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ABSTRACT Methods  for alignment of protein  sequences 
typicaily measure  similarity by  using a  substitution  matrix with 
scores for all possible  exchanges of one amino  acid with 
another. The most  widely used matrices  are based on the 
Dayhoff model of evoIutionary rates. Using a different ap- 
proach, we have derived substitution  matrices  from  about 2000 
blocks of aligned  sequence segments characterizing  more  than 
50Q groups of related  proteins.  This led to marked  improve- 
ments in alignments and in searches using queries  from each of 
the groups. 

Among  the  most  useful  computer-based  tools in modern 
biology are  those  that  involve  sequence  alignments of pro- 
teins,  since  these  alignments  often  provide  important  insights 
into  gene  and  protein  function.  There are several  different 
types of alignments:  global  alignments of pairs of proteins 
related by common ancestry throughout their lengths, local 
alignments invohing related  segments of proteins,  multiple 
alignments  of  members of protein families, and  alignments 
m d e  during data base searches  to  detect homology.  In each 
case, competing  alignments are evaluated by using a scoring 
scheme  for estimating similarity. Although several  different 
scoring  schemes  have  been  proposed (1-61, the  mutation data 
matrices of DayhofS (1, 7-9) are generally  considered  the 
standard  and  are  often  the  default in alignment  and  searching 
programs. In the Dayhoff model,  substitution  rates are de- 
rived  from  alignments  of  protein  sequences  that are  at least 
85% identical. However,  the  most  common  task  involving 
substitution  matrices is the  detection of  much  more distant 
relationships,  which are  only  inferred  from  substitution  rates 
in the Dayhoff  model.  Therefore, we wondered  whether  a 
better  approach  might  be to use  alignments in which  these 
relationships are explicitly  represented.  An  incentive  for 
investigating  this  possibility is that implementation of an 
improved  matrix in numerous  important  applications re- 
quires  only trivial effort. 

METHODS 
Deriving a Frequency Table from a Data Base of Blocks. 

Local  alignments  can be  represented  as ungapped  blocks with 
each  row  a  different  protein  segment  and  each  column an 
aligned  residue  position.  Previously, we described an  auto- 
mated  system, PROTOMAT, for obtaining  a set of blocks  given 
a group of related  proteins (10). This  system  was  applied to 
a catalog of several  hundred  protein  groups,  yielding a data 
base of >2OOO blocks.  Consider  a single block  representing  a 
conserved  region of a  protein  family.  For a new member of 
this family,  we  seek a set of scores  for matches  and  mis- 
matches  that  best  favors  a correct alignment with each  of  the 
other  segments in the  block relative to  an incorrect align- 
ment. For each column of the  block,  we first count  the 
number of matches  and  mismatches of each  type  between  the 
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new sequence  and  every  other  sequence in the  block. For 
example, if the  residue of the new sequence  that aligns with 
the first column of the  first block is A and  the column  has 9 
A residues  and 1 S residue,  then  there are 9 AA matches  and 
1 AS mismatch.  This  procedure is repeated for all columns of 
all blocks with the summed results stored in a table. The new 
sequence is added to  the  group. For another new  sequence, 
the  same  procedure is followed,  summing these  numbers with 
those  already in the table. Notice that  successive addition of 
each  sequence to  the group  leads to  a  table consisting of 
counts of all possible  amino  acid  pairs in a column. For 
example, in the  column  consisting of 9 A residues  and 1 S 
residue,  there are 8 + 7 + . . . 1 = 36 possible AA pairs, 9 
AS or SA pairs, and no SS pairs. Counts of all possible  pairs 
in each  column of each  block in the data  base  are  summed. 
So, if a  block has  a width of H' amino  acids  and a depth of s 
sequences, it contributes ws(s - 1)/2 amino  acid  pairs  to  the 
count ((1 x 10 x 9)/2 = 45 in the  above  example].  The result 
of this counting is a  frequency  table listing the  number of 
times  each of the 20 + 19 + . . . 1 = 210 different  amino  acid 
pairs  occurs  among  the  blocks.  The  table is used  to  calculate 
a  matrix  representing  the  odds ratio between  these  observed 
frequencies  and  those  expected by chance. 

Computing a Logarithm of Odds (Lod) Matrix. Let  the  total 
number of amino  acid i , j  pairs (1 s j  I i I 20) for  each  entry 
of the frequency  table beJ? Then  the  observed  probability of 
occurrence  for  each i, j pau is 

For the  column of 9 A residues  and 1 S residue in the  example, 

9/45 = 0.2. Next we estimate the  expected prob&ility+f 
occurrence  for  each i, j pair. It is assumed  that the  observed 
pair  frequencies  are  those of the  population. For the  example, 
36 pairs  have  A in both  positions of the  pair  and 9 pairs  have 
A at only one of the  two  positions. so that  the expected 
probability of A in a  pair is [36 + (9/2)]/45 = 0.9  and  that of 
s is (9/2)/45 = 0.1. In general,  the  probability of occurrence 
of the ith amino  acid in an i, j pair is 

where fA.4 = 36 and fAS = 9. q A A  = 36/45 = 0.8 and qAS = 

The  expected  probability of occurrence ec for  each i, j pair is 
then p;pj for i = j and pipj + pipi = Zpipj for i # j .  In the 
example,  the  expected  probability of AA is 0.9 x 0.9 = 0.81, 
that of AS + SA is 2 X (0.9 X 0.1) = 0.18, and  that of SS is 
0.1 x 0.1 = 0.01. An odds ratio matrix is calculated  where 
each  entry is qu/eu. A lod ratio is then  calculated in  bit units 
as sc = log2(qQ/eu). If the  observed  frequencies  are as 
expected. si = 0; if less  than expected, sii C 0; if more  than 
expected, sij > 0. Lod ratios are multiplied by a scaling  factor 
of 2 and  then  rounded to the  nearest  integer  value to produce 

Abbreviation: lod, logarithm of odds. 
'To whom reprint requests should be addressed. 
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BLosuht (blocks  substitution  matrix)  matrices in half-bit 
units. comparable to matrices  generated  by  the PAM (percent 
accepted  mutation)  program (11). For each  substitution ma- 
trix. we calculated the  average  mutual  information (12) per 
amino acid pair H (also  called relative entropy), and  the 
expected  score E in  bit units as 

Clustering Segments Within Blocks. To reduce  multiple 
contributions to  amino  acid  pair  frequencies  from  the  most 
closely  related  members of a family, sequences  are  clustered 
within  blocks  and each  cluster is weighted as a single se- 
quence in counting  pairs (13). This is done by specifying a 
clustering  percentage in which  sequence  segments  that  are 
identical  for  at  least that percentage of amino  acids  are 
grouped  together. For example, if the  percentage is set  at 
80%, and sequence  segment  A is identical to  sequence 
segment B at 280% of their  aligned  positions,  then A and B 
are clustered  and  their  contributions are  averaged in calcu- 
lating pair frequencies. If C is identical to  either A or B at 
~ 8 0 %  of aligned  positions, it is also  clustered  with  them  and 
the  contributions of A, B, and C are  averaged,  even  though 
C might  not  be identical to both A and B at 280% of aligned 
positions. In the above  example, if 8 of the 9 sequences with 
A  residues in the 9A-1S column are  clustered, then  the 
contribution of this  column to the  frequency  table is equiv- 
alent  to  that of a 2A-1s column.  which  contributes 2 AS 
pairs. A consequence of clustering is that  the  contribution of 
dosely related  segments to the  frequency  table  is reduced (or 
eliminated  when an  entire  block is clustered,  since  this is 
equivalent KO a single  sequence in which no  substitutions 
appear). For example,  clustering  at 62% reduces  the number 
ofblocks  contributing to  the  table by  25%, with the remainder 
contributing 1.25 million pairs  (including  fractional  pairs), 
whereas  without  clustering, >15 million pairs  are  counted 
(Fig. 1). In this way,  varying  the  clustering  percentage  leads 
to a family of matrices. The matrix  derived  from  a  data  base 
of blocks in which  sequence  segments  that  are identical at 
280% of aligned  residues  are  clustered is referred to  as 
BLOSUM 80, and so forth.  The BLOSUM program  implements 

(1.6 
A 

- 0.4 

i 

40 60 80. 100 
p -0.0 

5% clustering 

FIG. 1. Relationship between percentage  clustering and total 
amino acid pair counts plotted on a logarithmic scale and relative 
enrropy. 
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matrix  construction.  Frequency  tables,  matrices,  and  pro- 
grams  for UNIX and DOS machines are  available  over  Internet 
by anonymous  ftp  (sparky.fhcrc.org). 

Constructing Blocks Data Bases. For this  work, we began 
with versions of the  blocks  data base  constructed by PROTO- 
MAT (10) from 504 nonredundant  groups of proteins  cata- 
logued in Prosite 8.0 (14) keyed to Swiss-Prot 20 (15). 
PROTOMAT employs  an  amino  acid  substitution  matrix at two 
distinct phases of block  construction (16). The MOTIF pro- 
gram uses a substitution  matrix  when  individual  sequences 
are  aligned or realigned  against sequence  segments  contain- 
ing a  candidate motif (16). The MOTOMAT program uses a 
substitution  matrix  when a block is  extended  to  either side  of 
the motif  region and  when  scoring candidate blocks (10). A 
unitary  substitution  matrix  (matches = 1; mismatches = 0) 
was  used initially, generating 2205 blocks.  Next,  the BLOSUM 
program  was  applied to this data  base of blocks,  clustering  at 
60%, and  the  resulting  matrix was  used  with PROTOMAT to 
construct a second data base  consisting  of 1961 blocks. The 
BLOSUM program  was  then  applied to this  second  data  base, 
clustering at 60%. This matrix  was  used to  construct version 
5.0 of the BLOCKS data base  from  559 groups in Prosite 9.00 
keyed to Swiss-Pror22-The BLOSUM program  was  applied to 
this final data base of 2106 blocks,  using a series of clustering 
percentages to obtain  a  family of lod substitution  matrices. 
This  series of matrices is very  similar to the  series derived 
from  the  second data base.  Approximately  similar  matrices 
were  also  obtained  from  data  bases  generated  by PROTOMAT 
using the PAM 120 matrix,  using a matrix  with  a  clustering 
percentage of SO%, and  using just  the  odd- or even-numbered 
groups  (data not shown). \ 

Alignments and Homology Searches. Global  multiple align- 
ments  were  done  using  version 3.0 of MULTALIN for DOS 
computers (17). To provide  a  positive  matrix, each  entry  was 
increased by 8 (with  default  gap  penalty  of 8). Version 1.6b2 
of Pearson's RDF2 program (18) was  used to evaluate local 
painvise  alignments. 

Homology  searches  were  done on a Sun  Sparcstation using 
the BLASTP version of BLAST dated 3/18/91 (11) and  version 
1.6b2 of FASTA (with krup = 1 and -0 options)  and SSURCH, 
an  implementation of the  Smith-Waterman  algorithm (18- 
20). The Swiss-Prot 20 data  bank (15) containing 22,654 
protein  sequences  was  searched,  and  one  search  was  done 
with each matrix  for  each of the 504 groups of proteins  from 
Prosite 8.0. The  first of the  longest and  most distant se- 
quences in the  group was chosen as a searching  query, 
inferring  distance  from PROTOMAT results  and  Swiss-Prot 
names. 

In the BLOSUM matrices, the scores for B and Z were  made 
identical to those  for D and E, respectively,  and -1 was  used 
for  the  character X. We used the  same  gap penalties for all 
matrices, -12 for  the first residue in a gap, and -4 for 
subsequent  residues in a  gap. 

The  results of each  search  were  analyzed  by  considering 
the  sequences  used by PROTOMAT to  construct blocks  for the 
protein  group as  the true  positive sequences  and all others  as 
true  negatives. BLAST reports the data bank  matches  up to a 
certain level of statistical significance.  Therefore, we counted 
the  number of misses as the  number  of  true  positive se- 
quences  not  reported. For FASTA and SEARCH. we  followed 
the  empirical  evaluation  criteria  recommended by Pearson 
(19); the number of misses is the  number of true positive 
scores, which  ranked below the 995th percentile of the  true 
negative  scores. 

RESULTS 
Comparison to Dayhoff Matrices. The BLOSUM series  de- 

rived  from  alignments in blocks is fundamentally  different 
from the Dayhoff PAM series,  which  derives  from  the  esti- 
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mation of mutation  rates.  Nevertheless.  the BLOSUM series Table 1. Performance of substitution  matrices in aligning three 
based  on  percent  clustering  ofaligned  segments in blocks  can 
be compared to the  Dayhoff  matrices  based  on PAM using  a 
measure of average  information  per  residue pair in bit units 
called  relative entropy (9). Relative  entropy is 0 when  the 
target (or observed)  distribution of pair frequencies is the 
same  as  the background (or  expected) distribution  and in- 
creases  as  these  two  distributions become more distinguish- 
able.  Relative  entropy  was  used by Altschul (9) to charac- 
terize the Dayhoff  matrices,  which  show  a  decrease with 
increasing PAM. For the BLOSUM series, relative entropy 
increases  nearly  linearly  with  increasing  clustering  percent- 
age (Fig. 1). Based on relative entropy, the PAM 250 matrix 
iscomparable  to BLOSUM 45 with relative entropy of ~ 0 . 4  bit, 
while PAM 120 is comparable to BLOSUM 80 with relative 
entropy of =l bit. BLOSUM 62 (Fig. 2 Lower) is intermediate 
in both  clustering  percentage  and relative entropy (0.7 bit) 
and is comparable  to PAM 160. Matrices with comparable 

serine  proteases 

Matrix 
aligned 

PAM 120 
PAM 160 

+6/-1 
BLOSUM 45 

PAM 250 

BLOSUM 62 
BLOSUM 80 

Residue  positions  missed* 

Program 

MSA 
MULTALIN 
MULTALIN 
MULTALIN 
MULTALIN 
MULTALIN 
MULTALIP; 
MULTALIN 

All posilions  Side  chains 

12 6 
31 22 
30 22 
30 22 
34 26 
9 5 
6 4 
9 6 

'From data of Creer (22). where residues  were  considered to be 
aligned  whenever  a-carbons  occupied  comparable  positions in 
space  (All  positions column). For a  subset  (Side  chains  column), 
residues  were  excluded where there were differences in the posi- 
tions of side  chains. 

relative entiopies  also have similar  expected  scores: 
Some  consistent  differences  are  seen when PAM 160 is differences in the positions of side  chains were excluded. parable  numbers  were  obtained when residues  that  show 

subtracted from BLoSUM 62 for every matrix entry (Fig. Therefore, BLOSUM matrices  produced  accurate global  align- Upper). Compared to PAM 160, BLOSUM 62  is less tolerant to ments of these sequences. 
substitutions  involving  hydrophilic  amino acids, while it is 
more  tolerant  to  substitutions  involving  hydrophobic  amino Performance in Searching for Homology in Sequence Data 
acids.  For rare  amino  acids.  especially  cysteine  and  tryp- Banks. To determine how BLOSUM matrices  perform in data 
topban, BLOSUM 62 is typically to mismatches  bank  searches, we first  tested  them  on the guanine  nucleo- 
than is PAM 160.  tide-binding  protein-coupled  receptors,  a  particularly  chal- 

Performane in Multiple Alignment of K~~~~ Structures. lenging group  that  has  been  used  Previously to test searching 

results  obtained to alignments  seen in three-dimensional queries,  LSHR$RAT, RTA$RAT. and UL33$HCMVA7 

Structures.  Lipman et tal. (21) applied  a  simultaneous  multiple were chosen from among the 114 f'll-length 
alignment  program, M ~ ~ ,  to 3 similarly diverged seine pro- catalogued in Prosite  based on the  observation  that none 
teases of known  three-dimensional  structures.  They found detected  either of the  others in  searches.  The  number Of 

that for 161  closely  aligned  residue  positions, 12 residues misses was averaged in order to assess  the overall  searching 
were  involved  in  mjsafignments. We asked  how  well a performance Of different  matrices  for  this  group. Three 
hierarchical  multiple  alignment  program, MULTALIP.I (17), different  programs  were Used-BLAST (ll)? FASTA (19). and 
performs on  the  same  proteins using different substitution Smith-Waterman (20). BLAST rapidly determines the  best 
matrices. Table 1 Shows  that M U L T A L ~ N  perfoms much ungapped  alignments in a data bank. FASTA is a  heuristic  and 
worse  than MSA using  the PAM 120. 160, or 250 matrices, Smith-Waterman is a  rigorous local alignment  program:  both 
misaligning residues  at 30-31 positions. In comparison, MUL- can  optimize  an  alignment  by  the  introduction of gaps. 
TALIN with  a  simple +6/-1 matrix  (that  assigns +6 to Several BLOSUM and PAM matrices in the  entropy  range  of 
matches  and -1 to mismatches) misaligns residues  at 34 0.15-1.2 were  tested. 
positions. In the  same  test using BLOSUM 45, 62 and 80, Results with each of the 3 programs  show  that all BLOSUM 
MULTALIN misaligned  residues at only 6-9 positions.  Com- matrices in the 0.3-0.8 range  performed  better  than the  best 

One  test of sequence alignment  accuracy is to  compare  the  and  alignment  Programs (10, 18, 23, 34)-  Three  diverse 

C S T P A G N D E Q H R K M I L V F Y W  
0 - 1 1 0 2 1 1 2 1 2 0 0 2 4 1 5 1 2 - 2 5 C  

2 0 - 2  0 - 1  0 0 0 1 0  0 0 1 0  1 - 1  i 1 - 1 s  
c 9  2 - 1 - 1 - 1  0 0 0 0 0 0 - 1  0 - 1  1 0  1 1  3 T  
s -1 4 2 - 2 - 1 - 1  0 0 - 1 - 1 - 1  1 1 0 - 1  0 0 2 i P  

P -3 -1 -1 7 2 0 - 1 - 2  0 1 1  0 0 - 1  0 - 1  1 2  4 G  
T - 1  1 5  2 - 1 - 2 - 2 - 1  0 0 1 1  0 0 1 0  1 1  2 A  

A 0 1 0 - 1  4 3 - 1 - 1  0 0 1 - 1  0 - 1  0 - 1  0 0 O N  
G -3  0 -2 -2 0 6 2 - 1 - 1 - 1  0 - 1  0 0 0 0 2 1 3 D  
N - 3  1 0 - 2 - 2  0 6 1 0 0 2 2 1 - 1 0 0 2 2 4 E  
D -3 0 -1 -1 -2 -1 1 6 0 - 2  0 1 1 - 1  0 0 1 3  3 Q  
E - 4  0 -1 -1 -1 -2 0 2 5 2 - 1  0 1 0 - 1  0 1 2  2 H  
Q - 3  0 - 1 - 1 - 1 - 2  0 0 2 5 -1-1 0 - 1  1 0 1 3 - 4 R  
H -3  -1  -2 -2 -2 -2 1 -1 0 0 8 1 - 2 - 1  1 1  2 3 1 K  
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 -2 -1 -1 0 1 2 4 M 
x - 3  0 - 1 - 1 - 1 - 2  0 - 1  1 1 - 1  2 5 -1 1 0  0 1 3 1  
M -1 -1 -1 -2 -1 -3 -2 - 3  - 2  0 -2 -1 -1 5 -1 0 -1 1 2 L 

L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 -1 -2 1 F 
v -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 a -1 2 Y 

y -2 -2 -2 - 3  -2 -3 -2 -3 -2 -1 2 -2  -2 -1 -1 -1 -1 3 7 
w -2 -3 - 2 . - 4  -3 -2 - 4   - 4  -3 -2  -2 -3 -3 -1 -3 -2 -3 1 2 11 

I -1 -2 -1 - 3  -1 - 4  -3 -3  -3 -3 -3 -3 -3 1 4 0 1 2  4 v  

F -2  -2 -2  - 4  -2 -3 -3 -3 - 3  -3  -1 -3   -3  0 0 O -1 6 -1 W 

C S T P A G N D E Q H R K M I L V F Y W  
FIG. 2. BLOSUM 62 substitution matrix (Lower )  and difference matrix (Upper)  obtained by subtracting rhe PAM 160 matrix position by position. 

These  matrices  have  identical  relative  entropies (0.70): the expected value of BLOSUM 62 is -0.52; that for PAM Ifdl is -0.57. 
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P A M  matrix. P A M  200 (Fig. 31. I n  this range,  each BLOSUM 
matrix missed 12-25 fewer  members than the PAM matrix 
with similar  relative  entropy.  Therefore, BLOSUM improved 
detection of members of this family regardless of the  search- 
ing program used. 

To determine  whether  the  superiority of BLOSUM matrices 
over PAM matrices  generalizes to other families. we carried 
out similar  comparative  tests for 504 groups of proteins 
catalogued in Prosite 8.0. For BLAST,  BLOSUM 62 performed 
slightly better  overall  than BLOSL" 60 or 70, moderately 
better  than BLOSUM 45. and much better  than  the  best PAM 
matrix in this  test, PAM 140 (Fig. 4). Specifically, BLOSUM 62 
was  better  than PAM 140 for 90 groups,  whereas it was  worse 
in only 23 other  groups. As a  baseline for comparison, we 
used  the  simple +6/-1 matrix. which makes no distinction 
among  matches or mismatches.  Compared to +6/-1, BLO- 
SUM 62 performance  was  better i n  157 groups  and  was  worse 
in 6 groups. Of the 504 groups  tested,  only 217 showed 
differences in any  comparison.  Similar results were  obtained 
for FASTA (data not  shown). 

Very  recently,  two  updates of the Dayhoff matrices  have 
appeared (25. 26). Both use automated  procedures to cluster 
similar sequences present  within  an entire protein  data  base 
and  therefore  provide  considerably more aligned  pairs  than 
were  used  by  Dayhoff.  However. in tests of these  matrices 
using BLAST on  each of the 504 groups.  performance  was not 
noticeably  different  from  that of the Dayhoff PAM 250 matrix, 
which these  matrices  were  intended to replace, much worse 
than  matrices in the BLOSUM series (Fig. 4). Compared to 
BLOSUM 45, which  has  similar relative entropy to PAM 250, 
the  matrix of Gonnet et ai. ( 2 5 )  was  worse in 130 groups  and 
better in only 3 groups and  the  matrix of Jones et al. (26) was 
worse in 138 groups  and  better in only 5 groups. 

Relative  entropy 

FIG. 3. Searching  performance of  programs  using  members  of  the 
guanine  nucleotide-binding  prorein-coupled  receptor  family  as  que- 
ries  and  matrices  from  the BLOSUM and PAM series  scaled in half-bits 
(11). Removal of this family  from  the BLOCKS data  base  led  to  a  nearly 
identical  matrix  with  similar  performance.  Matrices  represented  (left 
to  right)  are BLOSUM (BL) 30.  35. 40. 45, 50, 5 5 ,  60, 62,  65. 70, 75. 
80.85. and 90 and PAM (P) 400.310.2SO. 220; 2OO,160,150,140. 120, 

entries missed are shown for LSHRSRAT,  RTASRAT.  and 
110. and 100. The average numbers of true  positive  Swiss-Prot 

UL33SHCMVA versus  Swiss-Prot 20. Results using BLAST and 
FASTA or SEARCH (S-W) are not comparable  to  each  other,  since 
different  detection  criteria  were  used  for  the  three  programs. 

FIG. 4.  Searching  performance  of BLAST using  different  matrices 
from  the BLOSUM (BL) series.  the PAM (P) series, and two  recent 
updates  of  the  standard  Dayhoff  matrix: GCB ( 2 5 )  and JTT (26). 
Results  are  based  on  searches  using queries  for each  of 504 different 
groups.  For  each  pair of numbers  below  a box representing  a  matrix, 
the  first  is  the  number of  groups for  which BLOSUM 62 missed  fewer 
sequences  than  that  matrix.  and  the  second  is the number of groups 
for which BLOSUM 62 missed  more. The vertical  distance  between 
each  matrix  and BLOSUM 62 is proportional to the  difference. 

Confirmation of a  Suspected  Relationship Between Trans- 
poson Open Reading Frames. While the  tests  described  above 
demonstrate that BLOSUM matrices  peqorm  better overall 
than PAM matrices. an example  indicates  the  extent  to  which 
this improvement  can  matter in  a real  situation.  We  investi- 
gated  a  suspected  relationship that is biologically attractive 
but is somewhat  equivocal  when  examined  by  objective 
criteria. Two groups  have  noticed a stretch of similarity 
between  the  predicted  protein  from the Drosophih mauriti- 
ana mariner  transposon and that  from Coenorhubdiris ele- 
guns transposon Tcl (S. Emmons  and J. Heierhorst, personal 
communications)  (Fig. 5) .  However,  this  alignment did not 
score highly enough to allow its detection in searches using 
various PAM matrices. In contrast, a BLAST search with 
BLOSUM 62 using the  mariner  predicted  protein as query 
detected this alignment as  the  best in  the  data  base  (data not 
shown). An analysis shows nonzero  scores  taken from the 
difference  matrix of Fig. 2 assigned to each  amino acid pair. 
The higher absolute  score  for BLOSUM 62 compared to PAM 
160 (E = 35 for BLOSL" 62 > PAM 160 versus Z = 14 for 
BLOSUM 62 < PAM 160) results from  many  small  differences. 
When the  scores  for this alignment  were  compared to  the 
scores  for  alignments  between  one  of  the  sequences  and IO00 
shumes of the  other.  the  score  using BLOSUM 62 was 7.6 SD 
above  the  mean. In  contrast. the  score using PAM 160 was 
only 3.0 SD above  the mean  with similar  results  for PAM 250 
and PAM 120, accounting for the  failure to  detect this rela- 
tionship in previous  data  base searches. 
Maricer IFLtiDNP.PS~IA~VE(DTLETLNWEVLPHAAYSPDL;IPSDY 

VFQQCND?~~:.-S~HVF(SWFQRRHVHLLDWPSQSPDLNPIEH 
BL62>P160  23  2  22 i 3 1 4 2  3222  2 2 
BL62<P160 1 2 2 1 1  1 2  12 1 

. . . . . . . . . . . . . . . . 
Tcl 

.... . . . . .  . 

FIG. 5. Alignment  of D. muuritiunn mariner  predicted  protein 
(amino  acids 245-295) with C. eieguns TcA  (amino  acids 235-285) 
encoded by Tcl. Difference  scores  taken  from  Fig. 2 are indicated 
just below  each  alignment  position.  Using R D F ~  with BLOSUM 62 for 
lo00 shumes  and  a  window  size  of 10, this alignment  scores 64, 
compared  to  a  mean  of 31.4 (SD = 4.32) for z = 7.6. With PAM 160, 
the  score  is 43, compared  to  a  mean  of 30.1. SD = 4.63. and L = 3.0. 
With PAM 250. z = 2.14: with PAM 120. z = 2.98. 
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DISCUSSION 
We have  found  that  substitution  matrices  based on amino 
acid pairs in blocks of aligned  protein  segments perform 
better in alignments  and homology searches  than  those based 
on accepted  mutations in closely  related  groups.  Perfor- 
mance  was  improved  overall in every  test we have  done, 
including  multiple  alignment (MULTALIN) ,  detection of un- 
gapped  alignments (BLAST). detection of gapped  alignments 
(FASTA and  Smith-Waterman), and determination of the 
significance  of an alignment ( R D F ~ ) .  The importance of such 
improved  performance  can  be profound for weakly scoring 
alignments that  are not detected in a  search or are not trusted. 
For example,  the  alignment  between  predicted  proteins  en- 
coded by manner  and  Tcl transposons  improved by more 
than 4.5 SD  above  the mean of comparisons to shuffled 
sequences when BLOSUM 62 was  used instead of PAM matri- 
ces. 

There  are  fundamental  differences  between our approach 
and  that of Dayhoff  that could account  for  the  superior 
performance of BLOSUM matrices in searches  and  alignments. 
Dayhoff  estimated  mutation rates from  substitutions  ob- 
served in closely  related  proteins  and  extrapolated  those 
rates  to model distant relationships. In our case,  frequencies 
were  obtained  directly  from  relationships  represented in  the 
blocks, regardless of evolutionary  distance.  Since  blocks 
were derived  primarily  from  the most  highly conserved 
regions of proteins, it is possible that many of the  differences 
between BLOSUM and PAM matrices  arise  from different 
constraints  on  conserved regions in general. For example, 
Dayhoff  found  asparagine to be the most mutable  residue, 
whereas, in blocks,  asparagine is involved in substitutions at 
an average  frequency.  This could  mean that an asparagine 
located  in a mutable  region of a  protein is itself highly 
mutable,  whereas,  when it is located in a  conserved  region, 
it shows  only  an  average  tendency to be  involved in substi- 
tutions. 

Another  difference is the  larger  and  more  representative 
data set used in this work. The Dayhoff  frequency  table 
included 36 pairs in which no accepted point mutations 
occurred. In contrast,  the  pairs we counted  included no fewer 
than 2369 occurrences of any  particular  substitution.  Scoring 
differences  were  especially  apparent  for  pairs  involving  rare 
amino acids  such as tryptophan  and  cysteine.  Similar  findings 
were made in the two  recent updates of the  Dayhoff  matrix 
(25, 26). However, in these  studies, no evidence  was  pre- 
sented  that  increased  data improved  performance.  Our  tests 
show  that  the  updated Dayhoff  matrices still perform poorly 
overall  when  compared to BLOSUM 62. This  suggests  that 
matrices  from  aligned  segments in blocks, which represent 
the most highly conserved  regions in proteins, are more 
appropriate  for  searches and  alignments  than are matrices 
derived by extrapolation  from  mutation rates. 

The BLOSUM series  depends only on the  identity  and 
composition of groups in Prosite  and  the  accuracy of the 

automat'ed PROTOMAT system. While the  system itself uses a 
substitution  matrix,  iterative  application  soon  leads to nearly 
the  same  set of scores, even starting with a unitary  matrix  or 
using  a  representative  subset of the  groups.  Therefore, we do 
not expect  that  these  substitution  matrices will change sig- 
nificantly in the  future. 
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