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ABSTRACT  Multiple sequence aﬁgnment can be a useful

| technique for studying molecular evolution and analyzing

sequence-structure relationships. Until recently, it has been
impractical to apply dynamic programming, the most widely

+ accepted method for producing pairwise alignments, to com-

parisons of more than three sequences. We describe the design
and application of a tool for multiple alignment of amino acid
sequences that implements a new algorithm that greatly re-
duces the computational demands of dynamic programming,
This tool is able to align in reasonable time as many as eight
sequences the length of an average protein.

Comparative analysis of DNA and amino acid sequences is
an increasingly important component of biological research.
Sequence alignment, in particular, has been helpful in the
study of molecuiar evolution (1), RNA folding (2), gene
regulation (3), and protein structure-function relationships
{4). Although pairwise sequence comparisons have proven
useful, for example, in data base searches (5, 6), some
biologically significant similarities may only be detected by
aligning a set of sequences {7, 8). Likewise, patterns or motifs
common to a set of functionally related proteins may only be
apparent from agalysis of 2 multiple alignment of these
sequences (9). L

To align a pair of sequences, one must have a notion of
what makes one possible alignment better than another: a
measure of the quality of an alignment. Although there are
many programs available for pairwise sequence alignment,
the most widely accepted tools use variations of the dynamic
programming method (10-13). These methods use an explicit
measure of alignment quality, consisting of defined costs for
aligned pairs of residues, or residues with gaps, and use an
algorithm for finding an alignment with minimum total cost.
Extending these methods to multiple sequences poses a
number of problems, among which are how to measure the
cost of a multiple alignhment and how to choose gap costs
consistent with the measure chosen (14).

The biggest obstacle to using dynamic programming for
multiple sequence alignment, however, has been the com-
putational requirements of the method; those tools that do
use dynamic programming have been limited to aligning no
more than three sequences (15, 16). Given these difficulties,
most alternative multiple alignment programs use heuristics
or minimize alignment costs that are not clearly tied to
models of molecular evolution (17~22). As such, they lack an
explicit overall measure of alignment quality. Recently, how-
ever, methods have been proposed to greatly reduce the
computational demands of dynamic programming applied to
multiple sequence alignment (23, 24). We describe the design
and application of a tool for multiple sequence alignment that
implements these methods.
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Alignment Cost

The dynamic programming method for aligning two se-
quences computes an optimal alignment—i.e., one whose
replacement and gap costs have minimal sum. As with the

~-~PAM-250 matrix (1), which was derived from a study of
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amino acid replacements in homologous proteins, repiace-
ments may differ in cost. Gap costs may reflect the fact that
a single mutational event can insert or delete several residues
(25). The most biologically realistic approach for generalizing
such costs to an alignment of several sequences involves
minimizing the pairwise costs associated with the branches of
an evolutionary tree-whose leaves are the input sequences
(24, 26, 27). Another measure of cost for muitiple alignments
is the sum of the alignment costs imposed on each pair of
sequences in the multiple alignment (8, 14-16); this is called
the SP measure (for sum of the pairs). We have used this
measure because finding an optimal SP alignment requires
much less time than does minimizing the branch lengths of a
tree, especially when biologically realistic gap costs are used
(14, 23, 24),

Basic Strategy of the Carrillo-Lipman Algorithm

The basic dynamic programming algorithm for aligning two
sequences finds an optimal (minimal cost) path through a
rectangular path graph or lattice (11, 12). There is a one-
to-one correspondence between alignments and paths in the
path graph. Each edge of a path corresponds to the alignment
of two letters or of aletter in one sequence with a null (missing
element) in the other. The algorithm involves a fixed number
of operations for each cell of the lattice, so that its time
complexity is proportional to the product of the lengths of the
two sequences.

The application of dynamic programming to the alignment
of n sequences involves a fixed number of operations for each
cell of an n-dimensional lattice (13-16). The number of cells
is the product of the lengths of the sequences to be aligned.
When these sequences are the length of an average protein
(=200), examining every cell of such a lattice is impractical
forn > 3,

Recently, however, Carrillo and Lipman showed that one
can drastically reduce the number of cells examined while
still guaranteeing the discovery of an optimal alignment (23).
Their central idea was that every multiple alignment imposes
a pairwise alignment on each pair of sequences. Treating an
n-sequence alignment as a path through a lattice in n space,
this imposed pairwise alignment can be viewed simply as 2
projected path in a standard two-dimensional path graph. It
is possible to calculate an upper bound for the cost of the
projection of an optimal muitiple alignment onto a given pair
of sequences (23). In the corresponding two-dimensional path
graph, this upper bound limits the points through which the

it
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i projection can possibly pass. This in turn limits the points in
| the original lattice through which the optimal alignment can
s. Each projection thus defines a subset of the original
Iattice that contains the paths of all optimal alignments. The
intersection of these subsets still contains all such paths. Itis
only this intersection, therefore, that must be considered by
a dynamic programming algorithm seeking optimal align-
ments. In practice, this approach so limits the number of
Iattice points that it becomes'possible to find optimal multiple
alignments for as many as six sequences.
i ~--The MSA (multiple. sequence alignment) program de-
- seribed here implements the algorithm of Carrillo and Lipman
(23). It incorporates several important features not described
in their paper; these features are discussed below.

Upper Bounds

The MSA program allows the user to choose an upper bound
on the cost of aligning each pair of sequences. For each such
pair, MSA then calculates which cells of the corresponding
path graph can be contained within a path with cost no greater
than the given bound. In the dynamic programming step, MSA
then examines only those cells of the n-dimensional lattice that
project onto the allowed cells in each of the two-dimensional
path graphs. The program returns an alignment with minimum
cust whose path is contained within this region.

As described above, Carrille and Lipman have shown how

! - w0 choose upper bounds on the cost of pairwise alignments
that guarantee finding an optimal SP alignment (23). In
practice, these rigorous bounds are almost always greater
than is necessary. MSA therefore uses a heuristic procedure
to choose upper bounds for the pairs. First, using a progres-
sive alignment strategy similar to those described by Water-
man and Perlwitz (17), Feng and Doolittle (20), and Taylor
{21), it constructs a heuristic multiple alignment. For each
pair, it sets the upper bound equal to the cost of the imposed
alignment. This heuristic procedure has proved quite effec-
tive, but better methods for choosing bounds certainly may
be found. MSA allows the user to specify any set of bounds
and override their automatic assignment.

Using heuristic bounds, MSA generally can align six to
eight sequences of length 200-300 residues. It is possible that
some of the pairwise projections of the alignment found,
while lying within the allowed region, may nevertheless have
tost greater than the corresponding upper bound. When this
kappens, the specified upper bounds were not great enough
te encompass all optimal alignments. Increasing the upper
bounds that have been exceeded and rerunning MSA fre-
quently produces an improved alighment. Once the alignment
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strictly adopting this definition leads to unacceptable algo-
rithmic complications. The MSA program uses instead the
quasi-natural gap costs he proposes, which are identical to
natural gap costs except in certain rare cases. Specifically,
when a null run in one sequence of a muitiple alignment
begins after and ends before a null run in a second sequence,
these costs count one more gap than do natural gap costs.

Other multiple alignment gap costs have been defined in
vacuo, with no connection to the accompanying definition of
substitution cost (15, 16, 31). However, since both types of
cost work in tandem to specify optimal alignments; they
should have a common rationale. Such consistency elimi-
nates the need to readjust the gap cost when aligning different
numbers of sequences. The user may specify whether ter-
minal gaps are to be counted.

Pair Weights

While permitting reasonably efficient algorithms, the SP
measure of multiple alignment cost has certain undesirable
properties. These are best illustrated by considering an
alignment of three sequences—A, B, and C. Imagine includ-
ing several sequences very similar to A in the multiple
alignment. If all pairwise alignments are given equal weight,
then the many pairs similar to A-B and A-C will outvote the
single B-C pair. Sequence A will essentially dictate the
multiple alignment simply because there are several copies of
it in the data. Since most any set of related DNA or protein
sequences will contain some sequences more closely related
to one another than to the rest, this problem remains even if
extra copies of virtually identical sequences are removed.

The basic problem with the SP measure is that while all
pairwise alignments are treated equally, some of these align-
ments are highly correlated; a way is needed to discount
redundant information. By weighting the pairwise alignments
this problem can be circumvented (32, 33). The MSA pro-
gram implements either of the two methods for assigning pair
weights proposed by Altschul ez al. (32). Both methods
require knowledge of an evolutionary tree relating the se-
quences to be aligned; MSA estimates this tree by the
neighbor joining method of Saitou and Nei (34). The user may
choose to use either a weighted or unweighted SP measure of
multiple alignment cest.

Forcing Special Alignment Positions
Sometimes, prior to the construction of a multiple alignment,

information will be available about the correspondence of
specific residues in seyeral or all of the sequences—e.g.,

found satisfies the specified constraints, increasing the —. .active site residues. The MSA program permits the user to
bounds further rarely leads to any improvement; note that. - =~ take advantage of this information. Specifically, any residues

such an alignment is optimal given these constraints. In the
extreme case, rigorous upper bounds can be used, effectively
performing an unconstrained minimization and therefore
guaranteeing an optimal alignment. Using rigorous bounds,
the practical limit of MSA is four or five sequences.

Gap Costs for Multiple Alignments

Generally, to find biologically reasonable pairwise align-
ments, costs must be charged for gaps (runs of nulls) as well
s for aligning individual elements with nulls (25). Algorithms
that charge a fixed cost for each gap are widely used and have
been studied extensively (25, 28-30). It is not trivial to extend

these gap costs to muitiple alignments and a variety of

methods have been proposed (14-16, 31). The most natural
fmethod is to define gap costs by using the same rationale used
todefine substitution costs. For SP alignments, these.natural
83p costs are equal to the sum of the gap costs in all the
mposed pairwise alignments. A]tsch_w has shown that

from two or more of the sequences may be forced into
alignment, so long as the forced alignment positions are
" mutually consistent. The program operates as before, except

that all pairwise and multiple alignments considered are -

subject to the imposed constraints.

We have found that occasionally with even four or five
sequences, the optimal pairwise alignments are so inconsis-
tent that MSA requires unacceptable amounts of time on
personal work stations. If certain positions can be fixed then
these problems are usually rendered tractable. Alternatively,

by splicing out regions of relative certainty, effectively di- .

viding the alignment problem into several smaller ones, the
range of the tool can be considerably extended.

Example

We have described above the measure used to evaluate the

quality of an alignment and the algorithm used to compute an -

optimal alignment using this measure. When structural in-
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formation is available, 2 different approach is possible in
which one essentially superimposes the a carbon backbones
of the proteins of interest. Greer (35) aligned three serine
proteases in this manner—chymotrypsin, trypsin, and
elastase—and found a number of positions in which all three
aligned « carbons were within 1 A of each other. Because
structural homology is often evident when sequence homol-
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an alignment of the chymofrypsin, trypsin, and elastase

" sequences; 149 of 161 positions are in complete agreement

with the structural alignment of Greer; adding two additional
serine proteases improves the agreement with the structural
alignment to 155 consistent positions. In the latter case, ajl
but' one of the discrepancies involve residues whose side
chain positions differ markedly and thus the evolutionary and

ogy is undetectable (36), we shall use this structural align-
ment to evaluate our sequence-based approach. In Fig.. 1 is’

ment is unclear.
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functional significance of these details of the structural align-
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FiG. 1. (A) Alignment of bovine chymotrypsin (top line), bovine trypsin, and pig elastase. +, Residues in agreement with the structural
alignment; underlining, residues not aligned in complete agreement with the structural alignment; lowercase letters, residues not aligned
structurally. (B) Alignment of rat mast ccll protcinase II (top line), human plasma kallikrein, bovine chymotrypsin, bovine trypsin, and pi§
clastase. *, Residues in agreement with the structural alignment; underlining, residues not aligned in complete agreement with the structural
alignment; lowercase letters, residues not aligned structurally. The single-letter code for amino acids is used.
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[mplementation

MSA is written in the C programming language and has been
tested on several machines using the UNIX system V oper-
ating system. It should run with little or no modification on

any computer with a standard C compiler. Memory and-

computational requirements are a function of the number of
sequences, their length, and the size of the upper bounds for
pairwise costs. Aligning five sequences, each from different

families in the globin superfamily, on a commonly available .. .

“32-bit personal computer, took <2 min of computation time
and required <1.3 megabytes of memory. The program is
available from the anthors on request.

Conclusion

The primary difference between MSA and previous multiple
alignment programs is its capability to align more than three
sequences using an explicitly defined measure of overall
alignment quality. The default measure used by MSA con-
siders some replacements more costly than others and pe-
nalizes for gaps in a manner reflecting the fact that a single
mutational event caninsert or delete several residues (14, 25).
With pairwise alignment costs so defined, MSA computes a
multiple alignment that minimizes the sum of the pairwise
costs, weighting the pairs using information derived from an
cvolutionary tree. -

This approach is most effective in aligning sequences that
share a global, but perhaps quite distant, relationship. Other
mcthods may be more appropriate for the analysis of the
statistical significance of sequence similarities (8), detection
of sequence motifs or consensus sequences (3, 9, 22), or
aligning large numbers of sequences (17-21). Although MSA

will not always produce alignments in such good agreement .

with structural superpositions as seen here, we believe it can
be a powerful sequence analysis tool for molecular biologists.
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