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ABSTRACT With the development of large data banks of pro-
tein and nucleic acid sequences, the need for efficient methods of
searching such banks for sequences similar to a given sequence has
become evident. We present an algorithm for the global compar-
ison ofsequences based on matching k-tuples ofsequence elements
for a fixed k. The method results in substantial reduction in the
time required to search a data bank when compared with prior
techniques of similarity analysis, with minimal loss in sensitivity.
The algorithm has also been adapted, in a separateimplementa-
tion, to produce rigorous sequence alignments. Currently, using
the DEC KL-10 system, we can compare all sequences in the en-
tire Protein Data Bank ofthe National Biomedical Research Foun-
dation with a 350-residue query sequence in less than 3 min and
carry out a similar analysis with a 500-base query sequence against
all eukaryotic sequences in the Los Alamos Nucleic Acid Data Base
in less than 2 min.

As the number of protein molecules and nucleic acid fragments
for which the sequences have been determined has grown into
the thousands (the total number of nucleotides so analyzed is
now more than one million), it has become clear that a rapid
method for carrying out similarity searches would be useful.
Such a method should allow economical study of large data
banks in search of related sequences that would then be sub-
jected to more definitive analysis.

Currently, there are several different methods in use for ana-.
lyzing the similarity oftwo sequences. For the purpose ofglobal
comparison (considering both complete sequences), there are
the methods of Fitch (1) as implemented by Dayhoff (2), of
Needleman and Wunsch (3) and Sellers (4) [see Smith et al (5)
for proof of the equivalence of these two algorithms], and of
Sankoff (6). Given a set of scoring rules, such as + 1 for a base
match and -3 for a gap, a Needleman-Wunsch type algorithm
considers all possible alignments, including gaps, and will find
an optimal alignment under the scoring rules. All ofthese meth-
ods require computer time on the order ofN x M, where N and
M are the lengths of the sequences compared. Local search
methods (a search for similar fragments oftwo sequences) have
been proposed by Korn et aL (7), Sellers (8), Smith and Water-
man (9), and Goad and Kanehisa (10). These methods are under
the same time constraints as the global methods already noted.
Dayhoff (2) has implemented an algorithm that compares a 25-
residue test subsequence from one peptide chain with all pos-
sible 25-residue subsequences from another, not allowing gaps.
If all test subsequences are used, the time is again of the order
of N X M but, in many instances, reasonable choices for test
subsequences can improve the time without significant sacrifice
in the accuracy of results.

All of the search techniques mentioned above become com-
putationally intensive and quite expensive when applied to

large banks of sequences. We shall describe here a global al-
gorithm for comparing two nucleic acid or two amino acid se-
quences. This algorithm involves the construction ofan optimal
alignment that is useful in its own right. The algorithm also re-
quires a computation time on the order ofN X M, where N and
M are the lengths of-the sequences being compared, but, for
given sequences, the computation is many times faster than the
above-mentioned methods. Results obtained by the method
and its limitations and advantages are discussed.

METHODS
Computational Methods and Data Sources. All computing

was done on the DEC KL-10 computer facility at the National
Institutes of Health. The programs are written in DEC-10 Pas-
cal.* The graphs shown were generated by using the MLAB
program facility at the National Institutes of Health. All se-
quences were taken from the Los Alamos Sequence Data Base
and the National Biomedical Research Foundation Data. Bank.
The Algorithm. We shall here describe how two sequences,

Si and S2, of lengths N1 and N2, respectively, are to be com-
pared. As motivation, it is useful to think in terms of the dot
matrix comparison of Si and S2 (11) in which the beginnings of
both sequences are placed to the upper left of the matrix and
one sequence is positioned horizontally and the other is posi-
tioned vertically. The diagonals running downward from left to
right in the dot matrix illustrate the degree of similarity that
would be found by a simple sliding comparison with the dif-
ferent possible choices of alignment register. Frequently, one
can look at the dot matrix comparison and immediately see cer-
tain diagonals that appear to have a number of points above
background and, therefore, indicate a level of similarity for the
two sequences in certain regions. It is generally true that these
significant diagonals are still clearly visible when the dot matrix
is filtered to only show matches of length k or greater, where
k is a small positive integer. For this reas'on, our attention will
be directed to such k-tuples.
The first step in the algorithm is the location ofall the k-tuple

matches between the sequences Si and S2. In precise terms,
a k-tuple match consists of two k-tuples-S1(i),Si(i + 1),
. . .,Sl(i + k - 1) from Si and S2(j),S2(j + 1), . . .,S2
x (1 + k - 1) from S2-that are identical. If there are p ele-
ments in the alphabet from which the sequences are made, then
there are pk possible different k-tuples. To locate all k-tuple
matches, we follow a method described by Dumas and Ninio
(12). We have chosen a simple method (there are many possible)
of converting any k-tuple into an integer between 1 and pk.
Then, a one-dimensional array, C, of length pk and consisting
of pointers set initially to nil is used. In a single pass through
Si, each integer position i is added to a list constructed at C(*),
where ic is the coded form of the k-tuple beginning at i in S1.

* The programs described in this paper available from the authors.

726

The publication costs ofthis article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertise-
ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact.



Proc. Nati Acad. Sci. USA 80 (1983) 727

Then, in a single pass through S2, each integer positionj marks
the beginning of k-tuple t. that codes to jc and, from the list
marked by the pointer C(jc), one reads off the positions of all
k-tuples in SI that match with tj. The speed with which the k-
tuple matches between S1 and S2 can be located by this method
is dependent on two factors. First, if in carrying out the pro-
cedure, each matching k-tuple occurred only once in each se-
quence, then the time would be of the order of the longer of
the two sequences. Second, ifa particular k-tuple occurs R times
in one sequence and T times in the other, then with all com-
binations, there are R x T matches of the two sequences pro-
duced by this k-tuple. For this reason, if very long sequences
(-100,000) are compared, the product R X T may become large
and cause the comparison time to behave as a product. For the
sequence lengths encountered in practice and the k values used,
R x T is generally a small number with an average not greater
than 4 and this results in a computation time on the order ofthe
length of the longer sequence.

For a particular choice ofk-tuple size, the algorithm does not
consider all k-tuple matches that are found between two se-
quences in making a comparison but rather those that occur in
a certain region that we term window space. Window space is
defined as a specified region around the most significant di-
agonals in the comparison. To be more precise, we represent
a diagonal by di,, where m is any integer between 1 - N2 and
NI - 1 and d. will stand for all pairs ofelements Si(i),S2(j) with
m = i - j. A k-tuple match is said to lie on d. if and only if its
matched pairs of sequence elements are part of dm. Clearly,
every k-tuple match lies on some diagonal. If dm and d. are
diagonals, the distance between them will be taken as In - ml.
A diagonal will be considered signifwant if it has a number of
k-tuple matches a certain number of standard deviations above
the mean for all diagonals with k-tuple matches. Other defi-
nitions of the term significant diagonal are possible but this has
been the most generally useful. The definition ofwindow space
requires a nonnegative integer parameter w and window space
is the collection of all diagonals within a distance w of any sig-
nificant diagonal. The k-tuple matches that occur in window
space are just those that occur on some diagonal composing
window space.
When k and w have been fixed and the significant diagonals

have been determined, window space is defined. The algorithm
then produces a Needleman-Wunsch (3) type alignment that
is optimal under certain scoring rules, which we now specify.
A score of +1 is given to each pair of sequence elements that
occur adjacent to each other in a given alignment provided they
are part of a k-tuple match produced by the alignment and this
k-tuple match occurs in window space. A score of -g is given
to each gap that occurs in either sequence between positively
scored matches in an alignment. Here the parameter g may be
set to any desired value but it is the same for all gaps and in-

dependent of their length. Under these rules, the algorithm
produces one of the alignments with the greatest possible score
(there may be more than one such alignment). Briefly, the al-
gorithm does not fill out an N1 x N2 matrix as is done in the
more standard Needleman-Wunsch (3) or Sellers (4) techniques
but attaches scores just to the k-tuple matches that occur in
window space. A more detailed discussion of the algorithm will
appear elsewhere.
To illustrate the function of the algorithm, Fig. 1 shows the

alignment produced for two nucleotide fragments when k = 3,
g = 7, and w is chosen large enough so that window space in-
cludes all 3-tuple matches. Those base matches that occur as
part ofa3-tuple match are marked by stars and all other matches
are marked by colons. Since there are 55 matches marked by
stars and two gaps (-7 each), the score for this alignment is 41.
The algorithm ensures that there is no alignment of these two
fragments that produces a higher score than 41.
The Search. When k > 1 and w is of modest size, the align-

ment algorithm attains such speed as to provide a useful and
economical method of searching large data banks of sequences.
Given a query sequence and a choice of parameters, k, w, and
g, optimal alignment scores are produced for comparison ofthe
query sequence with each sequence in the data bank. This pro-
duces a list ofraw scores, one for each bank sequence. In general
and for random sequence comparisons, the score is dependent
on the lengths of the query and bank sequences. The raw score
(RSore) is converted to what we term the factored score by the
normalizing transformation

Fsre = (Rswre - M)/SD, [1]
where M is the mean of the distribution. This effectively re-
moves dependence on the length of the query sequence. By
repeated querying of the bank with randomly generated se-
quences of different lengths and the use of curve fitting, an
empirical correction of the factored score is made dependent
on the length of the bank sequence that produced it. The cor-
rected scores are then ranked from the highest to the lowest to
produce an ordering of the bank sequences beginning with
those most similar (highest corrected score) to the query se-
quence.

It would clearly be desirable to assign P values to the cor-
rected scores produced in a search; however, the assignment
of a meaningful P value to a similarity score produced by a
Needleman-Wunsch type method is a difficult theoretical
problem. Because of the global optimization involved, reason-
ably simple combinatorial methods such as those used in the
local method of Goad and Kanehisa (10) are not applicable. An-
alytical results obtained by Steele (13) are inadequate to assign
P values and deal only with the case when the gap penalty is
zero.
An approach that has been used in an attempt to define the

X 30 40 50 * 60 70 80 90
AACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGG

*** . ***** ***** ***** ***** ********** ***

TGCTGTCTCTTGCCTGTGGGGAAAGGTGAACTCCGATGAAGT- TGGTGGTGAGGCCCTGGGCAGG
X 40 50 60 70 80 90

100 110 120 130 140 150 X
ATGTTCCTGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTC---GACCTGAGCCACGGCTCTG
.::: :*** *** :.. *** *** ***** : :.**

CTGCTGGTTGTCTACCCTTGGACCCAGCGGTACTTTGATAGCTTTGGAGACCTATCCTCTGCCTCTGCTA
100 110 120 130 140 150 160X

FIG. 1. Example of the actual program output for implementation of the alignment algorithm with k = 3, g = 7, and w large enough to in-
clude all diagonals in window space (the same alignment is produced with w = 20). (The numbering shown is based on the larger sequences from
which the DNA fragments were taken.) X, point at which the original DNA has been cut, here only at the ends; *, match that is part of a 3-tuple
match; :, all other matches. Gaps that occur are automatically placed adjacent to the 3-tuple match occurring to their right (toward the 3' ends
of the sequences).
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significance of a Needleman-Wunsch type alignment is Monte
Carlo simulation. There are two problems with its use. (i) In
general, the accuracy of such a method depends on the ability
to simulate actual biological sequences in a meaningful way

making use of all the important statistical properties of such
sequences. To what extent the generally used random shuffle
is adequate for this purpose is not known. (ii) A useful Monte
Carlo simulation would require a relatively large number of
trials to assign a P value to the highest scores in a search and
this is inconsistent with an economical and generally useful
search technique. The enumerated difficulties have led us to
the following method of statistical analysis. We assume that the
length correction has been made. Then, for any given query

sequence, it is reasonable to assume that most of the sequences

in the data bank are randomly related to it. Thus, with the pos-

sible removal ofa few outstanding scores, a random distribution
of scores is obtained from any given search. The corrected score

(Csyjre) in this distribution is then converted to a normalized
score by the transformation

Z = (Cscore -M)/SD. [2]

We then let Mv be the smallest z among all the transformed
scores and perform the transformation

z' = ln(z-Mv + 1). [3]
It is found that the z' values are approximately normally dis-
tributed for both protein and nucleic acid data banks. Fig. 2
illustrates the similarity between the distributions obtained
from random and real sequences, confirming our hypothesis
that even for real sequences, the distribution is basically ran-

dom. In practice, we use the distribution of transformed scores

(by Eqs. 2 and 3) to assign to each bank sequence a significance
value that is the number of standard deviations its transformed
score is above the mean in the distribution. If the distribution
were normal, such a significance value could be readily con-

verted to a P value; however, the approximate normality of the
distribution only allows us at this point to interpret it as an em-
pirical guide to the significance of similarity between the query
and bank sequences. The statistical analysis we have given is
quite satisfactory for sequences of approximately average com-

position relative to the data bank; however, large deviations in
a query sequence from such a composition may lead to the fol-
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lowing: (i) a lower average score against the bank and (ii) a rel-
atively high score for those sequences in the bank having a simi-
larly biased composition. This will result in misleading significance
levels.

RESULTS AND DISCUSSION

The algorithm we have described produces alignments closely
related to the alignments produced by the Needleman-Wunsch
method as extended by Smith et al. (5). In fact, with k = 1 and
w chosen large enough so that window space includes all di-
agonals, our algorithm is equivalent to a Needleman-Wunsch
algorithm with the scoring parameters set the same. When k
> 1 and w is relatively small, the algorithm still produces align-
ments that provide a good approximation to a Needleman-
Wunsch alignment.

For the purpose of comparison, 28 pairs of nucleic acid se-

quences having a range of similarities from the random to the
closely related were selected from the Los Alamos Nucleic Acid
Sequence Data Bank. Alignments were produced by our
method with k = 4 (as is currently implemented in the nucleic
acid search program), a window of 10, and a gap penalty of six.
Gaps between k-tuples were arbitrarily placed at the 3' end of
the intervals between the k-tuples. Alignments were also pro-
duced by the Needleman-Wunsch method as implemented in
the Los Alamos sequence analysis package with matches, mis-
matches, and gaps receiving scores of 1, -2, and -3, respec-
tively. For each pair of sequences, the actual number of match-
ing bases as a percentage of the length of the shorter sequence
was calculated for the two methods of alignment. The results
are shown in Fig. 3. Notably, all points lie on or above the di-
agonal because the Needleman-Wunsch algorithm can opti-
mize the placement of gaps between matching k-tuples and can

optimize to a finer level of detail. Nevertheless, the agreement
between the two methods is excellent, even with k = 4.

It is evident that the parameter w is an important factor in
determining the size ofwindow space in a comparison and thus
in influencing the time required in a calculation. It is important
to know how sensitive scores are to w, as this gives some in-
dication of the gain that may be expected by optimizing in a

larger window space. To test the effect of different w values,
100 pairs of randomly generated nucleic acid sequences, each
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FIG. 2. Similarity between distributions obtained from random and
real sequences. X, Frequency distribution of transformed scores ob-
tained in a global search of the National Biomedical Research Foun-
dation Protein Data Bank using human growth hormone as query se-
quence (scores in the tail to the right represent sequences having
significant similarity to the query sequence); -, distribution obtained
after a random shuffle of the human growth hormone; - -, normal curve
having the same area, mean, and SD as the search-generated fre-
quency distributions.
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FIG. 3. Twenty-eight pairs of nucleic acid sequences were ana-
lyzed to produce an alignment by their 4-tuples using the global al-
gorithm and by the Needleman-Wunsch algorithm as implemented in
the LosAlamos sequence analysis package (forparameter choices used,
see text). The actual number of matches produced in the alignment as
a percentage of the length of the shorter sequence for the two methods
is plotted as a point for each comparison.
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sequence 500 bases long, were compared by the algorithm with
k = 4 and g = 7. The comparison was done with a w of 5 and
the mean raw score was 33.25 with a standard deviation of 3.75.
With a larger window, raw scores cannot decrease. A repeat
comparison with w = 20 produced an average increase in the
raw score of 0.69 with a standard deviation of 1.13. When w
= 40 was used, the average increase in raw score over the case
w = 20 was 0.04 with a standard deviation of 0.24. This indi-
cates that minor changes will occur in moving from a w of 5 to
one of 20 but, above w = 20, very little improvement in score
and, consequently, in alignment can be expected.
The dependence of the algorithmic computation time on the

parameters k and w and on the lengths of the sequences is es-
pecially important when considering searches of large data
banks ofsequences. These dependencies are illustrated in Figs.
4 and 5. The average computation time for comparison of sim-
ulated nucleic acid sequences, each 500 bases long, is shown
as a function of k-tuple size for three different choices ofw in
Fig. 4. The smaller window sizes significantly reduce the de-
pendence of computation time on k. In addition, it is evident
that a w of20 is a relatively optimum value for, as noted above,
little improvement in alignments can be expected by increasing
w and little improvement in speed can be made by decreasing
it. The dependence of computation time on length is shown in
Fig. 5. Each point on the graph represents an average time to
compare two randomly generated nucleic acid sequences ofthe
stated length with k = 4, w = 20, and g = 7. It is clear that the
time is of the order of N2, where N is sequence length. Such
a time dependence is the general rule for Needleman-Wunsch
type alignment algorithms. For comparison, running our al-
gorithm on a DEC KL-10 system with k = 4 and w = 20 will
produce an alignment of two nucleic acid sequences of length
500 in 0.4 sec while running a full Needleman-Wunsch or Sell-
ers alignment on a comparable system requires approximately
1 min. Direct comparison of core requirements for the two
methods is not meaningful because, in general, core require-
ments can be decreased in exchange for increases in compu-
tation time. What could manifest itself as a core differential
does, however, manifest itself as a part of the time differential
seen for the two methods.
The search method we have presented is best illustrated by
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FIG. 4. Dependence of computation time on values of k and w.

Each computation time shown is the mean ± 1 SD taken over a set of
50 comparisons of randomly generated nucleic acid sequences of

length 500. Each curve has points for values of k from 2 to 5. The three
curves represent three different values of the window parameter w:

-, w = 5; - -, w = 20; -, w = 100.
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FIG. 5. Dependence of computation time on length of sequence.
Each computation time shown is the mean ± 1 SD taken over a set of
50 comparisons of randomly generated nucleic acid sequences. The
different lengths used for the points plotted were 50, 100, 500, 1,000,
1,500, and 2,000 bases. The parameters were fixed at k = 4, w = 20,
and g = 7.

the results of test cases. For this purpose, we have searched the
National Biomedical Research Foundation Protein Data Bank
using the catalytic chain of cAMP-dependent protein kinase
from bovine cardiac muscle. [Barker and Dayhoff (14) have re-
ported a significant similarity between this sequence and the
transforming protein sequences translated from the Rous avian
and Moloney murine sarcoma virus src genes.] We have also
searched the same data bank using the human somatotropin
precursor sequence to see whether the relatively distant rela-
tionship between the somatotropin and prolactin sequences
would be detected. The results of searches for these test cases
are given in Table 1 (for the somatotropin query, the first five
sequences were the five other growth hormones in the bank).
These examples show that the search technique we have de-
scribed is effective and illustrate the consequences of the dif-
ferent parameter choices made. Other test searches we have
made include the following. When the mouse /3 major globin
protein was used as a query, the search found all (3 globin and
,-globin-like sequences, followed immediately by all a-globins
and myoglobins, and finally by leghemoglobins. When the large

Table 1. Results of searches with various query sequences and
parameters: Relative rank in protein bank

Gap penalty

Query Comparison 1 2 3

Bovine cAMP-dependent Moloney murine virus 2 1 2
protein kinase transforming protein

Rous sarcoma virus 2 6 >40
transforming protein

Human somatotropin Human prolactin 6 6 6
precursor* precursor

Pig prolactin 8 7 7
Rat prolactin precursor 7 8 23
Sheep and bovine 10 11 19

prolactin

In some instances, the listed sequence tied with several other se-

quences in the bank at the indicated ranking. The value w = 10 was
used.
* The first five sequences in all ratings are the other growth hormones
in the bank.
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intron of the mouse fBmaJ globin gene was used as a query se-
quence, the top three sequences for eukaryotes were the anal-
ogous introns from other ,f3globin or P-globin-like genes. Thus,
the technique appears able to detect relatively weak similari-
ties. As with many other algorithms, there is some ambiguity
in the parameter settings for best results, as shown by the results
of Table 1. [For cogent remarks on this subject, see Smith et
al. (5).]

Because our algorithm optimizes within the constraints of k
and w, one cannot obtain the resolution that can be expected
from the full Needleman-Wunsch or Sellers type algorithm.
Although this problem can be progressively alleviated by de-
creasing k and increasing w, the results shown in Fig. 3 indicate
that significant savings in time can be obtained at very little cost
in the quality of the alignments. In fact, it may be fairly asked
whether the more optimal alignment ofa few relatively isolated
sequence elements (not parts of k-tuple matches) that can be
obtained by the full Needleman-Wunsch alignment over our
method really gives a more accurate picture of biological truth.
To this question, we do not know the answer.

The great advantage of the method we have presented is its
speed. Currently, using the DEC KL-10 system, we are able
to search the National Biomedical Foundation Protein Data
Bank comparing all entries with a 350-residue query sequence
in less than 3 min. On the same system, all eukaryotic sequences
in the Los Alamos Nucleic Acid Data Base can be compared with
a query sequence 500 bases long in less than 2 min. The sig-
nificance of the results of a search could be assessed by more
definitive calculations. Of greater importance, all results must
be assessed in terms of biological context until a closer corre-
lation between biology and the models by which we attempt to
understand biology has been developed.

The algorithm described here has been adapted to produce
local best alignments after the manner of Smith and Waterman
(9). Searches based on local best alignments have proven more
useful than global searches in dealing with the inhomogeneity
of nucleic acids.

We would like to thank Dr. T. Smith for supplying us with a specially
edited tape of the eukaryotic nucleic acid sequences and Dr. H. Saroff
for a stripped version of the Protein Data Bank. We would also like to
thank Dr. P. Haeberli for a helpful discussion regarding the efficient
location of k-tuple matches.
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