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Subsequently, a set of matrices (tables)—the percent amino acid mutations accepted by
evolutionary selection or PAM tables—which showed the probability that one amino acid
changed into any other in these trees was constructed, thus showing which amino acids are
most conserved at the corresponding position in two sequences. These tables are still used
to measure similarity between protein sequences and in database searches to find
sequences that match a query sequence. The rule used is that the more identical and con-
served amino acids that there are in two sequences, the more likely they are to have been
derived from a common ancestor gene during evolution. If the sequences are very much
alike, the proteins probably have the same biochemical function and three-dimensional
structural folds. Thus, Dayhoff and her colleagues contributed in several ways to modern
biological sequence analysis by providing the first protein sequence database as well as
PAM tables for performing protein sequence comparisons. Amino acid substitution tables
are routinely used in performing sequence alignments and database similarity searches,
and their use for this purpose is discussed in Chapters 3 and 7.

DNA sequence databases were first assembled at Los Alamos National Laboratory (LANL),
New Mexico, by Walter Goad and colleagues in the GenBank database and at the European
Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. Translated DNA
sequences were also included in the Protein Information Resource (PIR) database at the
National Biomedical Research Foundation in Washington, DC. Goad had conceived of the
GenBank prototype in 1979; LANL collected GenBank data from 1982 to 1992. GenBank
is now under the auspices of the National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov). The EMBL Data Library was founded in 1980
(http://www.ebi.ac.uk). In 1984 the DNA DataBank of Japan (DDBJ), Mishima, Japan,
came into existence (http://www.ddbj.nig.ac.jp). GenBank, EMBL, and DDB]J have now
formed the International Nucleotide Sequence Database Collaboration (http://www.
ncbi.nlm.nih.gov/collab), which acts to facilitate exchange of data on a daily basis. PIR has
made similar arrangements.

Initially, a sequence entry included a computer filename and DNA or protein sequence
files. These were eventually expanded to include much more information about the
sequence, such as function, mutations, encoded proteins, regulatory sites, and references.
This information was then placed along with the sequence into a database format that
could be readily searched for many types of information. There are many such databases
and formats, which are discussed in Chapter 2.

The number of entries in the nucleic acid sequence databases GenBank and EMBL has
continued to increase enormously from the daily updates. Annotating all of these new
sequences is a time-consuming, painstaking, and sometimes error-prone process. As time
passes, the process is becoming more automated, creating additional problems of acc-
uracy and reliability. In December 1997, there were 1.26 X 10° bases in GenBank; this
number increased to 2.57 X 10° bases as of April 1999, and 1.0 X 10' as of September
2000. Despite the exponentially increasing numbers of sequences stored, the implementa-
tion of efficient search methods has provided ready public access to these sequences.

To decrease the number of matches to a database search, non-redundant databases that
list only a single representative of identical sequences have been prepared. However, many
sequence databases still include a large number of entries of the same gene or protein
sequences originating from sequence fragments, patents, replica entries from different
databases, and other such sequences.
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Margaret Dayhoff

THE DEVELOPMENT OF SEQUENCE ANALYSIS METHODS has depended on the contributions of
many individuals from varied scientific backgrounds. This chapter provides a brief histor-
ical account of the more significant advances that have taken place, as well as an overview
of the chapters of this book. Because many contributors cannot be mentioned due to space
constraints, additional references to earlier and current reference books, articles, reviews,
and journals provide a broader view of the field and are included in the reference lists to
this chapter.

TEINS

The development of protein-sequencing methods (Sanger and Tuppy 1951) led to the
sequencing of representatives of several of the more common protein families such as
cytochromes from a variety of organisms. Margaret Dayhoff (1972, 1978) and her collabo-
rators at the National Biomedical Research Foundation (NBRF), Washington, DC, were the
first to assemble databases of these sequences into a protein sequence atlas in the 1960s, and
their collection center eventually became known as the Protein Information Resource (PIR,
formerly Protein Identification Resource; http://watson.gmu.edu:8080/pirwww/index.
html). The NBRF maintained the database from 1984, and in 1988, the PIR-International
Protein Sequence Database (http://www-nbrf.georgetown.edu/pir) was established as a
collaboration of NBRF, the Munich Center for Protein Sequences (MIPS), and the Japan
International Protein Information Database (JIPID).

Dayhoff and her coworkers organized the proteins into families and superfamilies based
on the degree of sequence similarity. Tables that reflected the frequency of changes observed
in the sequences of a group of closely related proteins were then derived. Proteins that were
less than 15% different were chosen to avoid the chance that the observed amino acid
changes reflected two sequential amino acid changes instead of only one. From aligned
sequences, a phylogenetic tree was derived showing graphically which sequences were most
related and therefore shared a common branch on the tree. Once these trees were made,
they were used to score the amino acid changes that occurred during evolution of the genes
for these proteins in the various organisms from which they originated (Fig. 1.1).
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Figure 1.1. Method of predicting phylogenetic relationships and probable amino acid changes dur-
ing the evolution of related protein sequences. Shown are three highly conserved sequences (A, B, and
C) of the same protein from three different organisms. The sequences are so similar that each posi-
tion should only have changed once during evolution. The proteins differ by one or two substitu-
tions, allowing the construction of the tree shown. Once this tree is obtained, the indicated amino
acid changes can be determined. The particular changes shown are examples of two that occur much
more often than expected by a random replacement process.
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David Lipman

An important step in providing sequence database access was the development of Web
pages that allow queries to be made of the major sequence databases (GenBank, EMBL,
etc.). An early example of this technology at NCBI was a menu-driven program called GEN-
INFO developed by D. Benson, D. Lipman, and colleagues. This program searched rapidly
through previously indexed sequence databases for entries that matched a biologist’s query.
Subsequently, a derivative program called ENTREZ (http://www.ncbi.nlm.nih.gov/Entrez)
with a simple window-based interface, and eventually a Web-based interface, was developed
at NCBI. The idea behind these programs was to provide an easy-to-use interface with a
flexible search procedure to the sequence databases.

Sequence entries in the major databases have additional information about the
sequence included with the sequence entry, such as accession or index number, name and
alternative names for the sequence, names of relevant genes, types of regulatory
sequences, the source organism, references, and known mutations. ENTREZ accesses this
information, thus allowing rapid searches of entire sequence databases for matches to one
or more specified search terms. These programs also can locate similar sequences (called
“neighbors” by ENTREZ) on the basis of previous similarity comparisons. When asked to
perform a search for one or more terms in a database, simple pattern search programs will
only find exact matches to a query. In contrast, ENTREZ searches for similar or related
terms, or complex searches composed of several choices, with great ease and lists the
found items in the order of likelihood that they matched the original query. ENTREZ
originally allowed straightforward access to databases of both DNA and protein sequences
and their supporting references, and even to an index of related entries or similar
sequences in separate or the same databases. More recently, ENTREZ has provided access
to all of Medline, the full bibliographic database of the National Library of Medicine
(NLM), Washington, DC. Access to a number of other databases, such as a phylogenetic
database of organisms and a protein structure database, is also provided. This access is
provided without cost to any user—private, government, industry, or research—a deci-
sion by the staff of NCBI that has provided a stimulus to biomedical research that cannot
be underestimated. NCBI presently handles several million independent accesses to their
system each day.
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Methods for DNA
sequencing were devel-
oped in 1977 by
Maxam and Gilbert
(1977) and Sanger et
al. (1977). They are
described in greater
detail at the beginning
of Chapter 2.

Because DNA sequencing involves ordering a set of peaks (A, G, C, or T) on a sequencing
gel, the process can be quite error-prone, depending on the quality of the data.

As more DNA sequences became available in the late 1970s, interest also increased in
developing computer programs to analyze these sequences in various ways. In 1982 and
1984, Nucleic Acids Research published two special issues devoted to the application of com-
puters for sequence analysis, including programs for large mainframe computers down to
the then-new microcomputers. Shortly after, the Genetics Computer Group (GCG) was
started at the University of Wisconsin by J. Devereux, offering a set of programs for analysis
that ran on a VAX computer. Eventually GCG became commercial (http://www.gcg.com/).
Other companies offering microcomputer programs for sequence analysis, including Intelli-
genetics, DNAStar, and others, also appeared at approximately the same time. Laboratories
also developed and shared computer programs on a no-cost or low-cost basis. For example,
to facilitate the collection of data, the programs PHRED (Ewing and Green 1998; Ewing et
al. 1998) and PHRAP were developed by Phil Green and colleagues at the University of
Washington to assist with reading and processing sequencing data. PHRED and PHRAP are
now distributed by CodonCode Corporation (http://www.codoncode.com).

These commercial and noncommercial programs are still widely used. In addition, Web
sites are available to perform many types of sequence analyses; they are free to academic
institutions or are available at moderate cost to commercial users. Following is a brief
review of the development of methods for sequence analysis.

In 1970, A.J. Gibbs and G.A. McIntyre (1970) described a new method for comparing two
amino acid and nucleotide sequences in which a graph was drawn with one sequence writ-
ten across the page and the other down the left-hand side. Whenever the same letter
appeared in both sequences, a dot was placed at the intersection of the corresponding
sequence positions on the graph (Fig. 1.2). The resulting graph was then scanned for a
series of dots that formed a diagonal, which revealed similarity, or a string of the same
characters, between the sequences. Long sequences can also be compared in this manner
on a single page by using smaller dots.

The dot matrix method quite readily reveals the presence of insertions or deletions
between sequences because they shift the diagonal horizontally or vertically by the amount
of change. Comparing a single sequence to itself can reveal the presence of a repeat of the
same sequence in the same (direct repeat) or reverse (inverted repeat or palindrome) ori-
entation. This method of self-comparison can reveal several features, such as similarity
between chromosomes, tandem genes, repeated domains in a protein sequence, regions of
low sequence complexity where the same characters are often repeated, or self-comple-
mentary sequences in RNA that can potentially base-pair to give a double-stranded struc-
ture. Because diagonals may not always be apparent on the graph due to weak similarity,
Gibbs and Mclntyre counted all possible diagonals and these counts were compared to
those of random sequences to identify the most significant alignments.

Maizel and Lenk (1981) later developed various filtering and color display schemes that
greatly increased the usefulness of the dot matrix method. This dot matrix representation
of sequence comparisons continues to play an important role in analysis of DNA and pro-
tein sequence similarity, as well as repeats in genes and very long chromosomal sequences,
as described in Chapter 3 (p. 59).
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Figure 1.2. A simple dot matrix comparison of two DNA sequences, AGCTAGGA and GACTAG-
GC. The diagonal of dots reveals a run of similar sequence CTAGG in the two sequences.
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Although the dot matrix method can be used to detect sequence similarity, it does not
readily resolve similarity that is interrupted by regions that do not match very well or that
are present in only one of the sequences (e.g., insertions or deletions). Therefore, one
would like to devise a method that can find what might be a tortuous path through a dot
matrix, providing the very best possible alignment, called an optimal alignment, between
the two sequences. Such an alignment can be represented by writing the sequences on suc-
cessive lines across the page, with matching characters placed in the same column and
unmatched characters placed in the same column as a mismatch or next to a gap as an
insertion (or deletion in the other sequence), as shown in Figure 1.3. To find an optimal
alignment in which all possible matches, insertions, and deletions have been considered to
find the best one is computationally so difficult that for proteins of length 300, 10%® com-
parisons will have to be made (Waterman 1989).

To simplify the task, Needleman and Wunsch (1970) broke the problem down into a
progressive building of an alignment by comparing two amino acids at a time. They start-
ed at the end of each sequence and then moved ahead one amino acid pair at a time, allow-
ing for various combinations of matched pairs, mismatched pairs, or extra amino acids in
one sequence (insertion or deletion). In computer science, this approach is called dynam-
ic programming. The Needleman and Wunsch approach generated (1) every possible
alignment, each one including every possible combination of match, mismatch, and single
insertion or deletion, and (2) a scoring system to score the alignment. The object was to
determine which was the best alignment of all by determining the highest score. Thus,
every match in a trial alignment was given a score of 1, every mismatch a score of 0, and
individual gaps a penalty score. These numbers were then added across the alignment to
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Figure 1.3. An alignment of two sequences showing matches, mismatches, and gaps (A). The best
or optimal alignment requires that all three types of changes be allowed.
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obtain a total score for the alignment. The alignment with the highest possible score was
defined as the optimal alignment.

The procedure for generating all of the possible alignments is to move sequentially
through all of the matched positions within a matrix, much like the dot matrix graph (see
above), starting at those positions that correspond to the end of one of the sequences, as
shown in Figure 1.4. At each position in the matrix, the highest possible score that can be
achieved up to that point is placed in that position, allowing for all possible starting points
in either sequence and any combination of matches, mismatches, insertions, and deletions.
The best alignment is found by finding the highest-scoring position in the graph, and then
tracing back through the graph through the path that generated the highest-scoring posi-
tions. The sequences are then aligned so that the sequence characters corresponding to this
path are matched.

1 5 (minus gap penalty)

Deduced alignment with gap A
G A T CT A

G AT C A A

Figure 1.4. Simplified example of Needleman-Wunsch alignment of sequences GATCTA and
GATCA. First, all matches in the two sequences are given a score of 1, and mismatches a score of 0
(not shown), chosen arbitrarily for this example. Second, the diagonal 1s are added sequentially, in
this case to a total score of 4. At this point the row cannot be extended by another match of 1 to a
total score of 5. However, an extension is possible if a gap is placed in GATCA to produce
GATC A A, where A is the gap. To add the gap, a penalty score is subtracted from the total match
score of 5 now appearing in the last row and column. The best alignment is found starting with the

sequence characters that correspond to the highest number and tracing back through the positions
that contributed to this highest score.
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Mike Waterman

Temple Smith

The above method finds the optimal alignment between two sequences, including the
entirety of each of the sequences. Such an alignment is called a global alignment. Smith and
Waterman (1981a,b) recognized that the most biologically significant regions in DNA and
protein sequences were subregions that align well and that the remaining regions made up
of less-related sequences were less significant. Therefore, they developed an important
modification of the Needleman-Wunsch algorithm, called the local alignment or Smith-
Waterman (or the Waterman-Smith) algorithm, to locate such regions. They also recog-
nized that insertions or deletions of any size are likely to be found as evolutionary changes
in sequences, and therefore adjusted their method to accommodate such changes. Finally,
they provided mathematical proof that the dynamic programming method is guaranteed
to provide an optimal alignment between sequences. The algorithm is discussed in detail
in Chapter 3 (p. 64).

Two complementary measurements had been devised for scoring an alignment of two
sequences, a similarity score and a distance score. As shown in Figure 1.3, there are three
types of aligned pairs of characters in each column of an alignment—identical matches,
mismatches, and a gap opposite an unmatched character. Using as an example a simple
scoring system of 1 for each type of match, the similarity score adds up all of the matches
in the aligned sequences, and divides by the sum of the number of matches and mis-
matches (gaps are usually ignored). This method of scoring sequence similarity is the one
most familiar to biologists and was devised by Needleman and Wunsch and used by Smith
and Waterman. The other scoring method is a distance score that adds up the number of
substitutions required to change one sequence into the other. This score is most useful for
making predictions of evolutionary distances between genes or proteins to be used for phy-
logenetic (evolutionary) predictions, and the method was the work of mathematicians,
notably P. Sellers. The distance score is usually calculated by summing the number of
mismatches in an alignment divided by the total number of matches and mismatches. The
calculation represents the number of changes required to change one sequence into the
other, ignoring gaps. Thus, in the example shown in Figure 1.3, there are 6 matches and 1
mismatch in an alignment. The similarity score for the alignment is 6/7 = 0.86 and the dis-
tance score is 1/7 = 0.14, if the required condition is given a simple score of 1. With this
simple scoring scheme, the similarity and distance scores add up to 1. Note also the equiv-
alence that the sum of the sequence lengths is equal to twice the number of matches plus
mismatches plus the number of deletions or insertions. Thus, in our example, the calcula-
tionis 8 + 9 =2 X (6 + 1) + 3 = 17. Usually more complex systems of scoring are used
to produce meaningful alignments, and alignments are evaluated by likelihood or odds
scores (Chapter 3), but an inverse relationship between similarity and distance scores for
the alignment still holds.

A difficult problem encountered in aligning sequences is deciding whether or not a par-
ticular alignment is significant. Does a particular alignment score reveal similarity between
two sequences, or would the score be just as easily found between two unrelated sequences
(or random sequence of similar composition generated by the computer)? This problem
was addressed by S. Karlin and S. Altschul (1990, 1993) and is addressed in detail in Chap-
ter 3 (p. 96).

An analysis of scores of unrelated or random sequences revealed that the scores could
frequently achieve a value much higher than expected in a normal distribution. Rather, the
scores followed a distribution with a positively skewed tail, known as the extreme value dis-
tribution. This analysis provided a way to assess the probability that a score found between
two sequences could also be found in an alignment of unrelated or random sequences of
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the same length. This discovery was particularly useful for assessing matches between a
query sequence and a sequence database discussed in Chapter 7. In this case, the evalua-
tion of a particular alignment score must take into account the number of sequence com-
parisons made in searching the database. Thus, if a score between a query protein sequence
and a database protein sequence is achieved with a probability of 10~7 of being between
unrelated sequences, and 80,000 sequences were compared, then the highest expected
score (called the EXPECT score) is 1077 X 8 X 10* = 8 X 1073 = 0.008. A value of
0.02-0.05 is considered significant. Even when such a score is found, the alignment must
be carefully examined for shortness of the alignment, unrealistic amino acid matches, and
runs of repeated amino acids, the presence of which decreases confidence in an alignment.

In addition to aligning a pair of sequences, methods have been developed for aligning three
or more sequences at the same time (for an early example, see Johnson and Doolittle 1986).
These methods are computer-intensive and usually are based on a sequential aligning of
the most-alike pairs of sequences. The programs commonly used are the GCG program
PILEUP (http://www.gcg. com/) and CLUSTALW (Thompson et al. 1994) (Baylor College
of Medicine, http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html). Once the
alignment of a related set of molecular sequences (a family) has been produced, highly
conserved regions (Gribskov et al. 1987) can be identified that may be common to that
particular family and may be used to identify other members of the same family. Two
matrix representations of the multiple sequence alignment called a PROFILE and a
POSITION-SPECIFIC SCORING MATRIX (PSSM) are important computational tools
for this purpose.

Multiple sequence alignments can also be the starting point for evolutionary modeling.
Each column of aligned sequence characters is examined, and then the most probable phy-
logenetic relationship or tree that would give rise to the observed changes is identified.

Another form of multiple sequence alignment is to search for a pattern that a set of DNA
or protein sequences has in common without first aligning the sequences (Stormo et al. 1982;
Stormo and Hartzell 1989; Staden 1984, 1989; Lawrence and Reilly 1990). For proteins, these
patterns may define a conserved component of a structural or functional domain. For DNA
sequences, the patterns may specify the binding site for a regulatory protein in a promoter
region or a processing signal in an RNA molecule. Both statistical and nonstatistical methods
have been widely used for this purpose. In effect, these methods sort through the sequences
trying to locate a series of adjacent characters in each of the sequences that, when aligned,
provides the highest number of matches. Neural networks, hidden Markov models, and the
expectation maximization and Gibbs sampling methods (Stormo et al. 1982; Lawrence et al.
1993; Krogh et al. 1994; Eddy et al. 1995) are examples of methods that are used. Explana-
tions and examples of these methods are described in Chapter 4.

In addition to methods for predicting protein structure, other methods for predicting
RNA secondary structure on computers were also developed at an early time. If the com-
plement of a sequence on an RNA molecule is repeated down the sequence in the opposite
chemical direction, the regions may base-pair and form a hairpin structure, as illustrated
in Figure 1.5.
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Figure 1.5. Folding of single-stranded RNA molecule into a hairpin secondary structure. Shown are
portions of the sequence that are complementary: They can base-pair to form a double-stranded
region. G/C base pairs are the most energetic due to 3 H bonds; A/U and G/U are next most ener-
getic with two and one H bonds, respectively.

Tinoco et al. (1971) generated these symmetrical regions in small oligonucleotide
molecules and tried to predict their stability based on estimates of the free energy associat-
ed with stacked base pairs in the model and of the destabilizing effects of loops, using a
table of energy values (Tinoco et al. 1971; Salser 1978). Single-stranded loops and other
unpaired regions decreased the predicted energy. Subsequently, Nussinov and Jacobson
(1980) devised a fast computer method for predicting an RNA molecule with the highest
possible number of base pairs based on the same dynamic programming algorithm used
for aligning sequences. This method was improved by Zuker and Stiegler (1981), who
added molecular constraints and thermodynamic information to predict the most ener-
getically stable structure.

Another important use of RNA structure modeling is in the construction of databases
of RNA molecules. One of the most significant of these is the ribosomal RNA database
prepared by the laboratory of C. Woese (1987) (http://www.cme.msu.edu/RDP
html/index.html). RNA secondary structure prediction is discussed in Chapter 5. Align-
ment, structural modeling, and phylogenetic analysis based on these RNA sequences have
made possible the discovery of evolutionary relationships among organisms that would
not have been possible otherwise.

Variations within a family of related nucleic acid or protein sequences provide an invalu-
able source of information for evolutionary biology. With the wealth of sequence infor-
mation becoming available, it is possible to track ancient genes, such as ribosomal RNA
and some proteins, back through the tree of life and to discover new organisms based on
their sequence (Barns et al. 1996). Diverse genes may follow different evolutionary histo-
ries, reflecting transfers of genetic material between species. Other types of phylogenetic
analyses can be used to identify genes within a family that are related by evolutionary
descent, called orthologs. Gene duplication events create two copies of a gene, called par-
alogs, and many such events can create a family of genes, each with a slightly altered, or
possibly new, function. Once alignments have been produced and alignment scores found,
the most closely related sequence pairs become apparent and may be placed in the outer
branches of an evolutionary tree, as shown for sequences A and B in Figure 1.1 (p. 2). The
next most-alike sequence, sequence C in Figure 1.1, will be represented by the next branch
down on the tree. Continuing this process generates a predicted pattern of evolution for
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that particular gene. Once a tree has been found, the sequence changes that have taken
place in the tree branches can be inferred.

The starting point for making a phylogenetic tree is a sequence alignment. For each pair
of sequences, the sequence similarity score gives an indication as to which sequences are
most closely related. A tree that best accounts for the numbers of changes (distances)
between the sequences (Fitch and Margoliash 1987) of these scores may then be derived.
The method most commonly used for this purpose is the neighbor-joining method (Saitou
and Nei 1987) described in Chapter 6. Alternatively, if a reliable multiple sequence align-
ment is available, the tree that is most consistent with the observed variation found in each
column of the sequence alignment may be used. The tree that imposes the minimum num-
ber of changes (the maximum parsimony tree) is the one chosen (Felsenstein 1988).

In making phylogenetic predictions, one must consider the possibility that several trees
may give almost the same results. Tests of significance have therefore been derived to
determine how well the sequence variation supports the existence of a particular tree
branch (Felsenstein 1988). These developments are also discussed in Chapter 6.

EQUENC)

As DNA sequencing became a common laboratory activity, genes with an important bio-
logical function could be sequenced with the hope of learning something about the bio-
chemical nature of the gene product. An example was the retrovirus-encoded v-sis and
v-src oncogenes, genes that cause cancer in animals. By comparing the predicted sequences
of the viral products with all of the known protein sequences at the time, R. Doolittle and
colleagues (1983) and W. Barker and M. Dayhoff (1982) both made the startling discovery
that these genes appeared to be derived from cellular genes. The Sis protein had a sequence
very similar to that of the platelet-derived growth factor (PDGF) from mammalian cells,
and Src to the catalytic chain of mammalian cAMP-dependent kinases. Thus, it appeared
likely that the retrovirus had acquired the gene from the host cell as some kind of genetic
exchange event and then had produced a mutant form of the protein that could compro-
mise the function of the normal protein when the virus infected another animal. Subse-
quently, as molecular biologists analyzed more and more gene sequences, they discovered
that many organisms share similar genes that can be identified by their sequence similarity.

These searches have been greatly facilitated by having genetic and biochemical informa-
tion from model organisms, such as the bacterium Escherichia coli and the budding yeast Sac-
charomyces cerevisiae. In these organisms, extensive genetic analysis has revealed the function
of genes, and the sequences of these genes have also been determined. Finding a gene in a new
organism (e.g., a crop plant) with a sequence similar to a model organism gene (e.g., yeast)
provides a prediction that the new gene has the same function as in the model organism.
Such searches are becoming quite commonplace and are greatly facilitated by programs such
as FASTA (Pearson and Lipman 1988) and BLAST (Altschul et al. 1990).

The methods used by BLAST and other additional powerful methods to perform
sequence similarity searching are described further in the next section and in Chapter 7.

As the number of new sequences collected in the laboratory increased, there was also an
increased need for computer programs that provided a way to compare these new
sequences sequentially to each sequence in the existing database of sequences, as was done
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PORTION OF SEQUENCE A - - W 1l v - -
PORTION OF SEQUENCE B - - W I Vv - -

Figure 1.6. Rapid identification of sequence similarity by FASTA and BLAST. FASTA looks for
short regions in these two amino acid sequences that match and then tries to extend the alignment
to the right and left. In this case, the program found by a quick and simple indexing method that
W, 1, and then V occurred in the same order in both sequences, providing a good starting point for
an alignment. BLAST works similarly, but only examines matched patterns of length 3 of the more
significant amino acid substitutions that are expected to align less frequently by chance alone.

to identify successfully the function of viral oncogenes. The dynamic programming
method of Needleman and Wunsch would not work because it was much too slow for the
computers of the time; today, however, with much faster computers available, this method
can be used. W. Pearson and D. Lipman (1988) developed a program called FASTA, which
performed a database scan for similarity in a short enough time to make such scans rou-
tinely possible. FASTA provides a rapid way to find short stretches of similar sequence
between a new sequence and any sequence in a database. Each sequence is broken down
into short words a few sequence characters long, and these words are organized into a table
indicating where they are in the sequence. If one or more words are present in both
sequences, and especially if several words can be joined, the sequences must be similar in
those regions. Pearson (1990, 1996) has continued to improve the FASTA method for sim-
ilarity searches in sequence databases.

An even faster program for similarity searching in sequence databases, called BLAST,
was developed by S. Altschul et al. (1990). This method is widely used from the Web site
of the National Center for Biotechnology Information at the National Library of Medicine
in Washington, DC (http://www.ncbi.nlm.nih.gov/BLAST). The BLAST server is probably
the most widely used sequence analysis facility in the world and provides similarity search-
ing to all currently available sequences. Like FASTA, BLAST prepares a table of short
sequence words in each sequence, but it also determines which of these words are most sig-
nificant such that they are a good indicator of similarity in two sequences, and then con-
fines the search to these words (and related ones), as described in Figure 1.6. There are ver-
sions of BLAST for searching nucleic acid and protein databases, which can be used to
translate DNA sequences prior to comparing them to protein sequence databases (Altschul
et al. 1997). Recent improvements in BLAST include GAPPED-BLAST, which is threefold
faster than the original BLAST, but which appears to find as many matches in databases,
and PSI-BLAST (position-specific-iterated BLAST), which can find more distant matches
to a test protein sequence by repeatedly searching for additional sequences that match an
alignment of the query and initially matched sequences. These methods are discussed in
Chapter 7.

Protein sequences are predicted by translating DNA sequences that are cDNA copies of
mRNA sequences from a predicted start and end of an open reading frame. Unfortunate-
ly, cDNA sequences are much less prevalent than genomic sequences in the databases. Par-
tial sequence (expressed sequence tags, or ESTs) libraries for many organisms are available,
but these only provide a fraction of the carboxy-terminal end of the protein sequence and
usually only have about 99% accuracy. For organisms that have few or no introns in their
genomic DNA (such as bacterial genomes), the genomic DNA may be translated. For most
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eukaryotic organisms with introns in their genes, the protein-encoding exons must be pre-
dicted and then translated by methods described in Chapter 8. These genome-based pre-
dictions are not always accurate, and thus it remains important to have cDNA sequences
of protein-encoding genes. Promoter sequences in genomes may also be analyzed for com-
mon patterns that reflect common regulatory features. These types of analyses require
sophisticated approaches that are also discussed in Chapter 8 (Hertz et al. 1990).

There are a large number of proteins whose sequences are known, but very few whose
structures have been solved. Solving protein structures involves the time-consuming and
highly specialized procedures of X-ray crystallography and nuclear magnetic resonance
(NMR). Consequently, there is much interest in trying to predict the structure of a protein,
given its sequence. Proteins are synthesized as linear chains of amino acids; they then form
secondary structures along the chain, such as « helices, as a result of interactions between
side chains of nearby amino acids. The region of the molecule with these secondary struc-
tures then folds back and forth on itself to form tertiary structures that include o helices,
B sheets comprising interacting B strands, and loops (Fig. 1.7). This folding often leaves
amino acids with hydrophobic side chains facing into the interior of the folded molecule
and polar amino acids that can interact with water and the molecular environment facing
outside in loops. The amino acid sequence of the protein directs the folding pathway,
sometimes assisted by proteins called chaperonins. Chou and Fasman (1978) and Garnier
et al. (1978) searched the small structural database of proteins for the amino acids associ-
ated with each of the secondary structure types—a helices, turns, and p strands. Sequences
of proteins whose structures were not known were then scanned to determine whether the
amino acids in each region were those often associated with one type of structure. For
example, the amino acid proline is not often found in « helices because its side chain is not
compatible with forming a helix. This method predicted the structure of some proteins
well but, in general, was about as likely to predict a correct as an incorrect structure.

As more protein structures were solved experimentally, computational methods were
used to find those that had a similar structural fold (the same arrangement of secondary
structures connected by similar loops). These methods led to the discovery that as new
protein structures were being solved, they often had a structural fold that was already
known in a group of sequences. Thus, proteins are found to have a limited number of ~500
folds (Chothia 1992), perhaps due to chemical restraints on protein folding or to the exis-
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Figure 1.7. Folding of a protein from a linear chain of amino acids to a three-dimensional structure.
The folding pathway involves amino acid interactions. Many different amino acid patterns are found

in the same types of folds, thus making structure prediction from amino acid sequence a difficult
undertaking.
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tence of a single evolutionary pathway for protein structure (Gibrat et al. 1996). Further-
more, proteins without any sequence similarity could adopt the same fold, thus greatly
complicating the prediction of structure from sequence. Methods for finding whether or
not a given protein sequence can occupy the same three-dimensional conformation as
another based on the properties of the amino acids have been devised (Bowie et al. 1991).
Databases of structural families of proteins are available on the Web and are described in
Chapter 9.

Amos Bairoch (Bairoch et al. 1997) developed another method for predicting the bio-
chemical activity of an unknown protein, given its sequence. He collected sequences of
proteins that had a common biochemical activity, for example an ATP-binding site, and
deduced the pattern of amino acids that was responsible for that activity, allowing for some
variability. These patterns were collected into the PROSITE database (http://www.expasy.
ch/prosite). Unknown sequences were scanned for the same patterns. Subsequently, Steve
and Jorga Henikoff (Henikoff and Henikoff 1992) examined alignments of the protein
sequences that make up each MOTIF and discovered additional patterns in the aligned
sequences called BLOCKS (see http://www.blocks.fhcrc.org/). These patterns offered an
expanded ability to determine whether or not an unknown protein possessed a particular
biochemical activity. The changes that were in each column of these aligned patterns were
counted and a new set of amino acid substitution matrices, called BLOSUM matrices, sim-
ilar to the PAM matrices of Margaret Dayhoff, were produced. One of these matrices,
BLOSUMSG62, is most often used for aligning protein sequences and searching databases for
similar sequences (Henikoff and Henikoff 1992) (see Chapter 7).

Sophisticated statistical and machine-training techniques have been used in more recent
protein structure prediction programs, and the success rate has increased. A recent
advance in this now active field of research is to organize proteins into groups or families
on the basis of sequence similarity, and to find consensus patterns of amino acid domains
characteristic of these families using the statistical methods described in Chapters 4 and 9.
There are many publicly accessible Web sites described in Chapter 9 that provide the lat-
est methods for identifying proteins and predicting their structures.

Although many viruses had already been sequenced, the first planned attempt to sequence
a free-living organism was by Fred Blattner and colleagues (Blattner et al. 1997) using the
bacterium E. coli. However, there was some concern over whether such a large sequence,
about 4 X 10° bp, could be obtained by the then-current sequencing technology. The first
published genome sequence was that of the single, circular chromosome of another bac-
terium, Hemophilus influenzae (Fleischmann et al. 1995), by The Institute of Genetics
Research (TIGR, at http://www.tigr.org/), which had been started by researcher Craig Ven-
ter. The project was assisted by microbiologist Hamilton Smith, who had worked with this
organism for many years. The speedup in sequencing involved using automated reading of
DNA sequencing gels through dye-labeling of bases, and breaking down the chromosome
into random fragments and sequencing these fragments as rapidly as possible without
knowledge of their location in the whole chromosome. Computer analysis of such shotgun
cloning and sequencing techniques had been developed much earlier by R. Staden at Cam-
bridge University and other workers, but the TIGR undertaking was much more ambi-
tious. In this genome project, newly read sequences were immediately entered into a com-
puter database and compared with each other to find overlaps and produce contigs of two
or more sequences with the assistance of computer programs. This procedure circumvent-
ed the need to grow and keep track of large numbers of subclones. Although the same
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sequence was often obtained up to 10 times, the sequence of the entire chromosome (2 X
10° bp), less a few gaps, was rapidly assembled in the computer over a 9-month period at
a cost of about $10°.

This success heralded a large number of other sequencing projects of various prokary-
otic and eukaryotic microorganisms, with a tremendous potential payoff in terms of uti-
lizable gene products and evolutionary information about these organisms. To date, com-
pleted projects include more than 30 prokaryotes, yeast S. cerevisiae (see Cherry et al.
1997), the nematode Caenorhabditis elegans (see C. elegans Sequencing Consortium 1998),
and the fruit fly Drosophila (see Adams et al. 2000). The plant Arabidopsis thaliana and the

human genome sequencing projects are ongoing and will be completed during 2000 or
shortly thereafter.

nome in

As more genetic and sequence information became available for the model organisms,
interest arose in generating specific genome databases that could be queried to retrieve this
information. Such an enterprise required a new level of sharing of data and resources
between laboratories. Although there were initial concerns about copyright issues, credits,
accuracy, editorial review, and curating, eventually these concerns disappeared or became
resolved as resources on the Internet developed. The first genome database, called ACEDB
(a C. elegans database), and the methods to access this database were developed by Mike
Cherry and colleagues (Cherry and Cartinhour 1993). This database was accessible
through the internet and allowed retrieval of sequences, information about genes and
mutants, investigator addresses, and references. Similar databases were subsequently
developed using the same methods for A. thaliana and S. cerevisiae. Presently, there is a
large number of such publicly available databases. Web access to these databases is dis-
cussed in Chapter 10 (Table 10.1, p. 482).
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