BLAST, estimates of the statistical
parameters are calculated based on the scoring matrix and sequence composition. The
parameters are then used to calculate the probability of finding conserved patterns by
chance alignment of unrelated sequences (Altschul et al. 1994). When performing such
database searches, many trials are made in order to find the most strongly matching
sequences.

As more and more comparisons between unrelated sequences are made, the chance that
one of the alignment scores will be the highest one yet found increases. The probability of
finding a match therefore has to be higher than the value calculated for a score of one
sequence pair. The length of the query sequence is about the same as it would be in a nor-
mal sequence alignment, but the effective database sequence is very large and represents
many different sequences, each one a different test alignment. Theory shows that the Pois-
son distribution should apply (Karlin and Altschul 1990, 1993; Altschul et al. 1994), as it
did above for estimating the parameters of the extreme value distribution from many
alignments between random sequences.

The probability of observing, in a database of D sequences, no alignments with
scores higher than the mean of the highest possible local alignment scores s is given by
e~ 7%, and that of observing at least one score s is P = 1 — ¢ . For the range of values
of P that are of interest, i.e., P < 0.1, P = Ds. If two sequences are aligned by PRSS
as given in the above example, and the significance of the alignment is calculated, two
scores must be considered. The probability of the score may first be calculated using
the -estimates of A and K. Thus, in the phage repressor alignment, P(s > 401) =
3.7. X 107%. However, to estimate the EV parameters, 1000 shuffled sequences
were compared, and the probability that one of those sequences would score as high as
401 is given by Ds, or 1000 X 3.7 X 107%7 = 3.7 X 107%% These numbers are also
shown in the statistical estimates computed by PRSS. Finally, if the score had arisen
from a database search of 50,000 sequences, the probability of a score of 401 among this
many sequence alignments is 5 X 107", still a small number, but 50,000 larger than
that for a single comparison. These probability calculations are used for reporting the
significance of scores with database sequences by FASTA and BLAST, as described in
Chapter 7.
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SEQUENCE ALIGNMENT AND EVOLUTIONARY DISTANCE ESTIMATION BY BAYESIAN

A recent development in sequence alignment methods is the use of Bayesian statistical
methods to produce alignments between pairs of sequences (Zhu et al. 1998) and to cal-
culate distances between sequences (Agarwal and States 1996). Before discussing these
methods further, we provide some introductory comments about Bayesian probability.

Introduction to Bayesian Statistics

Bayesian statistical methods differ from other types of statistics by the use of conditional
probabilities. These probabilities are used to derive the joint probability of two events or con-
ditions. An example of a conditional probability is P(B| A), meaning the probability of B,
given A, whereas P(B) is the probability of B, regardless of the value of A. Suppose that A can
have two states, Al and A2, and that B can also have two states, B1 and B2, as shown in Table
3.11. These states might, for instance, correspond to two allelic states of two genes. Then,
P(B) = P(B1) + P(B2) = 1 and P(A) = P(Al) + P(A2) = 1. Suppose, further, that the prob-
ability P(B1) = 0.3 is known. Hence P(B2) = 1 — 0.3 = 0.7. In our genetic example, each
probability might correspond to the frequency of an allele, for which p and g are often used.
These probabilities P(B1), etc., can be placed along the right margins of the table as the
respective sum of each row or column and are referred to as the marginal probabilities.

Interest is now focused on filling in the missing data in the middle two columns of the
table. The probability of Al and B1 occurring together (the value to be entered in row Bl
and column A1) is called the joint probability, P(B1 and A1) (also denoted P[B1, A1]). The
marginal probability P(A1) is also missing. The available information up to this point,
called the prior information, is not enough to calculate the joint probabilities. With addi-
tional data on the co-occurrence of Al with Bl, etc., these joint probabilities may be
derived by Bayes’ rule. Suppose that the conditional probabilities P(A1|B1) = 0.8 and
P(A2|B2) = 0.70 are known, the first representing, for example, the proportion of a pop-
ulation with allele B1 that also has allele Al. First, note that P(A1|B1) + P(A2|B1) = 1,
and hence that P(A2|B1) = 1.0-0.8 = 0.2. Similarly, P(A1|B2) = 1.0 - 0.70 = 0.3. Then
the joint probabilities and other conditional probabilities may be calculated by Bayes’ rule,
illustrated using the joint probability for A1 and B1 as an example.

Thus, P(Al and B1) = P(B1) X P(A1|B1) = 0.3 X 0.8 = 0.24, and P(A2 and B2) = P(B2)
X P(A2]|B2) = 0.7 X 0.7 = 0.49. The other joint probabilities may be calculated by sub-
traction; e.g., P(Al and B2) = P(B1) — P(Al and B1) = 0.30 — 0.24 = 0.06. To calculate

Table 3.11. Prior information for
a Bayes analysis

Al A2

Bl 0.3
B2 0.7
1.0
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Table 3.12. Completed table of
joint and marginal probabilities

Al A2

Bl 0.24 0.06 0.3
B2 0.21 0.49 0.7
0.45 0.55 1.0

P(A1) and P(A2), the joint probabilities in each column may be added, thereby complet-
ing the additions to the table, and shown in Table 3.12.
However, note that P(A1) may also be calculated in the following manner,

Other conditional probabilities may be calculated from Equations 38 and 39 by rear-
ranging terms and by substituting Equation 40, and the following form of Bayes’ rule may
be derived,

Using Equation 41, P(B2|A1) = 0.7 X 0.30/[0.3 X 0.80 + 0.7 X 0.3] = 0.467, and also
P(B1|Al) = 1.0 — 0.467 = 0.533. Such calculated probabilities are called posterior proba-
bilities or posteriors, as opposed to the prior probabilities or priors initially available. Thus,
based on the priors and additional information, application of Bayes’ rule allows the cal-
culation of posterior estimates of probabilities not initially available. This procedure of
predicting probability relationships among variables may be repeated as more data are col-
lected, with the existing model providing the prior information and the new data provid-
ing the information to derive a new model. The initial beliefs concerning a parameter of
interest are expressed as a prior distribution of the parameter, the new data provide a like-
lihood for the parameter, and the normalized product of the prior and likelihood (Eq. 41)
forms the posterior distribution.
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In the above example, note that the joint probability of A1 and B1 [P(A1 and B1)] is not
equal to the product of P(A1) and P(B1); i.e., 0.24 is not equal to 0.3 X 0.45 = 0.135. Such
would be the case if the states of A and B were completely independent; i.e., if A and B were
statistically independent variables as, for example, in a genetic case of two unlinked genes
A and B. In the above example, the state of one variable is influencing the state of the other
such that they are not independent of each other, as might be expected for linked genes in
the genetic example.

A more general application of Bayes’ rule is to consider the influence of several variables
on the probability of an outcome. The analysis is essentially the same as that outlined
above. To see how the method works with three instead of two values of a variable, think
first of an example of three genes, each having three alleles, and of deriving the corre-
sponding conditional probabilities. The resulting joint probabilities will depend on the
choice made of the three possible values for each variable. To go even farther, instead of a
small number of discrete sets of alternative values of a variable, Bayesian statistical meth-
ods may also be used with a large number of values of variables or even with continuous
variables.

For sequence analysis by Bayesian methods, a slightly different approach is taken.
The variables may include combinations of possible alignments, gap scoring systems,
and log odds substitution matrices. The most probable alignments may then be identi-
fied. The scoring system used for sequence alignments is quite readily adapted to such
an analysis. In an earlier discussion, it was pointed out that a sequence alignment score
in bits is the logarithm to the base 2 of the likelihood of obtaining the score in align-
ments of related sequences divided by the likelihood of obtaining the score in align-
ments of unrelated sequences. It was also indicated that the highest alignment score
should be obtained if the scoring matrix is used that best represents the nucleotide or
amino acid substitutions expected between sequences at the same level of evolutionary
distance. Bayesian methodology carries this analysis one step farther by examining the
probabilities of all possible alignments of the sequences using all possible variations of
the input parameters and matrices. These selections are the prior information for the
Bayesian statistical analysis and provide various estimates of the alignment that allow
us to decide on the most probable alignments. The alignment score for each combina-
tion of these variables provides an estimate of the probability of the alignment. By using
equations of conditional probability such as Equation 41, posterior information on the
probability of alignments, gap scoring system, and substitution matrix can be obtained.
For further reading, a Bayesian bioinformatics tutorial by C. Lawrence is available at
http://www.wadsworth.org/resnres/bioinfo/.

Application of Bayesian Statistics to Sequence Analysis

To use an example from sequence analysis, a local alignment score (s) between two
sequences varies with the choice of scoring matrix and a gap scoring system. In the
previous sections, an amino acid scoring matrix was chosen on the basis of its per-
formance in identifying related sequences. Gap penalties were then chosen for a partic-
ular scoring matrix on the basis of their performance in identifying known sequence
relationships and of their keeping a local alignment behavior by the increase in score
between unrelated sequences remaining a logarithmic function of sequence length.
The alignment score expressed in bit units was the ratio of the alignment score expect-
ed between related sequences to that expected between unrelated sequences, expressed
as a logarithm to the base 2. The scores may be converted to an odds ratio (r) using
the formula r = 2°. The probability of such a score between unrelated or random
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sequences can then be calculated using the parameters for the extreme value distri-
bution for that combination of scoring matrix and gap penalty. Finally, the above
analysis may provide several different alignments, without providing any information
as to which is the most likely. With the application of Bayesian statistics, the approach
is different.

The application of Bayesian statistics to this problem allows one to examine the effect
of prior information, such as the chosen amino acid substitution matrix, on the prob-
ability that two sequences are homologous. The method provides a posterior probabil-
ity distribution of all alignments taking into account all possible scoring systems. Thus,
the most likely alignments and their probabilities may be determined. This method cir-
cumvents the need to choose a particular scoring matrix and gap scoring system
because a range of available choices can be tested. The approach also provides condi-
tional posterior distributions on the gap number and substitution matrix. Another
application of Bayes statistics for sequence analysis is to find the PAM DNA substitu-
tion matrix that provides the maximum probability of a given level of mismatches
in a sequence alignment, and thus to predict the evolutionary distance between the
sequences.

Bayesian Evolutionary Distance

Agarwal and States (1996) have applied Bayesian methods to provide the best estimate
of the evolutionary distance between two DNA sequences. The examples used are
sequences of the same length that have a certain level of mismatches. Consequently,
there are no gaps in the alignment between the sequences. Sequences of this type origi-
nated from gene duplication events in the yeast and Caenorhabditis elegans genomes.
When there are multiple mismatches between such repeated sequences, it is difficult to
determine the most likely length of the repeats. With the application of Bayesian meth-
ods, the most probable repeat length and evolutionary time since the repeat was formed
may be derived.

The alignment score in bits between sequences of this type may be calculated from the
values for matches and mismatches in the DNA PAM scoring matrices described earlier
(Table 3.6). Recall that a PAM1 evolutionary distance represents a change of 1 sequence
position in 100 and is thought to correspond roughly to an evolutionary distance of 107
years. Higher PAMN tables are calculated by multiplying the PAM1 scoring matrix by itself
n times. This Markovian model of evolution assumes that any sequence position can
change with equal probability, and subsequent changes at a site are not influenced by pre-
ceding changes at that site. In addition, a changed position can revert to the original
nucleotide at that position. The problem is to discover which scoring matrix (PAM50, 100,
etc.) gives the most likely alignment score between the sequences. This corresponding evo-
lutionary distance will then represent the time at which the sequence duplication event
could have occurred.

An approach described earlier was to evaluate the alignment scores using a series of
matrices and then to identify the matrix giving the highest similarity score. For exam-
ple, if there are 60 mismatches between sequences that are 100 nucleotides long, the
PAMS50 matrix score of the alignment in bits (log,) is 40 X 1.34 — 60 X 1.04 = —8.8,
but the PAM 125 matrix score is much higher, 40 X 0.65 — 60 X 0.30 = 8. When these
log odds scores in bits are converted to odds scores, the difference is 0.002 versus 256.
Thus, the PAM 125 matrix provides a much better estimate of the evolutionary distance
between sequences that have diverged to this degree. The Bayesian approach continues
this type of analysis to discover the probability of the alignment as a function of each
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evolutionary distance represented by a different PAM matrix. If x is the evolutionary
distance represented by the PAMN matrix divided by 100, and k is the number of mis-
matches in a sequence of length n, then by Bayes’ rule and related formulas discussed
above

P(x|k) is the probability of distance x given the sequence with k mismatches (and n — k
matches), P(k|x) is the odds score for the sequence with k mismatches using the log odds
scores in the DNA PAM100x matrix, and P(x) is the prior probability of distance x (usu-
ally 1 over the number of matrices, thus making each one equally possible). The denom-
inator is the sum of the odds scores over the range of x, which is 0.01 — 4, representing
PAMI to PAM400 (~ 10 million to 4 billion years). Like the conditional probabilities cal-
culated by Equation 42, this sum represents the area under the probability curve and has
the effect of normalizing the probability for each individual scoring matrix used. The
shape of the probability curve reveals how P(x| k) varies with x. An example is shown in
Figure 3.19.

The probability curves have a single mode or highest score for k < 3n/4. Because the
curves are not symmetrical about this mode but are skewed toward higher distances, the
expected value or mean of the distribution and its standard deviation are the best indica-
tion of evolutionary distance. For a sequence 100 nucleotides long with 40 mismatches, the
expected value of x is 0.60 with s = 0.11, representing a distance of ~600 million years.
These estimates are different from the earlier method that was described of finding the
matrix that gives the highest alignment score, which would correspond to the mode or
highest scoring distance. Other methods of calculating evolutionary distances are
described in Chapter 6.

Figure 3.19. P(x|k) for sequence length #» = 100 and number of mismatches k = 40 or 60.
(Redrawn from Agarwal and States 1996.)
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One difficulty with making such estimations is that the estimate depends on the
assumption that the mutation rate in sequences has been constant with time (the molecu-
lar clock hypothesis) and that the rate of mutation of all nucleotides is the same. Such
problems may be solved by scoring different portions of a sequence with a different scor-
ing matrix, and then using the above Bayesian methods to calculate the best evolutionary
distance. Another difficulty is deciding on the length of sequence that was duplicated. In
genomes, the presence of repeats may be revealed by long regions of matched sequence
positions dispersed among regions of sequence positions that do not match. However, as
the frequency of mismatches is increased, it becomes difficult to determine the extent of
the repeated region. The application of the above Bayesian analysis allows a determination
of the probability distributions as a function of both length of the repeated region and evo-
lutionary distance. A length and distance that gives the highest overall probability may then
be determined. Such alignments are initially found using an alignment algorithm and a
particular scoring matrix. Analysis of the yeast and C. elegans genomes for such repeats has
underscored the importance of using a range of DNA scoring matrices such as PAM1 to
PAM120 if most repeats are to be found (Agarwal and States 1996). One disadvantage of
the Bayesian approach is that a specific mutational model is required, whereas other meth-
ods, such as the maximum likelihood approach described in Chapter 6, can be used to esti-
mate the best mutational model as well as the distance. Computationally, however, the
Bayesian method is much more practical.

Bayesian Sequence Alignment Algorithms

Zhu et al. (1998) have devised a computer program called the Bayes block aligner which in
effect slides two sequences along each other to find the highest scoring ungapped regions
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or blocks. These blocks are then joined in various combinations to produce alignments.
There is no need for gap penalties because only the aligned sequence positions in blocks are
scored. Instead of using a given substitution matrix and gap scoring system to find the
highest scoring alignment, a Bayesian statistical approach is used. Given a range of substi-
tution matrices and number of blocks expected in an alignment as the prior information,
the method provides posterior probability distributions of alignments. The Bayes aligner is
available through a licensing agreement from http://www.wadsworth.org/resnres/bioinfo.
A graphical interface for X windows in a UNIX environment and a nongraphical interface
for PCs running Windows are available. The method may be used for both protein and
DNA sequences. An alignment block between two sequences is defined as a run of one or
more identical characters in the sequence alignment that can include intervening mis-
matches but no gaps, as shown in the following example. Only the aligned blocks are iden-
tified and scored; regions of unaligned sequence and gaps between these blocks are not
scored. The probability of a given alignment is given by the product of the probabilities of
the individual alignment scores in the blocks, as indicated in the following example. The
Bayes block aligner scores every possible combination of blocks to find the best scoring
alignment.
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Figure 3.20. The Sankoff algorithm for finding the maximum number of identical residues in two
sequences without scoring gaps. The example of two DNA sequences shown is taken from Sankoff
(1972). A series of scoring matrices called V.and W are made according to the matrix scoring scheme
shown in parts A—D. In A, the algorithm first examines the maximum number of bases that can
match. The scoring scheme used in this example is that 2 match between two bases is scored as 1 and
a mismatch as 0. This number, 4, is shown in the lower right-hand corner of the matrix. To obtain
this number, the method does not consider the number of gapped regions between each group of
matched pairs, defined as an unconstrained set of matches by Sankoff. For example, a, can pair with
b, and a, with by, to comprise a group of two sequential pairs, shown in bold. Then there is an
unmatched region followed by a match of as with bs, unmatched base as, and finally a match
between ag and by. Thus, two unmatched (gapped) regions will be included in this alignment. A sec-
ond such set of matches that gives a maximum number of matches is shown as italicized positions.
In this case, there is one unmatched region between the groups of matches. In B-D, a slightly dif-
ferent computational method is used to find the maximum possible number of matches given that
there are zero gapped regions, one gapped region, two gapped regions, etc. In B, a matrix V;, where
subscript 0 indicates the number of gapped regions permitted, is first calculated. The bold and ital-
icized positions indicate the scores found for the two groups of matches. To simplify the calculation
of higher-level V matrices (V), V2, etc.), another set of matrices (Wy, Wo, etc.) is also calculated. In
C, the calculation of W, is shown. Using the scores calculated in Wy, matrix position and the algo-
rithm shown in D, V] is then produced. V; shows the same combinations of matches found in the
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A. W matrix B. V matrix
i b C C A G T C T j b C C A G T C T
i 0 1 2 8 4 5 6 7 i 0 1 2 3 4 5 6 7
a0l]o|J]oj0|J0c|jO0O|O|O]|O ag0lojo|Jo|loj0o|l0|0]|oO
A1|J]O0 o0 O |1 1i1]1]1 A1]l]ojofoi1|o0]jo|o0]oO
G2|0|0j0|0|2)2|2]2 G2|]0|]0|J0|O0|2|0]|0]oO
C3|o0|1]|1|[1]2|2]|3]|3 C3jojr7i{1|olol2]1]o0
C4j]0|0|2|2|2|2]|3]|3 C4{O0 |1 ]2]|1]0]|1]|3]|3
A510/1]213]3|3;3]|3 A510|1|1}13|]1|/0]0]3
T6|0| 0| 1]|2|3|4]| 4] 4 T6|0[0/l0|1]|3|2]|0f1
W(Ilj) VO(’J) =
Wi-1., Voli = 1,j- 1) + s(ay, b)
=max < W(ij-1),
WG~ 1,i- 1) + s(a, b)
where s(a;, b)) is score of match of a; with b;.
C. Wy matrix D. V, matrix
j b ¢C C A G T C T j b C C A G T C T
i 0 1 2 3 4 5 6 7 i 0 1.2 3 4 5 6 7
a0|0|]O0|]O0OfO|O|O|O]O a0jojo|/o|lOo|O|O|O]O
AT10]O0]O0O| 1] 1]1]1]1 A1j]o0jO0]jJo|1]|]0|lOoj0]|oO
G2|l|OoO|O0O]|J]O|1]|2]|]2]|2]2 G2|l|Oo|Oo|jO|O|2|1|1]1
C3jo0f1]|1]|1]|2]|212]|2 C3ljoj7]|]1|l0]1]2]|3]|2
C4)l]0|1]|]2|2]|]2]2|3|3 C4j0|1]|2|1|1]|]2|8]|3
A5]0|1{2]|3]3|3|3]|3 AS5]0|0|1|3|2|2|2]|3
T6|]0/1]|2]|3[3/3|3(3 T6|10[0|1|2,3[4]|3]|24
WO(i_1!j)! V1(i_1!j—1),
= max
= max VO(’;/)’ WO (I - 11 ./ - 1)
Woli.j-1) +s(ay, by
where Vi, j) is from the V|, matrix in part B. where W (i, /) are obtained from the W,
matrix in part C.
unconstrained case in A, and, therefore, no further calculation of matrices is necessary. In other cases,
q Vand W matrices will be calculated so that alignments with an increased number of unmatched or
gapped regions may be found according to the formulas:
W,(i—Lj),
Wq(i, ]) = Imax Vq (l) ])>
Wq (l;] - 1)
Vo(i—1,j—1),
V, (6 j) = max W= 1,5—-1)
+ s(ay b))
The number of computational steps required is equal to the product of the sequence lengths times the
number of cycles needed to reach the unconstrained alignment, as shown in the right-hand corner of
the matrix (A). The method may also be used for aligning protein sequences (Zhu et al. 1998) that are
distantly related, as described below.
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Table 3.13. Posterior probability distribu-
tion of BLOSUM scoring matrices for align-
ment of 1TGKY and 2AK3-A

Matrix Posterior probability
BLOSUM30 0.0257
BLOSUM35 0.0449
BLOSUMA40 0.0825
BLOSUM45 0.1115
BLOSUMS50 0.1755
BLOSUMSG62 0.2867
BLOSUMS80 0.2350
BLOSUM100 0.0382
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Figure 3.21. Posterior probability distribution of number of blocks from alignment of 1GKY and 2AK3-chain A by the Bayes
block aligner (analysis of Zhu et al. 1998). (A) Posterior probability distribution of the block number, . (B) Cumulative posteri-
or probability distribution. This distribution shows the probability of a block number K greater than or equal to the value k. Val-
ues are derived from the probability distribution of k given in A. For example, P(k=1) = P(k=0) - P(k=0) = 1 — 0.062 = 0.938.
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Figure 3.22. Posterior probability distribution of Dayhoff PAM scoring matrices for alignment of
1GKY and 2AK3-A,
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Another type of analysis that can be performed with the Bayes block aligner is to exam-
ine the probability of the alignments. The procedure is entirely different from other meth-
ods of sequence alignment such as dynamic programming. On the one hand, with dynam-
ic programming methodology, a single best alignment is found for a given scoring matrix
and gap penalty, and the odds for finding as good a score between random sequences of
the same length and complexity is determined. On the other hand, with Bayesian align-
ment methods, all possible alignments are considered for a reasonable number of blocks
and a set of substitution matrices. Rather than a probability of a single alignment, the prob-
abilities of many alignments are provided. Many possible alignments may be examined and
compared, and the frequency of certain residues in the sequences in these alignments may
be determined.

For 1GKY and 2AK3-A, no highly probable single optimal or near-optimal alignment is
found, suggesting these alignments are not representative of the best possible alignment of
these sequences. Experience with the method has suggested that a minimum number of
blocks that best represents the expected domain structure is the best approach. An average
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A. Bayes block aligner
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Figure 3.23. The alignment of 1GKY and 2AK3-A obtained with the Bayes aligner (A) and by
SSEARCH (B), a dynamic programming method that provides local alignments (from Zhu et al.
1998). The highest-scoring sequence positions in the marginal posterior alignment distribution for
the sequences for a block number of probability greater than 0.9 and the BLOSUM substitution
matrices were successively sampled, and are shown in A. Neighboring aligned positions with scores
greater than 0.25 of the peak value were included. Dots above the sequences indicate the relative
probability of the aligned sequence positions. Asterisks are placed to highlight sequence identities.
There is a clear correlation between the number of identities and the posterior probabilities. Align-
ment positions marked with an ‘s’ were also identified by structural alignment using the program
VAST (see Chapter 9). In regions I and IV, longer aligned regions were found by VAST than by the
Bayes aligner. Three other regions identified by VAST of lengths 7, 7, and 8, two of which include
1-2 identities, were not reported by the Bayes aligner. In B, a local alignment of the sequences with
SSEARCH is shown. The alignment parameters (BLOSUM50 substitution table and scoring penal-
ties of —12,—2) are optimized for superfamily and family alignments. The center and right end of
the alignment shown are approximately the same as that of alignment IV, but gaps are incorrectly
predicted in the left end.




ALIGNMENT OF PAIRS OF SEQUENCES = 133

alignment for a number of blocks of probability greater than 0.9 has been found to give
good agreement with predicted structural alignments. Values of k are obtained from the
probability distribution for k such as in Figure 3.21. Using this approach with the B Bayes
aligner, the alignments between 1GKY and 2AK3-A shown in Figure 3.23 have been pre-
dicted. Although most of the predicted alignments correspond to expected structural
alignments with the active site of the enzyme, alignment II does not so correspond (Fig.
3.24). Such false-negative predictions of structural alignments are the commonest error of
Bayesian methods, probably because of relaxed conditions for scoring alignments in the

Figure 3.24. The positions of the alignments predicted by the Bayes block aligner. Predicted alignment I is shown in red, I
in cyan, Il in orange, and 1V in green. (A) 1GKY, (B) 2AK3-A, and (C) 2AKY, which is similar to 2AK3-A. 2AKY is cocrys-
tallized with an ATP analog. I, III, and IV may be structurally superimposed, but not II. (Reprinted, with permission, from
Zhu et al. 1998 [copyright Oxford University Press].)
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use of unconstrained prior information (Zhu et al. 1998). For these proteins, which share
little sequence identity, the Bayes aligner correctly predicts many, but not all, features of
the structural alignment, and does so better than a dynamic programming method that
provides local alignments. In other cases, the Bayes aligner may not perform as well as

dynamic programming. The prudent choice is to use the Bayes aligner as one of several
computer tools for aligning sequences.

REFERENCES

Abagyan R.A. and Batalov S. 1997. Do aligned sequences share the same fold? J. Mol. Biol. 273: 355-368.

Agarwal P. and States D.J. 1996. A Bayesian evolutionary distance for parametrically aligned sequences.
J. Comput. Biol. 3: 1-17.

. 1998. Comparative accuracy of methods for protein sequence similarity search. Bioinformatics
14: 40-47.

Altschul S.F. 1991. Amino acid substitution matrices from an information theoretic perspective. J. Mol.
Biol. 219: 555-565.

. 1993, A protein alignment scoring system sensitive to all evolutionary distances. J. Mol. Evol. 36:
290-300.

Altschul S.F. and Erickson B.W. 1986. A nonlinear measure of subalignment similarity and its signifi-
cance levels. Bull. Math. Biol. 48: 617-632.

Altschul S.F. and Gish G. 1996. Local alignment statistics. Methods Enzymol. 266: 460—480.

Altschul S.E., Boguski M.S., Gish W., and Wootton J.C. 1994. Issues in searching molecular databases.
Nat. Genet. 6: 119-129.

Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J. 1990. Basic local alignment search tool.
J. Mol. Biol. 215: 403-410.

Argos P. 1987. A sensitive procedure to compare amino acid sequences. J. Mol. Biol. 193: 385-396.

Arratia R. and Waterman M.S. 1989. The Erdés-Rényi strong law for pattern matching with a given pro-
portion of misthatches. Ann. Probab. 17: 1152-1169. ‘

Arratia R., Gordon L., and Waterman M. 1986. An extreme value theory for sequence matching. Ann.
Stat. 14: 971-993.

. 1990. The Erdos-Rényi law in distribution, for coin tossing and sequence matching. Ann. Stat.
18: 539-570.

Bairoch A. 1991. PROSITE: A dictionary of sites and patterns in proteins. Nucleic Acids Res. 19:
2241-2245.

Benner S.A., Cohen M.A., and Gonnet G.H. 1994. Amino acid substitution during functionally con-
strained divergent evolution of protein sequences. Protein Eng. 7: 1323-1332.

Branden C. and Tooze J. 1991. Introduction to protein structure. Garland Publishing, New York.

Brenner S.E., Chothia C., and Hubbard T. 1998. Assessing sequence comparison methods with reliable
structurally identified distant evolutionary relationships. Proc. Natl. Acad. Sci. 95: 6073-6078.

Chao K.-M., Hardison R.C., and Miller W. 1994. Recent developments in linear-space alignment meth-
ods: A survey. J. Comput. Biol. 1: 271-291.

Chvatal V. and Sankoff D. 1975. Longest common subsequences of two random sequences. J. Appl.
Probab. 12: 306-315. '

Collins J.F., Coulson A.F., and Lyall A. 1988. The significance of protein sequence similarities. Comput.
Appl. Biosci. 4: 67-71.

Dayhoff M.O. 1978. Survey of new data and computer methods of analysis. In Atlas of protein sequence
and structure, vol. 5, suppl. 3. National Biomedical Research Foundation, Georgetown University,
Washington, D.C.

Dayhoff M.O., Barker W.C., and Hunt L.T. 1983. Establishing homologies in protein sequences. Meth-
ods Enzymol. 91: 524-545.

Doolittle R.F. 1981. Similar amino acid sequences: Chance or common ancestry. Science 214: 149-159.

. 1986. Of URFs and ORFs: A primer on how to analyze derived amino acid sequences. University

Science Books, Mill Valley, California.




ALIGNMENT OF PAIRS OF SEQUENCES = 135

Durbin R., Eddy S., Krogh A., and Mitchison G. 1998. Biological sequence analysis: Probabilistic models of
proteins and nucleic acids. Cambridge University Press, United Kingdom.

Feng D.F., Johnson M.S., and Doolittle R.F. 1985. Aligning amino acid sequences: Comparison of com-
monly used methods. J. Mol. Evol. 21: 112-125.

Fitch W.M. 1966. An improved method of testing for evolutionary homology. J. Mol. Biol. 16: 9-16.

. 1970. Distinguishing homologous from analogous proteins. Syst. Zool. 19: 99-113,

Fitch W.M. and Markowitz E. 1970. An improved method for determining codon variability in a gene
and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4: 579-593.

Fitch W.M. and Smith T.F. 1983. Optimal sequences alignments. Proc. Natl. Acad. Sci. 80: 1382—1386.

George D.G., Barker W.C,, and Hunt L.T. 1990. Mutation data matrix and its uses. Methods Enzymol.
183: 333-351.

Gibbs A.J. and McIntyre G.A. 1970. The diagram, a method for comparing sequences. Its use with amino
acid and nucleotide sequences. Eur. J. Biochem. 16: 1-11.

Gonnet G.H., Cohen M.A,, and Benner S.A. 1992. Exhaustive matching of the entire protein sequence
database. Science 256: 1443—-1445.

. 1994. Analysis of amino acid substitution during divergent evolution: The 400 by 400 dipeptide
substitution matrix. Biochem. Biophys. Res. Commun. 199: 489—496.

Gotoh O. 1982. An improved algorithm for matching biological sequences. J. Mol. Biol. 162: 705-708.

Gray G.S. and Fitch W.M. 1983. Evolution of antibiotic resistance genes: The DNA sequence of a
kanamycin resistance gene from Staphylococcus aureus. Mol. Biol. Evol. 1: 57-66.

Gribskov M. and Burgess R.R. 1986. Sigma factors from E. coli, B. subtilis, phage SPO1, and phage T4 are
homologous proteins. Nucleic Acids Res. 14: 6745-6763.

Gumbel E.J. 1962. Statistical theory of extreme values (main results). In Contributions to order statistics
(ed A.E. Sarhan and B.G. Greenberg), chap. 6, p. 71. Wiley, New York.

Gusfield D. and Stelling P. 1996. Parametric and inverse-parametric sequence alignment with XPARAL.
Methods Enzymol. 266: 481-494.

Henikoff S. and Henikoff J.G. 1991. Automated assembly of protein blocks for database searching.
Nucleic Acids Res. 19: 6565-6572.

. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89:

10915-10919.

. 1993. Performance evaluation of amino acid substitution matrices. Proteins Struct. Funct. Genet.
17: 49-61.

Henikoff S., Greene E.A., Pietrokovski S., Bork P., Attwood T.K., and Hood L. 1997. Gene families: The
taxonomy of protein paralogs and chimeras. Science 278: 609-614.

Huang X. 1994. On global sequence alignment. Comput. Appl. Biosci. 10: 227-235.

Huang X. and Miller W. 1991. A time-efficient, linear-space local similarity algorithm. Adv. Appl. Math.
12: 337-357.

Huang X., Hardison R.C., and Miller W. 1990. A space-efficient algorithm for local similarities. Comput.
Appl. Biosci. 6: 373-381.

Johnson M.S. and Overington J.P. 1993. A structural basis for sequence comparisons: An evaluation of
scoring methodologies. J. Mol. Biol. 233: 716-738.

Jones D.T., Taylor W.R., and Thornton J.M. 1992. The rapid generation of mutation data matrices from
protein sequences. Comput. Appl. Biosci. 8: 275-282.

. 1994. A mutation data matrix for transmembrane proteins. FEBS Lett. 339: 269-275.

Karlin S. and Altschul S.F. 1990. Methods for assessing the statistical significance of molecular sequence
features by using general scoring schemes. Proc. Natl. Acad. Sci. 87: 2264-2268.

. 1993. Applications and statistics for multiple high-scoring segments in molecular sequences.
Proc. Natl. Acad. Sci. 90: 5873-5877.

Karlin S., Bucher P., and Brendel P. 1991. Statistical methods and insights for protein and DNA
sequences. Annu. Rev. Biophys. Biophys. Chem. 20: 175-203,

Kidwell M.G. 1983. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc. Natl.
Acad. Sci. 80: 1655-1659.

Lawrence J.G. and Ochman H. 1997. Amelioration of bacterial genomes: Rates of change and exchange.
J. Mol. Biol. 44: 383-397.

Li W. and Graur D. 1991. Fundamentals of molecular evolution. Sinauer Associates, Sunderland, Mas-
sachusetts. '




136 = CHAPTER 3

Lipman D.]., Wilbur W.],, Smith T.F., and Waterman M.S. 1984. On the statistical significance of nucle-
ic acid similarities. Nucleic Acids Res. 12: 215-226.

Maizel J.V., Jr. and Lenk R.P. 1981. Enhanced graphic matrix analysis of nucleic acid and protein
sequences. Proc. Natl. Acad. Sci. 78: 7665-7669.

Miller W. and Myers E.W. 1988. Sequence comparison with concave weighting functions. Bull. Math.
Biol. 50: 97-120.

Miyamoto M.M. and Fitch W.M. 1995. Testing the covarion hypothesis of evolution. Mol. Biol. Evol. 12:
503-513.

Mott R. 1992. Maximum-likelihood estimation of the statistical distribution of Smith-Waterman local
sequence similarity scores. Bull. Math. Biol. 54: 59-75.

Myers E.W. and Miller W. 1988. Optimal alignments in linear space. Comput. Appl. Biosci. 4: 11-17.

Needleman S.B. and Wunsch C.D. 1970. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol. 48: 443—453.

Pearson W.R. 1990. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzy-
mol. 183: 63-98.

. 1995. Comparison of methods for searching protein sequence databases. Protein Sci. 4

1150-1160.

. 1996. Effective protein sequence comparison. Methods Enzymol. 266: 227-258.

. 1998. Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276: 71-84.

Pearson W.R. and Miller W. 1992. Dynamic programming algorithm for biological sequence compari-
son. Methods Enzymol. 210: 575-601.

Rechid R., Vingron M., and Argos P. 1989. A new interactive protein sequence alignment program and
comparison of its results with widely used programs. Comput. Appl. Biosci. 5: 107-113.

Risler J.L., Delorme M.O., Delacroix H., and Henaut A. 1988. Amino acid substitutions in structurally
related proteins: A pattern recognition approach. J. Mol Biol. 204: 1019-1029.

Sander C. and Schneider R. 1991. Database of homology derived protein structures and the structural
meaning of sequence alignment. Profeins 9: 56-68.

Sankoff D. 1972. Matching sequences under deletion/insertion constraints. Proc. Natl. Acad. Sci. 69: 4-6.

Schwartz S., Miller W., Yang C.-M., and Hardison R.C. 1991. Software tools for analyzing pairwise align-
ments of long sequences. Nucleic Acids Res. 19: 4663—-4667. ,

Sellers P.H. 1974. On the theory and computation of evolutionary distances. SIAM J. Appl. Math. 26:
787-793.

. 1980. The theory and computation of evolutionary distances: Pattern recognition. J. Algorithms
1: 359-373.

Smith H.O., Annau T.M., and Chandrasegaran S. 1990. Finding sequence motifs in groups of function-
ally related proteins. Proc. Natl. Acad. Sci. 87: 826-830.

Smith T.F. and Waterman M.S. 1981a. Identification of common molecular subsequences. J. Mol. Biol.
147: 195-197.

. 1981b. Comparison of biosequences. Adv. Appl. Math. 2: 482-489.

Smith T.F., Waterman M.S., and Burks C. 1985. The statistical distribution of nucleic acid similarities.
Nucleic Acids Res. 13: 645-656.

Smith T.F., Waterman M.S., and Fitch W.M. 1981. Comparative biosequence metrics. J. Mol. Evol. 18:
38-46.

Sonnhammer E.L. and Durbin R. 1995. A dot-matrix program with dynamic threshold control suited for
genomic DNA and protein sequence analysis. Gene 167: GCl1-10.

States D.J. and Boguski M.S. 1991. Similarity and homology. In Sequence analysis primer (ed. M. Grib-
skov and J. Devereux), pp. 92-124. Stockton Press, New York.

States D.J., Gish W., and Altschul S.F. 1991. Improved sensitivity of nucleic acid database searches using
application-specific scoring matrices. Methods 3: 66—70.

Tatusov R.L., Koonin E.V., and Lipman D.J. 1997. A genomic perspective on protein families. Science
278: 631-637.

Vingron M. and Waterman M.S. 1994. Sequence alignment and penalty choice: Review of concepts, case
studies and implications. J. Mol. Biol. 235: 1-12.

Vogt G., Etzold T., and Argos P. 1995. An assessment of amino acid exchange matrices: The twilight zone
re-visited. J. Mol. Biol. 249: 816-831.

Waterman M.S., Ed. 1989. Sequence alignments. In Mathematical methods for DNA sequences. CRC
Press, Boca Raton, Florida.




ALIGNMENT OF PAIRS OF SEQUENCES m 137

- 1994. Parametric and ensemble sequence alignment algorithms. Bull. Math. Biol. 56: 743-767.

Waterman M.S. and Eggert M. 1987. A new algorithm for best subsequence alignments with application
to tRNA-tRNA comparisons. J. Mol. Biol. 197: 723—728.

Waterman M.S. and Vingron M. 1994a, Rapid and accurate estimates of statistical significance for
sequence database searches. Proc. Natl. Acad. Sci, 91: 4625-4628.

- 1994b. Sequence comparison significance and Poisson distribution. Star. Sci. 9: 367-381.

Waterman M.S., Eggert M., and Lander E. 1992. Parametric sequence comparisons. Proc. Natl, Acad. Sci.
89: 6090-6093. ‘

Waterman M.S., Gordon L., and Arratia R. 1987. Phase transitions in sequence matches and nucleic acid
structure. Proc. Natl. Acad. Sci. 84: 12391243,

Waterman M.S., Smith T.F., and Beyer W.A. 1976. Some biological sequence metrics. Adv. Math. 20:
367-387.

Wilbur W.J. 1985, On the PAM model of protein evolution. Mol. Biol. Evol, 2: 434—447,

Zhu J., Liu J.S,, and Lawrence C.E. 1998. Bayesian adaptive sequence alignment algorithms. Bioinfor-
matics 14: 25-39.




