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Short Summary 11 

Orphan crops play important roles in global food and nutrition security and represent 12 

a broad gene pool. Here, we provide an overview of genomic studies on orphan crops 13 

and their wild relatives (including weeds), and discuss the potential mutual utilization 14 

of genomic results among major crops, orphan crops and their wild relatives. 15 

 16 
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Abstract 18 

More than half of the calories consumed by humans are provided by three major 19 

cereal crops (rice, maize and wheat). Orphan crops are usually well adapted to 20 

low-input agricultural conditions, and they not only play vital roles in local areas but 21 

can also contribute to food and nutritional needs worldwide. Interestingly, many wild 22 

relatives of orphan crops are important weeds of major crops. Although orphan crops 23 

and their wild relatives have received little attention from researchers for many years, 24 

genomic studies on these plants have recently been performed. Here, we provide an 25 

overview of genomic studies on orphan crops, with a focus on orphan cereals and 26 

their wild relatives. At least 12 orphan cereals and/or their wild relatives have been 27 

genome sequenced. In addition to genomic benefits for orphan crop breeding, we 28 

discuss the potential mutual utilization of genomic results among major crops, orphan 29 

crops and their wild relatives (including weeds) and provide perspectives on the 30 

genetic improvement of both orphan and major crops (including de novo 31 

domestication of orphan crops) in the coming genomic era. 32 
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Introduction 36 

More than 2,500 species have undergone some extent of domestication, and 37 

approximately 300 have been fully domesticated (Dirzo and Raven, 2003; Fernie and 38 

Yang, 2019). However, 70% of the calories consumed by humans come from only 15 39 

crop species, among which three major crop species (rice, maize and wheat) directly 40 

contribute more than half of all the calories consumed (Chang et al., 2019; Dawson et 41 

al., 2019). The narrowing of diversity within crop species reduces global food security, 42 

and diversifying crop production is critical for sustainable food systems (Dawson et 43 

al., 2019; Khoury et al., 2014). Additionally, the growth of the human population 44 

requires a sustainable food supply to meet energy and nutritional needs, which is one 45 

of the greatest global challenges (Chang et al., 2019). Climate change resulting in 46 

increased drought and heat makes current crop production particularly challenging 47 

(Mabhaudhi et al., 2019). Environmental degradation and costs resulting from heavy 48 

reliance on chemical fertilizers and pesticides lead to unsustainable productivity 49 

(Fernie and Yang, 2019). One of the possible solutions for these challenges is the use 50 

of orphan crops, which can diversify crop production, provide more sources for food 51 

and contribute genetic resources. It has been recognized that orphan crops play 52 

important roles in global food and nutrition security and represent a broad gene pool 53 

for future crop improvement (Mabhaudhi et al., 2019). 54 

Orphan crops are often defined as staple crops that are grown in limited regions, have 55 

relatively good adaptation to low-input conditions, are not extensively traded and 56 

have received little attention from researchers (Dawson et al., 2019; Ribaut and 57 

Ragot, 2019; Varshney et al., 2012b). Orphan crops are also known as underutilized, 58 

lost, minor, or neglected crops and as crops for the future (Tadele, 2019). Although 59 

orphan crops have limited economic value worldwide, they are often highly important 60 

at the local level, especially in developing countries (Chiurugwi et al., 2019). 61 

Since the publication of the Arabidopsis genome in 2000, more than 400 flowering 62 

plant species have been sequenced as of August 2020 63 

(https://www.plabipd.de/index.ep). Advances in genome sequencing have promoted 64 
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genome-based breeding techniques, including genome-wide association studies, 65 

genomic selection and design breeding. Due to technological breakthroughs in 66 

genome sequencing and reduced costs, orphan crops have also entered their genomic 67 

era, accelerating the identification of genes underlying important agronomic traits, 68 

breeding processes and the understanding of the evolution of those species. In this 69 

article, we focus on orphan cereals and their relatives (referred to here as species 70 

within the same genus) whose genome sequence is available. In addition to an 71 

overview of genomic studies on orphan crops and their wild relatives, we provide 72 

perspectives on how to promote the breeding of both orphan and major crops by 73 

utilizing their genomic resources, aiming to face agricultural challenges in the 21st 74 

century. 75 

 76 

Orphan crops and their wild relatives 77 

Overview of orphan crops 78 

Orphan crops mainly include cereals, pseudocereals, legumes and root crops. Their 79 

cultivation area and the major countries in which they are grown were reviewed by 80 

Tadele et al. (2019). Select orphan crops (with a focus on cereals) are briefly 81 

described below. 82 

In addition to the three major crops (rice, maize and wheat), the grass family (Poaceae 83 

or Gramineae) also includes many orphan crops. The tribe Paniceae (subfamily 84 

Panicoideae) includes foxtail millet (Setaria italica), pearl millet (Pennisetum 85 

glaucum, syn. Cenchrus americanus), broomcorn millet (also known as common 86 

millet, proso millet and hog millet; Panicum miliaceum), barnyard millet 87 

(Echinochloa spp.), and fonio millet (Digitaria exilis), etc. (Figure 1). Foxtail millet 88 

and broomcorn millet are among the most ancient domesticated crops (Lu et al., 2009). 89 

They were initially domesticated in northern China, where they eventually became the 90 

dominant food crops (they are members of the ‘Five Grains of China’; the Chinese 91 

name is 'Sù' (‘粟’) for foxtail millet and 'Shǔ' (‘黍’) or 'Jì' (‘稷’) for broomcorn millet). 92 
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In ancient northern China, agriculture was based on the domestication of broomcorn 93 

millet and foxtail millet, which then greatly contributed to the development of 94 

Chinese civilization (Doust and Diao, 2017). Even today, foxtail millet and 95 

broomcorn millet are important crops in the arid and semiarid regions of East Asia 96 

(Lu et al., 2009). Pearl millet is widely cultivated as a staple food grain and forage 97 

crop in arid and semiarid regions of sub-Saharan Africa, India and South Asia 98 

(Varshney et al., 2017b). This species was domesticated more than 4,500 years ago 99 

and is considered to have originated in Africa (Hu et al., 2015). Barnyard millet is 100 

widely cultivated in Asia, particularly in India, China, Japan and Korea (Renganathan 101 

et al., 2020). It comprises at least two different cultivated hexaploid species: 102 

Echinochloa esculenta in East Asia and Echinochloa frumentacea in India 103 

(Yamaguchi et al., 2005). In Yunnan Province, China, a cultivated form of tetraploid 104 

Echinochloa was recognized (Yabuno, 1996), and cultivated hexaploids were also 105 

found to be grown for forage purposes according to our survey. Barnyard millet is 106 

also an ancient crop, and China is one of its origins, according to Nikolai Vavilov’s 107 

studies on the centers of origin of cultivated plants (Vavilov, 1951). Based on the 108 

evidence of phytolith and starch microfossils, as a major subsistence resource, 109 

Echinochloa millet was harvested and processed alongside rice during the Shangshan 110 

culture period (~10,000 years ago) (Yang et al., 2015). Fonio millet is an orphan 111 

cereal in Africa and is also referred to as 'hungry rice', as it is often grown to avoid 112 

food shortages during the lean season. Despite its local importance, compared with 113 

other cereal species, fonio millet is underexploited and still has many unfavorable 114 

characteristics, such as seed shattering and relatively low yields (Abrouk et al., 2020). 115 

In the subfamily Panicoideae, there is another orphan crop species, adlay (also known 116 

as Job’s tears; Coix lacryma-jobi), that is closely related to sorghum and belongs to 117 

the tribe Andropogoneae (Guo et al., 2020) (Figure 1). C. lacryma-jobi is widely 118 

grown in Asian countries, including China, Japan and Korea, as a cereal and 119 

medicinal crop species (Kang et al., 2020). 120 

Finger millet (Eleusine coracana) and tef (Eragrostis tef) are the only two species that 121 
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are in the subfamily Chloridoideae that are cultivated as cereals for human 122 

consumption (Chanyalew et al., 2019) (Figure 1). Finger millet was domesticated 123 

more than 5,000 years ago in the region spanning what is currently Uganda to 124 

Ethiopia (Hatakeyama et al., 2018). Finger millet was subsequently introduced to the 125 

Western Ghats region of India, which made India the secondary center of diversity for 126 

finger millet. Finger millet is considered the fourth most important type of millet after 127 

sorghum, pearl millet and foxtail millet (Hittalmani et al., 2017). Tef is the most 128 

important cereal in Ethiopia in terms of production, consumption and cash crop value, 129 

and its grains yield the best-quality 'injera', a traditional food in Ethiopia (Chanyalew 130 

et al., 2019; Girma et al., 2014). Tef is grown primarily by small-scale subsistence 131 

farmers, and thousands of locally adapted cultivars have been developed (VanBuren et 132 

al., 2020). In addition, weeping lovegrass (E. curvula), which belongs to the same 133 

genus as tef, is grown for forage purposes (Carballo et al., 2019). 134 

Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley 135 

(Hordeum vulgare), belonging to the Triticeae tribe (subfamily Pooideae). Rye is an 136 

important crop for food and feed in Central and Eastern Europe (Bauer et al., 2017). 137 

Intermediate wheatgrass (Thinopyrum intermedium), native to parts of Eastern Europe 138 

and western Asia, has been widely used for forage production in North America and 139 

has been domesticated to be perennial grain crop recently (DeHaan et al., 2020; 140 

Larson et al., 2019). Another nutritionally important crop of the subfamily Pooideae is 141 

oat (Avena sativa), grown as a source of food and feed (Maughan et al., 2019).  142 

Zizania belongs to the same Oryzeae tribe (subfamily Oryzoideae) as rice (Figure 1), 143 

and Zizania latifolia is a lost ancient cereal crop species according to Chinese history 144 

(its Chinese name is 'Gū'). Chinese historical records concerning 'Gū' show that its 145 

grains were presented as tributes to the nobles in the Zhou dynasty (1046-256 BC) 146 

(Zhao et al., 2019). After the Tang and Song dynasties, 'Gū' gradually disappeared and 147 

was replaced with rice (Wang et al., 2013). Z. latifolia was also domesticated as a 148 

perennial vegetable crop called 'Jiāobái', which is now widely cultivated in China and 149 

other Asian countries (Guo et al., 2015). Another annual species (Zizania palustris) 150 
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within this genus is native to North America (where it is referred to as 'wild rice') and 151 

has also been domesticated as a cereal (wildrice) in the USA in the last century 152 

(Hayes et al., 1989). 153 

Other orphan crops include pseudocereals (e.g., Amaranth (Amaranthus spp.), 154 

buckwheat (Fagopyrum esculentum) and quinoa (Chenopodium quinoa)), root crops 155 

(e.g., cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and yam 156 

(Dioscorea spp.)) and legumes. Legumes compose the third largest family of 157 

flowering plants that provide important sources of food, fodder, oil and fiber products. 158 

Legumes are divided into three subfamilies, among which the subfamily 159 

Papilionoideae includes essentially all the major legume crops (Varshney et al., 2009). 160 

Among legumes, soybean (Glycine max) is undoubtedly considered a major crop, but 161 

the others can be classified as orphan crops (some important orphan legumes listed in 162 

Supplementary Table 1). For example, groundnut/peanut (Arachis hypogaea), which 163 

is widely grown worldwide, is among the most important oil and food legumes and 164 

has gradually received substantial amounts of scientific research, especially related to 165 

the field of genomics (Bertioli et al., 2019; Chen et al., 2019; Zhuang et al., 2019). 166 

There are two types of orphan legume species: cool-season grain legumes, such as 167 

chickpea (Cicer arietinum), pea (Pisum sativum) and lentil (Lens culinaris), and 168 

warm-season grain legumes, such as common bean (Phaseolus vulgaris), cowpea 169 

(Vigna unguiculata) and mung bean (Vigna radiata) (Kreplak et al., 2019). Orphan 170 

legumes also include forage crops such as alfalfa (Medicago sativa) (Chen et al., 171 

2020; Shen et al., 2020) and clover (Trifolium spp.) (Hirakawa et al., 2016). 172 

 173 

Many wild relatives of orphan crops are weeds 174 

Many wild relatives (referred to here as species within the same genus) of orphan 175 

crops, particularly orphan cereals, are considered major agricultural weeds that grow 176 

together with major crops in the same ecological niche (Figure 1). For example, 177 

cultivated foxtail millet was domesticated from wild green foxtail (Seteria viridis), 178 
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which is one of the most widespread weeds worldwide and is typically found in 179 

agricultural fields, on roadsides and in open waste areas (Doust and Diao, 2017; 180 

Schroder et al., 2017). Green foxtail is one of the major invasive weeds in maize, 181 

soybean and wheat fields (Delye et al., 2002). 182 

The genus Echinochloa includes numerous problematic weed species, among which 183 

hexaploid E. crus-galli is dominant; this species is distributed in both paddy fields and 184 

nonpaddy fields (such as upland crop areas) (Ye et al., 2014). It causes substantial 185 

losses in crop yields worldwide, particularly for rice, and is considered one of the 186 

most serious weeds in agriculture (Ye et al., 2014). In rice paddy fields, the 187 

morphological similarity between rice and E. crus-galli at the seedling stage (i.e., 188 

mimicry) makes it hard for farmers to distinguish them and thus remove those weeds 189 

from paddies (Ye et al., 2019). Another mimetic weed of this genus in rice paddy 190 

fields is the tetraploid Echinochloa oryzicola (also called Echinochloa phyllopogon), 191 

which is the wild counterpart of Mosuo barnyard millet cultivated in Yunnan Province, 192 

China (Yabuno, 1996). 193 

The genus Digitaria, to which fonio millet belongs, includes the common weed 194 

species Digitaria sanguinalis (large crabgrass). Large crabgrass is a problematic weed 195 

in turfgrass and various crops, including maize, cotton, sorghum, rice and other 196 

vegetable crops (Aguyoh and Masiunas, 2003; Li et al., 2017; Turner et al., 2012). 197 

The genus Eleusine, to which finger millet belongs, includes the weed species 198 

goosegrass (Eleusine indica), one of the most destructive weeds worldwide (Zhang et 199 

al., 2019). It has been reported that a single goosegrass plant can produce up to 200 

140,000 seeds, which makes its spread rapidly (Chin, 1979). It is a serious weed in 201 

orchards, vegetable farms and many agronomic crops, such as cotton, maize and 202 

legume crops (Ma et al., 2015). 203 

The weedy form of rye is considered the putative ancestor of modern cultivated rye. 204 

Weedy rye grows together with wheat and barley, and they share morphological 205 

similarity (i.e., mimicry). When cultivated under more severe conditions, such as 206 
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colder winters and poor soils, the mimetic weedy rye had better adaptation than wheat 207 

and barley and was then domesticated to be a desirable crop (McElroy, 2014). Oat has 208 

a similar domestication process to rye, i.e., evolved from weedy oat. This is the theory 209 

of 'Vavilovian mimicry', i.e., wild species became a mimetic weed that may have 210 

already acquired some domestication traits, and then the weed was fully domesticated 211 

to be a crop. These types of crops are called secondary crops (McElroy, 2014; 212 

Schreiber et al., 2017). 213 

 214 

Beneficial traits of orphan crops and their wild relatives 215 

There are many beneficial traits of orphan crops and their wild relatives compared 216 

with major crops. Generally, they present high photosynthetic efficiency, are tolerant 217 

to various stresses and/or contribute nutritional and/or medicinal compounds. Most 218 

orphan cereals, including foxtail millet, pearl millet, broomcorn millet, barnyard 219 

millet, fonio millet, adlay, finger millet and tef, utilize the highly efficient C4 220 

photosynthesis pathway (Chanyalew et al., 2019; Doust and Diao, 2017; Hittalmani et 221 

al., 2017). Accordingly, their wild relatives also adopted the C4 pathway. Compared 222 

with C3 photosynthesis, C4 photosynthesis promotes the efficient use of nitrogen and 223 

water while reducing photorespiration to a minimum in hot and arid climates (Schuler 224 

et al., 2016). 225 

Drought is an inevitable outcome of global climate change and poses severe threats to 226 

agriculture. It is well known that foxtail millet and its wild progenitor green foxtail 227 

are drought tolerant (Doust and Diao, 2017). Pearl millet is well suited to growth 228 

under harsh conditions, including low soil fertility, high soil pH, high soil Al3+ 229 

saturation, low soil moisture, high temperature and high salinity (Varshney et al., 230 

2017b). Broomcorn millet has been reported to be highly drought tolerant (Shi et al., 231 

2019; Zou et al., 2019). Similarly, barnyard millet can grow under adverse 232 

environmental conditions with almost no inputs and can withstand various abiotic 233 

stresses (Renganathan et al., 2020). Fonio millet is drought tolerant and adapted to 234 
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nutrient-poor and sandy soils (Abrouk et al., 2020), and tef is tolerant to biotic and 235 

abiotic stresses, particularly drought and waterlogging (Cannarozzi et al., 2014; 236 

Chanyalew et al., 2019). Rye is tolerant to biotic and abiotic stresses and exhibits high 237 

yield potential under marginal conditions (Rabanus-Wallace et al., 2019). 238 

Foxtail millet contains a wide range of health-promoting components, including 239 

proteins, dietary fibers, vitamins and minerals (Sharma and Niranjan, 2018). The 240 

grains of broomcorn millet are highly nutritious and have high contents of proteins, 241 

minerals and antioxidants (Zou et al., 2019). Similarly, the grains of barnyard millet 242 

and pearl millet contain high contents of protein, fiber and micronutrients such as iron 243 

and zinc (Renganathan et al., 2020; Varshney et al., 2017b). Adlay seeds constitute 244 

nutritionally balanced food and have a high protein content, and seed extracts have 245 

been reported to exert various pharmacological activities, such as anticancer, 246 

antioxidant, anti-inflammatory, anti-allergic, antidiabetic and gastroprotective effects 247 

(Guo et al., 2020; Kang et al., 2020; Zhu, 2017). Finger millet contains exceptionally 248 

high contents of calcium and several valuable amino acids, including lysine, threonine 249 

and valine (Ceasar et al., 2018; Saleh et al., 2013), and grains of tef are rich in 250 

essential amino acids, particularly alanine, methionine, threonine and tyrosine 251 

(Chanyalew et al., 2019). Oat is a nutritionally important crop containing high levels 252 

of calcium, β-glucan soluble fiber and high-quality oil and protein (Maughan et al., 253 

2019). Grains of Gu contain dietary fiber and minerals and have a high protein 254 

efficiency ratio (Zhai et al., 2001). 255 

 256 

Genomic studies of orphan crops and their wild relatives 257 

De novo sequencing of genomes 258 

Efforts in sequencing orphan crop genomes have been made, and several genome 259 

sequencing initiatives targeting orphan crops, e.g., the African Orphan Crops 260 

Consortium (AOCC; http://africanorphancrops.org/), have been established in the last 261 

ten years. AOCC aims to sequence the genomes of 101 traditional African food plant 262 
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species, facilitating their genetic improvement (Hendre et al., 2019; Tadele, 2019). 263 

Significant advances in genome sequencing have been achieved in recent years in the 264 

grass family (Supplementary Table 1), and at least 11 reference genomes of orphan 265 

cereals (including genomes of their relatives) have been published (Figure 1). Foxtail 266 

millet was the first orphan cereal to be sequenced, which was performed by two 267 

groups (Bennetzen et al., 2012; Zhang et al., 2012). Foxtail millet is diploid (2n = 2× 268 

=18) and has a relatively small genome size (~490 Mb) (Zhang et al., 2012). The 269 

complete genome sequence of green foxtail is available (Mamidi et al., 2020), and the 270 

genome of another highly transformable accession (ME034V) was also recently 271 

published (Thielen et al., 2020). Pearl millet is a highly cross-pollinated diploid (2n = 272 

2× = 14); this species has a relatively large genome (~1.8 Gb) and a high content 273 

(77.2%) of repetitive sequences (Varshney et al., 2017b). Broomcorn millet is an 274 

allotetraploid (2n = 4× = 36; genome size of ~900 Mb), and its reference genome has 275 

been published (Shi et al., 2019; Zou et al., 2019). Reference genomes of barnyard 276 

millets are still lacking; however, we have sequenced their wild relatives (two 277 

important agricultural weed species: E. crus-galli and E. oryzicola). The genome 278 

assembly of E. crus-galli (2n = 6× = 54; ~1.4 Gb) was first completed in 2017 (Guo et 279 

al., 2017) and has since been improved substantially through third-generation long 280 

reads in 2020 (Ye et al., 2020). The complete genome sequence of E. oryzicola (2n = 281 

4× = 36; ~1.0 Gb), a progenitor of E. crus-galli, was made available at the same time 282 

(Ye et al., 2020). The genomes of several other orphan cereals, such as fonio millet 283 

(2n = 4× = 36; 893 Mb), adlay (2n = 2× = 20; 1.8 Gb) and wild Coix (C. aquatica), 284 

were also sequenced in 2020 (Abrouk et al., 2020; Guo et al., 2020; Kang et al., 2020; 285 

Liu et al., 2020a). 286 

A draft genome sequence of finger millet (2n = 4× = 36; ~1.5 Gb) was published by 287 

two groups (Hatakeyama et al., 2018; Hittalmani et al., 2017). A draft assembly of its 288 

wild relative, the weed species goosegrass (2n = 2× = 18; ~584 Mb), was also made 289 

available recently (Zhang et al., 2019). The genome sequence of tef (2n = 2× = 40; 290 

~622 Mb) was first published in 2014 (Cannarozzi et al., 2014), and a 291 
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chromosome-scale assembly was recently reported (VanBuren et al., 2020). In 292 

addition, weeping lovegrass has also been genome sequenced (Carballo et al., 2019). 293 

Rye is diploid with a large genome (2n = 2× = 14; ~ 7.9 Gb), and Bauer et al. (2017) 294 

reported its draft genome sequence covering a total length of 2.8 Gb. 295 

Rabanus-Wallace et al. (2019) reported a new version of the genome sequence 296 

representing 6.7 Gb. Intermediate wheatgrass has a large and complex allohexaploid 297 

genome (2n = 6× = 42; ~12 Gb) and its genome sequence is available at Phytozome 298 

database. Cultivated oat is allohexaploid (2n = 6× = 42), and its genome sequence is 299 

not yet available. Genome sequences of two diploid progenitor species (A. atlantica 300 

and A. eriantha) have been released by Maughan et al. (2019). For the extinct cereal 301 

'Gū', we reported the genome sequence of wild Z. latifolia (2n = 2× = 34; ~590 Mb) 302 

(Guo et al., 2015). 303 

To date, the genomes of at least 16 orphan legume crop species have been sequenced 304 

(Supplementary Table 2). Among these species, their genome sizes vary, from 420 Mb 305 

(dolichos bean) to 4.45 Gb (pea). Pigeonpea is the first orphan legume whose genome 306 

was de novo sequenced, which was published in 2012 (Varshney et al., 2012a). The 307 

genomes of the pseudocereals amaranth (Clouse et al., 2016), buckwheat (Yasui et al., 308 

2016) and quinoa (Yasui et al., 2016; Jarvis et al., 2017; Zou et al., 2017) and the root 309 

crops cassava (Wang et al., 2014), sweet potato (Yang et al., 2017) and yams (Siadjeu 310 

et al., 2020; Tamiru et al., 2017) have also been sequenced. 311 

 312 

Genome resequencing of populations 313 

Similar to major crop species, whole-genome resequencing (WGRS) studies have also 314 

been carried out on orphan crop species (Table 1). Among orphan cereals, WGRS was 315 

first performed on foxtail millet. Jia et al. (2013) resequenced the genomes of 916 316 

diverse foxtail millet varieties and identified 36 selective sweeps that seem to have 317 

occurred during modern breeding. Approximately 600 wild green foxtail accessions 318 

were recently resequenced with deep-depth coverage (an average of 42.6×), and a 319 
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novel domestication gene involved in seed shattering was identified (Huang et al., 320 

2019; Mamidi et al., 2020). 321 

Using a combination of WGRS and reduced-representation sequencing techniques, 322 

Varshney et al. (2017) resequenced the genomes of 994 pearl millet lines. Principal 323 

component analysis and a phylogenetic tree revealed four main clusters of these lines, 324 

including one group containing cultivated germplasm and three groups containing 325 

wild accessions, which were geographically separated. The closest of the wild groups 326 

to the cultivated samples were from the central part of West Africa, indicating the 327 

origin of pearl millet, which is consistent with the results of previous research. 328 

 329 

Table 1. Population studies via whole-genome resequencing of orphan cereals and 330 

their wild relatives 331 

Species 
Number of 

samples 
Area sampled 

Genome 

coverage (×) 
References 

S. italica 916 Global 0.7 Jia et al., 2013 

 184 China 2 Ni et al., 2017 

 164 China 5 Liu et al., 2020b 

S. viridis 605 North America 42.6 
Huang et al., 2019; 

Mamidi et al., 2020 

P. glaucum 414 Africa, Asia < 2 Varshney et al., 2017b 

E. crus-galli 328 China 15 Ye et al., 2019 

D. exilis 166 Africa 45 Abrouk et al., 2020 

Coix spp. 27 China 12.7 Liu et al., 2020a 

Note that studies with reduced-representation sequencing are not included. 332 

 333 

E. crus-galli is dominant in rice paddies and causes substantial rice yield losses. One 334 

of the survival strategies employed by E. crus-galli is crop mimicry in which the 335 

weed has evolved to resemble crop plants, which is thought to be the result of 336 

unintentional selection by farmers. We compared mimetic and nonmimetic 337 

populations of E. crus-galli from the Yangtze River basin on the basis of their 338 

phenotype and by genome resequencing (Ye et al., 2019). We demonstrated that the 339 
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mimetic event occurred as recently as 1,000 years ago, and a genetic bottleneck 340 

during the mimicry process was observed. Genomic regions containing 87 putative 341 

plant architecture-related genes were under selection during the mimicry process. 342 

These data provide genomic evidence for the influence of human selection on crop 343 

mimicry. 344 

Genomic resequencing studies have also been conducted on orphan legumes, such as 345 

pigeonpea (Varshney et al., 2017a), chickpea (Varshney et al., 2019), pea (Kreplak et 346 

al., 2019), peanut (Zhuang et al., 2019), common bean (Wu et al., 2020) and alfalfa 347 

(Shen et al., 2020). 348 

 349 

Novel genetic resources for environmental adaptations 350 

Orphan cereals and wild relatives provide abundant gene pools. For example, relative 351 

to cultivated rice, more than 20,000 and 8,000 specific genes can be found in E. 352 

crus-galli and Z. latifolia, respectively (http://ibi.zju.edu.cn/ricerelativesgd/) (Mao et 353 

al., 2019). As mentioned above, many orphan cereals are C4 plants and are tolerant to 354 

various stresses. Many genes related to C4 photosynthesis and abiotic stress 355 

(including drought) responses are expected to be found in the genomes of many 356 

orphan cereals and their wild relatives (Table 2). These genes are potential candidates 357 

as valuable resources for the improvement of major crops. A famous example is the 358 

use of rye in wheat breeding. It has been shown that genetic recourses from rye 359 

(translocations) can be found in the genomes of many wheat varieties grown 360 

worldwide, which contribute to abiotic and biotic stress tolerance in wheat (Bauer et 361 

al., 2017; Cheng et al., 2019). 362 

 363 

Table 2. Number of genes related to photosynthesis and abiotic stress responses in 364 

select orphan cereals and their wild relatives 365 

Species 
C4 pathway-related genes Abiotic stress-related transcription factors 

CA MDH ME PEPC PPDK AP2 NAC MYB WRKY 
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S. italica 4 13 8 6 5 184 137 231 109 

P. glaucum  5 11 6 7 3 57 122 205 85 

P. miliaceum  8 19 14 13 11 303 205 350 150 

E. crus-galli 8 39 20 25 11 471 414 639 315 

C. lacryma-jobi  5 10 14 7 4 127 131 227 79 

E. tef 9 22 13 15 11 146 166 314 116 

Note that the genes were identified via hidden Markov model (HMM) searches in this 366 

study. The HMM profile of each corresponding Pfam domain was searched against 367 

the annotated proteins encoded by corresponding genomes, with an E value < 1e-5. 368 

CA, carbonic anhydrase; MDH, malate dehydrogenase; ME, malic enzyme; PEPC, 369 

phosphoenolpyruvate carboxylase; PPDK, pyruvate phosphate dikinase. 370 

 371 

Genomic benefits of orphan crop breeding 372 

Crop breeding has entered the biotechnology-based stage, which involves the 373 

application of transgenic and genomic breeding techniques. We are at the beginning of 374 

the fourth generation of breeding technology (so-called breeding 4.0), which involves 375 

genome design, genome editing, big data, etc. (Fernie and Yang, 2019; Wallace et al., 376 

2018). Similar to major crops, genomic studies not only accelerate the isolation of 377 

functional genes and improve our understanding of orphan crop evolution but also 378 

promote the breeding process (Figure 2). 379 

Marker assistant breeding 380 

Previously, the widely used markers for crop breeding were simple sequence repeats 381 

(SSRs) or microsatellites. When entering the genomic era, SNP markers are becoming 382 

popular with advances in sequencing technologies. Mapping of quantitative trait loci 383 

(QTLs) is an important first step for functional gene isolation and marker-assisted 384 

breeding (Doust and Diao, 2017). Ni et al. (2017) and Zhang et al. (2017) resequenced 385 

a recombinant inbred line (RIL) population generated from a cross between two elites 386 

(Zhanggu and A2); furthermore, a high-resolution bin map was developed, and a total 387 

of 69 QTLs for 21 agronomic traits were identified. Liu et al. (2020b) resequenced the 388 

genomes of 164 RILs and their two parents (Longgu7 and Yugu1), and 47 QTLs for 389 

four traits were identified. Genome-wide association studies (GWAS) are useful for 390 
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dissecting complex traits and have been conducted on each of the major crops and on 391 

other model plant species. Many cases have also been reported for orphan crops. Jia et 392 

al. (2013) performed a GWAS on foxtail millet through resequencing and phenotyping 393 

916 diverse varieties from five locations involving 47 agronomic traits. Upadhyaya et 394 

al. (2015) genotyped a set of 190 foxtail millet germplasm accessions and identified 395 

significant marker-trait associations for plant pigmentation and days to flowering. 396 

Another GWAS based on genotyping-by-sequencing (GBS) data on foxtail millet was 397 

conducted by Jaiswal et al. (2019), who identified 81 marker-trait associations for ten 398 

traits. After 994 lines were resequenced, a GWAS was performed, which revealed 399 

1,054 highly significant marker-trait associations for 15 traits in pearl millet 400 

(Varshney et al., 2017b). Sharma et al. (2018) evaluated 113 diverse global finger 401 

millet germplasm accessions involving 14 agromorphological characteristics in two 402 

environments, and single-nucleotide polymorphisms (SNPs) generated via GBS were 403 

used for an association analysis, which revealed 109 novel SNPs associated with 404 

important agromorphological traits. GWASs have also been conducted on cassava 405 

(e.g., do Carmo et al., 2020; Kayondo et al., 2018; Rabbi et al., 2017; Zhang et al., 406 

2018) and orphan legume species such as pigeonpea (Varshney et al., 2017a), 407 

chickpea (Li et al., 2018b) and common bean (Wu et al., 2020). 408 

 409 

Genomic selection 410 

Genomic selection has been widely used for major crop species and livestock. 411 

Varshney et al. (2017b) applied resequencing data for genomic selection in pearl 412 

millet to predict grain yield, and high prediction accuracy was observed. They also 413 

predicted hybrid performance using a genomic selection strategy that considers 414 

additive and dominance effects. One hundred and seventy promising hybrid 415 

combinations were found, of which 11 combinations were already used for producing 416 

hybrids with good performance, and the remaining 159 combinations could be 417 

potential candidates for developing new hybrids with high yields. Genomic selection 418 

has also been applied in other orphan crop species, such as pigeonpea (Bohra et al., 419 
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2020), chickpea (Roorkiwal et al., 2020), pea (Annicchiarico et al., 2017), peanut 420 

(Pandey et al., 2020), common bean (Keller et al., 2020), alfalfa (Hawkins and Yu, 421 

2018) and cassava (Wolfe et al., 2017). 422 

 423 

Genome editing 424 

Some successful cases of orphan crop breeding and domestication of wild relatives 425 

through clustered regularly interspaced short palindromic repeats/CRISPR-associated 426 

9 (CRISPR-Cas9) technology have been recently reported. Lemmon et al. (2018) 427 

developed genomic resources and efficient transformation methods for the orphan 428 

Solanaceae crop groundcherry (Physalis pruinosa) and then used CRISPR-Cas9 to 429 

mutate orthologs of tomato domestication and improvement genes and to improve 430 

productivity-related traits. The target genes involved plant architecture, flower 431 

production and fruit size, as undesirable characteristics of groundcherry include its 432 

sprawling growth habit and small fruits. Two different groups devised a 433 

CRISPR-Cas9 genome-engineering strategy in wild tomato (Solanum 434 

pimpinellifolium); the strategy involved editing six loci that are important for yield 435 

and productivity in present-day tomato crop lines (Li et al., 2018a; Zsogon et al., 436 

2018). Both studies were highly successful in terms of the specific traits that were 437 

targeted, such as a threefold increase in fruit size, a tenfold increase in fruit number 438 

and a twofold increase in fruit lycopene accumulation in engineered S. 439 

pimpinellifolium compared with its wild parent. 440 

The CRISPR/Cas9 system has also been successfully used in foxtail millet (Zhao et 441 

al., 2020) and green foxtail (Mamidi et al., 2020). Recently, Weiss et al. (2020) 442 

developed a protoplast-based assay to rapidly test and optimize the multiplex 443 

CRISPR/Cas9 gene-editing system for highly efficient genome editing in green foxtail. 444 

In addition, several studies have evaluated the potential of CRISPR/Cas9 in cassava 445 

(e.g., Bull et al., 2018; Gomez et al., 2019; Mehta et al., 2019; Odipio et al., 2017). 446 

 447 
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Speed breeding 448 

Speed breeding shortens the breeding cycle and accelerates crop research through 449 

rapid generation advancement (Ghosh et al., 2018). Speed breeding protocols for 450 

some orphan crops are available, such as peanut (O’Connora et al., 2013), chickpea 451 

(Watson et al., 2018) and amaranth (Amaranthus spp.) (Stetter et al., 2016). 452 

Chiurugwi et al. (2019) recently reviewed the progress of speed breeding in orphan 453 

crops. To make foxtail millet more suitable as a model plant, a miniature mutant 454 

(xiaomi) with a life cycle similar to that of Arabidopsis has been identified from a 455 

large foxtail millet ethyl methane sulfonate-mutagenized population (Yang et al., 456 

2020). Five to six generations of xiaomi can be grown in a year in growth chambers 457 

due to its short life cycle and small plant size, similar to Arabidopsis. In particular, a 458 

reference-grade xiaomi genome comprising 429.9 Mb of sequence data along with the 459 

speed breeding protocol was provided to the research community. 460 

 461 

Perspectives 462 

Breeding knowledge from major crops is helpful for orphan crop improvement 463 

The ability to breed major crops has been greatly improved by advances in genomics, 464 

and orphan crops would benefit from the knowledge gained from the breeding of 465 

major crops, which includes identifying genes that control key agronomic traits and 466 

applying advanced breeding methods, etc. (Figure 3). 467 

Functional conservation of orthologous genes in crop domestication and improvement 468 

has been widely revealed. For example, a stay-green G gene from soybean controls 469 

seed dormancy and has undergone selection during domestication. Its orthologs also 470 

show evidence of selection during domestication in rice and tomato and have 471 

conserved functions in controlling seed dormancy in soybean and rice (Wang et al., 472 

2018). Many other cases have also been found for genes that govern plant height in 473 

rice and barley (Jia et al., 2009), tiller angle in rice and maize (Dong et al., 2013) and 474 

seed size in sorghum, maize and rice (Tao et al., 2017). Cases of conserved functions 475 
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of genes between major and orphan crops have also been reported. For example, 476 

TEOSINTE BRANCHED1 (TB1), a major domestication gene controlling branching in 477 

maize, has experienced parallel selection between maize and pearl millet (Remigereau 478 

et al., 2011). By targeting the orthologs of tomato domestication and improvement 479 

genes, Lemmon et al. (2018) successfully edited these genes in the orphan crop 480 

groundcherry, which yielded the expected phenotypes. A number of genes have been 481 

functionally characterized in major crop species. For example, more than 3,500 genes 482 

in rice have been cloned (https://funricegenes.github.io/) (Yao et al., 2018). These 483 

genes in major crop species provide valuable information for mining and utilizing 484 

genes that play critical roles in the domestication and improvement of orphan crops. 485 

Genome-based breeding methods have been widely used in major crops with the 486 

advancement of genome sequencing; these methods have shortened the breeding 487 

process and have improved selection efficiency (Varshney et al., 2020; Wallace et al., 488 

2018). Theoretically, these genomic breeding methods could also be applied to or 489 

benefit orphan crop species. Particularly, precise editing of genes through the 490 

CRISPR/Cas9 approach could facilitate the development of improved varieties of 491 

orphan crops. However, advanced genomic techniques used in major crops also have 492 

challenges when used in some orphan crops. For example, a large LD (linkage 493 

disequilibrium) distance makes the use of GWAS difficult in quinoa (Mizuno et al., 494 

2020). When applied to a new plant species, the CRISPR/Cas9 system often requires 495 

considerable optimization in terms of vector construction, transgene expression, tissue 496 

culture and transformation efficiency (Weiss et al., 2020; Yin et al., 2017). A 497 

prerequisite for the application of gene-editing technologies is an effective 498 

transformation system, which is not available in most orphan crops (Hua et al., 2019; 499 

López-Marqués et al., 2020; Zhang et al., 2020). Therefore, the use of genome editing 500 

in orphan crops is still a long way away. 501 

 502 

Utilization of genomic studies on orphan crops and their wild relatives for 503 

improvements to major crops 504 
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Genome sequences of orphan crops and their wild relatives provide at least three 505 

potential benefits for major crop species. First, orphan crops provide valuable genetic 506 

resources related to environmental adaptation for major crop improvement (Figures 2 507 

and 3). Second, many orphan cereals are C4 plants and thus are potential models for 508 

C4 rice. A long-standing goal of the C4 community is to engineer C4 traits into rice to 509 

increase rice yields (www.c4rice.org), and maize is currently considered the major 510 

model species. Foxtail millet and green foxtail have been proposed to be novel model 511 

species for C4 photosynthesis due to their relatively small genomes, ease of gene 512 

transformation, and short generation time, etc. (Diao et al., 2014). Considering that E. 513 

crus-galli grows within the same agroecosystem and exhibits morphological 514 

characteristics similar to those of rice (i.e., crop mimicry), this species might be an 515 

alternative model for the C4 rice project. Third, genomic studies on orphan 516 

crop-related agricultural weeds revealed the mechanisms underlying their ability to 517 

compete with major crops, which have helped breed crop cultivars with competitive 518 

advantages (Figure 3). Crop-weed interactions, such as allelopathic interactions, have 519 

long been an important topic in agronomic studies (Guo et al., 2018). Allelopathy, or 520 

the ability of one plant to suppress the growth of another nearby plant through the 521 

release of chemical compounds (i.e., allelochemicals), is one of the most important 522 

features underlying weediness (Guo et al., 2017). Allelopathy has been considered a 523 

possible application for weed control; for example, crop varieties with high 524 

allelopathic potential toward weeds could be bred (Khanh et al., 2007). The E. 525 

crus-galli genome contains a cluster of genes involved in the biosynthesis of the 526 

allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which 527 

plays a critical role in E. crus-galli for allelopathic competition with rice in paddy 528 

fields (Guo et al., 2017). Thus, breeding DIMBOA-resistant rice cultivars is expected 529 

to decrease the application of herbicides in the future. 530 

 531 

De novo domestication of orphan crops 532 

One strategy for the utilization of wild relatives is de novo domestication as a new 533 
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crop (Pourkheirandish et al., 2020). Domestication of new orphan crops from their 534 

wild relatives (including weeds) is helpful for maintaining crop diversity (Figure 3). 535 

Among orphan cereals, there are at least two possible cases in which de novo 536 

domestication can be achieved. The lost cereal Gu (Z. latifolia) could be recovered 537 

through de novo domestication of semiwild (or semidomesticated) Z. latifolia. Unlike 538 

wild Z. latifolia, semiwild Z. latifolia has been dedomesticated from Jiaobai 539 

(vegetable) and has a compact plant architecture and strong stems (lodging resistance). 540 

It does not have enlarged stems, and the seed set of a single plant can reach 20-25% 541 

(Wang et al., 2013). These traits would make the recovery of Gu possible with the 542 

assistance of recent breeding techniques such as genome editing. Another case of de 543 

novo domestication may involve the mimetic weeds E. crus-galli and E. oryzicola. 544 

These mimetic Echinochloa weeds resemble cultivated rice with a small tiller angle, a 545 

straight stem node, a green stem base and compact leaves. The major trait that needs 546 

to be domesticated is seed shattering; in-depth knowledge about this trait in major 547 

crops would be helpful in this process. 548 
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Figure legends 962 

Fig. 1 Examples of orphan cereals and their wild relatives. Only orphan cereals and/or 963 

their wild relatives whose de novo genome sequence is available are shown. The 964 

asterisks (*) indicate important agricultural weeds. References for the genomic studies 965 

are listed. Rice, maize and wheat are also shown for understanding the evolutionary 966 

relationship between orphan and major cereals. 967 

Fig. 2 Current progress in genomic contributions to the genetics and breeding of 968 

orphan crops. 969 

Fig. 3 Potential interaction/exchanges of genomic results among major crops, orphan 970 

crops and their wild relatives located in different agricultural ecology regions. 971 
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Orphan cereals References Wild relatives References

Oryza sativa (rice)

Zizania latifolia (gu, extinct) not available
Z. latifolia
(wild and semi-wild)

Guo et al., 2015Zizania palustris
(wildrice) not available

Triticum aestivum (wheat)

Thinopyrum intermedium
(intermediate wheatgrass)

available at Phytozome
database

T. intermedium (wild) not available

Secale cereale (rye)
Bauer et al., 2017; 
Rabanus Wallace et al., 
2019

S. cereale spp.
(weedy rye)*

not available

Avena sativa (oat) not available
diploid Avena (wild)                                                                                          
A. sterilis
(weedy progenitor)*

Maughan et al., 2019

Eleusine coracana
(finger millet)

Hittalmani et al., 2017; 
Hatakeyama et al., 2018

E. indica
(goosegrass)*

Zhang et al., 2019

Eragrostis tef
(tef)

Cannarozzi et al., 2014; 
VanBuren et al., 2020

E. pilosa (wild) not available

Setaria italica
(foxtail millet)

Bennetzen et al., 2012; 
Zhang et al., 2012

S. viridis
(green foxtail)*

Huang et al., 2019; 
Thielen et al., 2020

Pennisetum glaucum
(pearl millet)

Varshney et al., 2017 P. glaucum (wild) not available

Panicum miliaceum
(broomcorn millet)

Zou et al., 2019; 
Shi et al., 2019

P. repens
(torpedograss)

not available

Echinochloa spp.
(barnyard millet)

not available
E. curs-galli*, 
E. oryzicola*
E. colona*

Guo et al., 2017; 
Ye et al., 2020; 

Digitaria exilis
(fonio millet)

Abrouk et al., 2020
D. sanguinalis
(large crabgrass)*

not available

Coix lacryma-jobi
(adlay)

Liu et al., 2020; 
Kang et al., 2020

C. aquatica (wild) Guo et al., 2020

Zea mays (maize)
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